天然药物化学复习资料
天然药化复习资料

天然药物化学1.天然药物化学:是运用现代科学理论与方法,研究天然药物中化学成分(主要是生理活性成分或药效成分)的一门学科。
2.生物合成途径:醋酸-丙二酸途径(AA-MA)代谢产物:脂肪酸类、酚类、蒽醌类。
甲戊二羟酸途径(MVA)代谢产物:萜类、甾体类化合物、胡萝卜素类。
桂皮酸途径及莽草酸途径代谢产物:苯丙素类、黄酮类苯丙烯、苯丙酸、香豆素、木质素、木脂体。
氨基酸途径代谢产物:生物碱类。
3.溶剂极性顺序:乙酸≥吡啶≥水≥乙腈≥甲醇≥乙醇≥丙酮≥正丁醇≥乙酸乙酯≥乙醚≥二氯甲烷≥氯仿≥苯≥三氯乙烷≥四氯化碳≥二硫化碳≥石油醚。
4.分离因子β:表示分离的难易,A、B两种溶质在同一溶剂系统中分配系数的比值β≥100——仅作一次简单萃取就可实现基本分离100>β≥10——需萃取10-12次β≤2——作100次以上萃取才能实现基本分离。
5.液-滴逆流色谱(DCCC):可使流动相呈液滴形式垂直上升或下降,通过固定相的液柱,实现物质的逆流色谱分离,分配用的两相溶剂不必震荡,故不易乳化或产生泡沫,特别适用于皂苷类的分离。
上行:流动相密度大。
6.分离提纯:硅胶、氧化铝:极性吸附(硅胶:酸性,氧化铝:碱性),活性炭:非极性吸附在水中对溶质表现出较强的吸附能力。
聚酰胺:氢键吸附(+分配原理)极性非极性均适用,适合分离酚类、醌类、黄酮类(羟基、羰基多的、分子小的、芳香核共轭双键多的易被吸附,分子内氢键不易吸附),用不断提高浓度的含水醇洗脱。
离子交换树脂:酸,阴离子交换树脂,碱洗脱;碱,阳离子交换树脂,酸洗脱。
7.苷键的裂解:酸催化水解反应:水或稀醇溶液中,与稀酸共热催化水解,酸水解易难程度为:N-苷>O-苷>S-苷>C-苷、呋喃糖苷>吡喃糖苷、酮糖>醛糖、去氧糖>羟基糖>氨基糖、芳香苷>脂肪苷、苷元小基团苷键横键>苷键竖键、苷元大基团苷键竖键>苷键横键、N-处于酰胺时,N-苷也难水解,水解后生成糖和苷元。
天然药物化学复习重点

天然药物化学复习重点第一章总论天然药物中化学成分的分类1. 有效成分: 天然药物中具有一定的生物活性、能起到防治疾病作用的单体化合物。
2. 有效部位:为具有一定生物活性的多种单体化合物的混合物。
如人参总皂苷、银杏总黄酮、灵芝多糖等。
一次代谢产物:糖、蛋白质、脂质、核酸等对植物机体生命活动来说不可缺少的物质。
二次代谢产物:生物碱、萜、香豆素、黄酮、醌类等对维持植物生命活动不起重要作用,且并非在所有植物中都能产生。
由一次代谢产物产生,常为有效成分。
一、提取法:1. 溶剂提取法(solvent extraction)原理:相似相溶理想溶剂(ideal solvents ):(1)对有效成分溶解度大;(2)对无效成分溶解度小;(3)与有效成分不起化学反应;(4)安全,成本低,易得。
二分离方法1. 根据溶解度差别进行分离1.1 结晶法(纯化时常用)条件:合适的溶剂;浓度;温度1.2 沉淀法:a 溶剂沉淀法:改变极性,如水提醇沉法b 酸碱沉淀法:改变pH ,处理酸、碱、两性成分;c 沉淀试剂:如铅盐沉淀法,酸性、酚性成分加中性PbAc2 ,形成沉淀。
2.2酸碱性成分的分离一pH-梯度萃取法按酸碱性强弱不同分离酸性、碱性、中性物质,改变pH 值使酸碱成分呈不同状态。
3.2 硅胶、氧化铝:①被分离物质吸附力与结构的关系被分离物质极性大,吸附力强,Rf 值小,洗脱难,后被洗脱下来。
官能团极性大小排列顺序:-COOH > Ar-OH > R-OH > R-NH2, RNHR ', RNR ' R " > R-CO-NR'R"> RCHO > RCOR ' > RCOOR ' > ROR ' >RH②溶剂(洗脱剂)的极性与洗脱力的关系洗脱剂极性越大, 洗脱力越强.3.3 聚酰胺①吸附力与结构的关系a形成氢键的基团数目越多,吸附力越强;b. 形成分子内氢键者,吸附力减少;c•芳香化程度越高或共轭键越多,吸附力越强;d.芳香苷苷元> 苷,单糖苷> 双糖苷> 叁糖苷②溶剂的洗脱能力水<含水醇<醇<丙酮<NaOH/H2O<甲酰胺<二甲基甲酰胺<尿素/H203.4 大孔吸附树脂(macro-reticular resin)①组成:苯乙烯,二乙烯苯和致孔剂②分离原理:吸附(范德华力和氢键)和分子筛作用(多孔性结构)③树脂类型:非极性、中极性和极性三种。
天然药化复习资料

天然药物化学是运用现代科学理论与方法研究天然药物中化学成分的一门学科。
其研究内容包括各类天然药物的化学成分(主要是生理活性成分或药效成分)的结构特点、物理化学性质、提取分离方法以及主要类型化学成分的结构鉴定等。
一.中草药有效成分的提取从药材中提取天然活性成分的方法有溶剂法、水蒸气蒸馏法及升华法等。
(一) 常用提取方法(二)溶剂提取法●溶剂提取法的原理:溶剂提取法是根据“相似相容”原理进行的,通过选择适当溶剂将中药中的化学成分从药材中提取出来的一种方法。
(考试时请这样回答哦!)*常用溶剂极性有弱到强排列:石油醚<环己烷<苯<乙醚<氯仿<醋酸乙酯<正丁醇<丙酮<乙醇<甲醇<水(丙酮,乙醇,甲醇能够和水任意比例混合。
)*常用溶剂的性质:亲脂性有机溶剂、亲水性有机溶剂、水*一般情况下,分子较小,结构中极性基团较多的物质亲水性较强。
而分子较大,结构上极性基团少的物质则亲脂性较强。
●天然药物中各类成分的极性·多糖、氨基酸等成分极性较大,易溶于水及含水醇中;·鞣质是多羟基衍生物,列为亲水性化合物;·苷类的分子中结合有糖分子,羟基数目多,能表现强亲水性;·生物碱盐,能够离子化,加大了极性,就变成了亲水性化合物;·萜类、甾体等脂环类及芳香类化合物因为极性较小,易溶于氯仿、乙醚等亲脂性溶剂中;·油脂、挥发油、蜡、脂溶性色素都是强亲脂性成分,易溶于石油醚等强亲脂性溶剂中总之,天然化合物在溶剂中的溶解遵循“相似相溶”规律。
即极性化合物易溶于极性溶剂,非极性化合物易溶于非极性溶剂,分子量太大的化合物往往不溶于任何溶剂。
溶剂提取法的关键是选择适宜的溶剂(选择溶剂依据:根据溶剂的极性和被提取成分及其共存杂质的性质,决定选择何种溶剂)(各溶剂法分类见《天然药物化学辅导教材》P5)(三)水蒸气蒸馏法只适用于具有挥发性、能随水蒸气蒸馏而不被破坏,与水不发生反应,且难溶或不溶于水的成分的提取。
天然药化复习资料

第一章总论天然药物有效成分提取方法有几种?采用这些方法提取的依据是什么?答:①溶剂提取法:利用溶剂把天然药物中所需要的成分溶解出来,而对其它成分不溶解或少溶解;②水蒸气蒸馏法:利用某些化学成分具有挥发性,能随水蒸气蒸馏而不被破坏的性质;③升华法:利用某些化合物具有升华的性质。
常用溶剂的亲水性或亲脂性的强弱顺序如何排列?哪些与水混溶?哪些与水不混溶?答:与水不溶(石油醚>苯>氯仿>乙醚>乙酸乙酯>正丁醇)>与水混溶(丙酮>乙醇>甲醇>水)溶剂分几类?溶剂极性与ε值关系?答:分极性溶剂和非极性溶剂或亲水性溶剂和亲脂性溶剂。
常用介电常数ε表示物质的极性,一般ε值大,极性强,在水中溶解度大,为亲水性溶剂;ε值小,极性弱,在水中溶解度小或不溶,为亲脂性溶剂。
溶剂提取的方法有哪些?它们都适合哪些溶剂的提取?答:①浸渍法:水或稀醇为溶剂②渗漉法:稀乙醇或水为溶剂③煎煮法:水为溶剂④回流提取法:用有机溶剂提取⑤连续回流提取法:用有机溶剂提取。
两相溶剂萃取法是根据什么原理进行?在实际工作中如何选择溶剂?答:利用混合物中各成分在两相互不相溶的溶剂中分配系数不同而达到分离的目的。
实际工作中,在水提取液中有效成分是亲脂的多选用亲脂性有机溶剂如苯、氯仿、乙醚等进行液-液萃取;若有效成分是偏于亲水性的则改用弱亲脂性溶剂如乙酸乙酯、正丁醇,也可采用氯仿或乙醚加适量乙醇或甲醇的混合剂。
萃取操作时要注意哪些问题?答:①水提取液的浓度最好在相对密度 1.1~1.2之间。
②溶剂与水提取液应保持一定量比例,第一次用量为水提取液1/2~1/3,以后用量为水提取液1/4~1/6。
③一般萃取3~4次即可。
④用氯仿萃取,应避免乳化,可采用旋转混合,改用氯仿,乙醚混合溶剂等。
若已形成乳化,应采取破乳措施。
萃取操作中若已发生乳化,应该如何处理?答:轻度乳化可用一金属丝在乳层中搅动。
将乳化层抽滤。
天然药物化学期末知识点整理

天然药物化学期末知识点整理天然药物化学是运用现代科学理论与方法研究天然药物中化学成分的一门学科。
以下是为大家整理的期末知识点,希望对大家的复习有所帮助。
一、天然药物化学成分的提取方法(一)溶剂提取法这是最常用的方法之一。
溶剂的选择至关重要,遵循“相似相溶”原则。
常用溶剂包括水、亲水性有机溶剂(如甲醇、乙醇)、亲脂性有机溶剂(如石油醚、氯仿)等。
浸渍法操作简便,但提取效率较低,适用于遇热不稳定成分的提取。
渗漉法提取效率高于浸渍法,但溶剂消耗量大。
煎煮法常用于提取水溶性成分,但对热不稳定成分不适用。
回流提取法和连续回流提取法效率较高,但需注意控制温度,避免成分破坏。
(二)水蒸气蒸馏法适用于具有挥发性、能随水蒸气蒸馏而不被破坏,且难溶或不溶于水的成分。
(三)升华法某些固体物质受热时直接气化,遇冷后又凝固为固体,此过程称为升华。
如樟木中的樟脑。
二、天然药物化学成分的分离方法(一)根据物质溶解度差异进行分离1、重结晶法:利用被提纯物质和杂质在溶剂中的溶解度差异,通过反复结晶来纯化。
2、沉淀法:通过加入试剂使有效成分或杂质生成沉淀而分离。
(二)根据物质在两相溶剂中的分配比不同进行分离1、液液萃取法:利用混合物中各成分在两种互不相溶的溶剂中分配系数的差异而达到分离。
2、纸色谱法:以滤纸为载体,以纸上所吸附的水为固定相,有机溶剂为流动相。
3、柱色谱法:包括硅胶柱色谱、氧化铝柱色谱、大孔吸附树脂柱色谱等。
(三)根据物质的吸附性差异进行分离1、物理吸附:如硅胶、氧化铝吸附。
硅胶适用于分离酸性和中性物质,氧化铝适用于分离碱性物质。
2、化学吸附:如聚酰胺吸附,对酚类、醌类、黄酮类等成分有较好的分离效果。
3、半化学吸附:如大孔吸附树脂,可用于分离水溶性成分。
(四)根据物质分子大小差异进行分离如凝胶过滤色谱法,常用的凝胶有葡聚糖凝胶、羟丙基葡聚糖凝胶等。
(五)根据物质解离程度不同进行分离离子交换色谱法,适用于分离具有解离性质的化合物。
天然药物化学复习资料

名词解释1.天然产物化学:运用现代科学理论与方法研究天然药物中化学成分的一门学科。
2.一次代谢:一次代谢过程是对维持植物生命活动不可缺少的过程,几乎所有绿色植物中都存在。
一代产物:葡萄糖、蛋白质、脂质、核酸二次代谢:二次代谢过程是指并非在所有植物中都能发生,对维持植物生命活动来说又不起重要作用的过程。
二代产物:生物碱、萜类化合物3.正相分配色谱:分离水溶性或极性较大的成分如生物碱、苷类、糖类、有机酸等化合物时,固定相多采用强极性溶剂如水、缓冲液等,流动相则用氯仿、乙酸乙酯、丁醇等弱性有机溶剂反相分配色谱::当分离脂溶性化合物如高级脂肪酸、油脂、游离甾体等时,两相可以颠倒,固定相可用液体石蜡,而流动相则用水或甲醇等极性溶剂4、苷化位移:糖与苷元成苷后,苷元的α-C、β-C和糖的端基碳的化学位移值均发生了改变,这种改变称为苷化位移5、苷类:亦称苷或配糖体,是由糖或糖的衍生物,如氨基酸、糖醛酸等于另一非糖物质通过糖的半缩醛或半缩酮羟基与苷元脱水形成的一类化合物6、低聚糖:由2-9个单糖通过苷键结合而成的直链或支链聚糖7、香豆素:邻羟基桂皮酸内酯类成分的总称,具有苯骈α-吡喃酮母核的基本骨架简单香豆素:指仅仅在它的苯环上有取代,且7位羟基与其6位或8位没有形成呋喃环或者吡喃环的香豆素类呋喃香豆素:其母核的7位羟基与6位或8位取代异戊烯基缩合形成呋喃环的一系列化合物吡喃香豆素:其母核的7位羟基与6位碳或8位碳上取代的异戊烯基缩合形成吡喃环的一系列化合物及双吡喃香豆素类8、黄酮类化合物:指基本母核为2-苯基色原酮类化合物,现泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连接而成的一系列化合物9、萜类化合物:是一类结构多变,数量很大,生物活性广泛的一大类重要的天然药物化学成份。
其骨架一般以五个碳为基本单位,可以看作是异戊二烯的聚合物及其含氧衍生物。
但从生源的观点看,甲戊二羟酸(mevalonic acid, MVA)才是萜类化合物真正的基本单元。
天然药物化学复习.doc

第一章总论1.极性由小到大:石油醚<二硫化碳<四氯化碳<三氯乙烯<苯<二氯甲烷<乙醚<三氯甲烷<乙酸乙酯<丙酮<乙醇<甲醇<乙腈<水<吡啶<乙酸a.石油醚:油脂、蜡、叶绿素、挥发油、游离甾体及三萜化合物b.三氯甲烷或乙酸乙酯:游离生物碱、有机酸及黄酮、香豆素的苷元等中极性物质c.丙酮或乙醇、甲醇:苷类、生物碱盐及鞣质等极性物质d.水:氨基酸、糖类、无机盐等水溶性成分2.从药材中提取天然活性成分的方法有:溶剂提取法、水蒸气蒸馏法及升华法等。
3.溶解提取法原理:是根据“相似者相溶原理”通过选择适当溶剂将化学成分从原料中提取出来。
一般来说,两种基本母核相同的成分,其分子中官能团的极性越大或极性官能团数目越多,则整个分子的极性就越大,亲水性就越强;若非极性部分越大或碳链越长,则极性越小,亲脂性越强。
4.溶剂提取法:超临界流体萃取技术特点:①不残留有机溶剂、萃取速度快、收率高、工艺流程简单、操作方便;②无传统溶剂法提取的易燃易爆的危险,减少环境污染,无公害;③萃取温度低,适用于对热不稳定物质的提取;④萃取介质的溶解性容易改变,在一定温度下只需改变其压力;⑤还可加入夹带剂,改变萃取介质的极性来提取极性物质;⑥适用于对极性较大和分子量较大物质的萃取;⑦萃取介质可循环利用,成本低;⑧可与其他色谱技术联用及IR、MS联用,可高效快速地分析中药及其制剂中有效成分。
5.天然药物有效成分的分离:a.根据物质溶解度差别进行分离;改变温度:结晶及重结晶;酸性或碱性化合物加沉淀剂;调节PH:生物碱(酸/碱)、黄酮/蒽醌类酚酸性成分(碱/酸)改变混合溶剂极性:水提醇沉法:除去多糖、蛋白质水溶性杂质醇提水沉法:除去树脂、叶绿素水不溶性杂质b.根据物质在两相溶剂中的分配比不同进行分离;β/100 基本分离100∃β/10 萃取10-12次β[2 萃取100次CCD法:逆流分溶法(PC纸层析)50∃βDCCC法:滴液逆流色谱 HSCCC:高速逆流色谱c.根据物质吸附性差别进行分离;物理吸附:无选择性、可逆、快速,硅胶、氧化铝、活性炭化学吸附:选择性,不可逆,共价键半化学吸附:聚酰胺对黄酮、醌类,氢键吸附物理吸附基本规律—相似者易于吸附;吸附过程三要素:吸附剂、溶质、溶剂;硅胶、氧化铝因均为极性吸附剂,故有以下特点:(溶剂极性小的,洗脱液极性增大)(1)极性物质具有较强的亲和力,极性强的溶质将被优先吸附;(2)溶剂极性越弱,则吸附剂对溶质将表现出较强的吸附能力。
天然药化复习资料

一、有效成分:指天然药物中具有一定生物活性,能代表天然药物临床疗效的单一化合物有效部位:指一味或复方中药中提取出的一类或几类有效的成分,如:人参总皂苷二、生物合成:基本结构单元:C1、C2、C5、C6C3、C6C2N 、吲哚C2N 、C5N合成途径:1、乙酸-丙二酸途径→脂肪酸类、聚酮类、酚及芳聚酮类2、甲戊二羟酸途径和脱氧木酮糖磷酸酯途径(MV A、DXP)→萜类、甾类化合物3、莽草酸途径→木脂素类、苯丙素类、香豆素类;芳香氨基酸和简单苯甲酸类;醌类化合物4、氨基酸途径→生物碱5、复合途径三、提取分离:(三要素:1、提取对象2、有效成分的提取3、分离与精制)溶剂提取法:(原理:相似相容)常用溶剂按极性排列:石油醚<二硫化碳<四氯化碳<三氯乙烯<笨<二氯甲烷<乙醚<三氯甲烷<乙酸乙酯<丙酮<乙醇<甲醇<水<乙酸分类:1、浸渍法2、渗漉法3、煎煮法4、回流提取法5、连续回流提取法6、超临界萃取法7、超声波提取法8、微波提取法水蒸汽蒸馏法:实用于具有挥发性、能被水蒸汽蒸馏而不被破坏、且难溶于水的成分升华法:用于提取游离蒽醌等,如:樟脑、咖啡因等压榨法:药材需新鲜,一般用于提取含量高的植物油三、有效成分的分离和精制(原理-方法)A:据溶解度差异分离:1、利用温度对溶解度的影响(结晶、重结晶等)2、酸碱性对有效成分的有效(碱提酸沉、酸提碱沉、pH梯度萃取等)3、不同溶剂的影响(醇醚法、水提醇沉、醇提水沉等)4、对酸碱成分加入酸碱试剂(沉淀法)B:据两相溶剂中分配比不同分离:液液萃取、纸色谱、逆流分溶法、液滴逆流色谱法、高速逆流色谱法、气液分配色谱法、液液分配柱色谱法C:据物质吸附差异分离:1、物理吸附(活性炭吸附)2、极性强弱吸附3、吸附柱色谱分离4、聚酰胺吸附色谱法(氢键多、芳化程度高的吸附性强,反之减弱;聚酰胺洗脱能力:水<甲醇<丙酮<NaOH<甲酰胺<二甲基酰胺<尿素)5、大孔吸附树脂法(影响因素:a大孔树脂吸附剂表面性质,比表面积等b被吸附化合物的结构影响c洗脱剂的影响d酸碱度pH的影响e温度的影响f其他因素影响,如流速)D:据物质分子大小差异分离:1、凝胶过滤法(葡萄糖凝胶)2、膜分离技术(渗透)E:据物质解离程度差异分离:离子交换法F:分子蒸馏技术四、单糖立体构型:D型(Fischer投影式中离羰基最远的手型碳上的羟基在右侧;Haworth投影式中C4的羟基在下面);L型与上述D型相反;α型是Fischer投影式中新形成的羟基与离羰基最远的手型碳上的羟基为同侧,异侧为β型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论1.新药:未在本国上市的药物。
包括:新化学实体新剂型新组方新用途新化学实体具有特定生物活性的新化合物。
2.先导化合物:即原型物,是通过各种途径或方法得到的具有某种生物活性的化学结构。
它具有确定的药理活性,因存在的某些缺欠,无法直接药用,但却作为线索物质为进一步的优化提供了前提。
3.新药研究与开发的特点:高投入、高风险、高利润、专利保护严密、品种更新迅速、发展潜力巨大4、医药生产企业存在“一小、二多、三低”现象:“一小”是大多数生产企业规模小。
(90%是小厂)“二多”是企业数量多,产品重复多。
医药工业企业3613家;低水平重复研究、重复生产、重复建设, 828家生产企业生产诺氟沙星。
“三低”是大部分生产企业科技含量低、管理水平低,生产能力利用率低。
生产技术水平不高,生产装备陈旧,劳动生产率低,产品质量和成本缺乏国际市场竞争力,污染比较严重。
5、天然药物化学:天然药化是运用现代科学的理论与方法研究天然药物中化学成分的一门科学6、有效成分:有生理活性,能治病的成分叫有效成分。
7、无效成分:无生理活性,不能治病的成分叫无效成分。
8、有毒成分:能致病的成分叫有毒成分。
9、糖、蛋白质、脂质、核酸等对植物机体生命活动必不可少的物质,称为一次代谢产物,也称为初级代谢产物;10、上述物质产生过程对维持植物生命活动来说是必不可少的过程,且几乎存在于所有的绿色植物中,此过程称为一次代谢,也称为初级代谢。
11、特定条件下,一次代谢产物作为原料或前体,又进一步经历不同的代谢过程,这一过程并非所有植物中都发生,对维持植物生命活动不起重要作用,此过程称为二次代谢,也称为次生代谢12、生成的萜类、生物碱等化合物称为二次代谢产物,也称为次生代谢产物。
13、超临界流体(SCF):当一种物质处于其临界温度与临界压力以上的状态时,将形成既非液体又非气体的单一相态。
(一)常用提取方法1.升华法①原理:利用某些具有升华性质的化合物遇热汽化上升,遇冷后又凝固的性质从药材中提取该类成分。
2.水蒸汽蒸馏法:①原理:利用某些挥发性成分能随水蒸气蒸发的性质。
3.溶剂提取法①原理:利用天然药物的化学成分在特定溶剂中能够溶解的性质。
(一)两相溶剂萃取法1.原理:利用混合物中各组分在两相溶剂中的分配系数不同进行纯化分离. (二)酸碱法1.原理:根据酸性化合物溶于碱水,碱性化合物溶于酸水,酸水碱水均不溶的为中性化合物的原理分离酸性、碱性和中性化合物。
(三)沉淀法1、原理:利用混合物中各组分溶解度的差异或通过加入化学试剂、溶剂或改变PH值等改变溶解度将混合物中某组份沉淀出来.(四)盐析法1、原理:利用饱和盐水溶液可以降低化学成分在水中溶解度的性质,使其沉淀析出或选用适宜溶剂萃取,使其得以纯化分离。
(五)制备衍生物法1、原理:制成适宜的易于分离的衍生物后,再进一步进行分离纯化。
(六)透析法1. 原理:利用水溶液中小分子化合物可以通过半透膜,而大分子化合物不能通过半透膜的性质进行分离纯化。
(七)分馏法1、原理:利用各类成分沸点不同(八)结晶法1、原理:一般情况下,一种固体成分达到一定纯度,在某种条件下就会结晶析出,分离结晶与母液,从而得以纯化分离。
(九)吸附法1、原理:利用吸附材料如大孔吸附树脂、活性碳、聚酰胺等对不同化合物吸附能力的不同,不同洗脱剂对不同化合物洗脱能力的不同,来纯化分离混合物中的不同组分。
(一)吸附色谱1.原理:依据吸附剂对混合物中各成分吸附性能的不同,使各成分得到分离。
10、聚酰胺吸附色谱法(1)吸附原理:通过分子中的酰胺羰基与酚类、黄酮类化合物的酚羟基,或以酰胺键上的游离胺基与醌类、脂肪酸上的羰基形成氢键缔合而产生吸附。
a. 形成氢键的基团数目越多,则吸附能力越强,Rf值越小。
c. 分子结构中芳香化程度高,则吸附性增强;反之,则减弱。
11.大孔吸附树脂(1)吸附原理:大孔吸附树脂是吸附性和分子筛性原理相结合的分离材料。
(3)影响吸附的因素A、非极性化合物在水中易被非极性大孔树脂吸附;极性化合物在水中易被极性大孔树脂吸附。
B、物质在溶剂中的溶解度大,树脂对此物质的吸附力就小;反之就大。
C、能与大孔吸附树脂形成氢键的化合物易被吸附。
B、对于非极性大孔吸附树脂,洗脱液极性越小,洗脱能力越强;(三)凝胶过滤色谱1、原理:系利用分子筛原理分离物质的一种方法,其中所用载体为葡聚糖凝胶等。
(四)离子交换色谱1、离子交换法分离物质的原理利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。
(三)红外光谱(IR)1、红外光谱:研究分子运动的吸收光谱,反映分子中原子间的振动和变角运动。
①3600-3200cm-1出现强的宽峰,表示有-OH存在;② 2200-2100cm-1出现吸收峰,表示可能有C≡N或C≡C键存在;③ 1850-1650cm-1出现强的吸收峰,且受其他峰的影响小,这是-C=O的标志;④ 1600-1500cm-1出现弱的吸收峰,表示有-C=C-存在。
(四)紫外-可见吸收光谱(UV)1、原理:是分子中某些价电子吸收了一定波长(200~700nm)的紫外-可见光,由低能级跃迁到高能级而产生的一种光谱。
(五)质谱1、基本原理:有机化合物在高温真空中受热汽化,受到50~100eV的电子束轰击后,会失去电子变成带正电荷的分子离子。
该分子离子在电子流进一步轰击下,又会发生键的断裂而形成各种碎片离子。
这些离子在电场和磁场的综合作用下,按照质荷比的大小顺序被记录下来,所形成的图谱即MS。
(六)核磁共振谱(NMR)1、核磁共振基本原理自旋核在外加磁场中存在两种能量状况,通常处于低能级的核比处于高能级的核稍多一些.如果在垂直于外加磁场的方向上增加一个电磁场,当电磁场的能量与核磁能级差相等时,处于低能级的多余的磁核就会吸收电磁波能量而跃迁到高能级,即产生核磁共振.化学位移概念:各个1H核共振吸收峰与原点之间的相对距离原点:标准物TMS[(CH3)4Si]的核磁共振吸收峰的位置(设为0ppm)。
(4)不同类型质子化学位移的大致范围-CHO 9~10ppm芳环-H 6~8ppm-C=C-H 4.5~6.5ppm-C≡C-H 2~3ppm-CH2-CH2- 0.8~1.2ppm.活泼氢不定(加D2O消失)(-OH、-NH、-SH)峰的裂分:由单峰分裂成多重峰的现象(1)峰的数目:标志分子中磁不等性质子的种类,多少种;(2)峰的强度(面积):每类质子的数目(相对),多少个;(3)峰的位移( ):每类质子所处的化学环境,化合物中位置;(4)峰的裂分数:相邻碳原子上质子数;(5)偶合常数(J):确定化合物构型。
偶合常数:有机化合物中各类质子由于所处化学环境的不同,当磁核发生自旋偶合作用时,质子的共振峰要发生裂分现象,分别形成一组多重峰,多重峰的谱线之间有一定的间隔距离称为偶合常数。
甾体及苷类1.醋酐-浓硫酸(Liebermann-Burchard)反应样品/冰HAc + 浓硫酸-醋酐(1:20)→黄→红→紫→蓝→绿→污绿,最后逐渐褪色。
2.三氯醋酸(Rosenheim)反应:样品/氯仿 + 25%三氯醋酸乙醇溶液→红至紫色。
3.三氯化锑(或五氯化锑)反应:样品液/滤纸,喷20%SbCCl3(SbCCl5) 60~70℃,样品呈现灰蓝、灰紫斑点。
4.强碱作用强心苷 + KOH/H2O→开环,酸性下可逆强心苷 + KOH/EtOH→开环,酸性不可逆5.脱水反应5β-OH (叔羟基)酸水解时易脱水14β-OH(叔羟基)酸水解时易脱水6.酸催化水解⑴温和的酸水解法:条件:0.02~0.05mol/L盐酸或硫酸/含水醇半小时至数小时加热回流,特点: 2-去氧糖间的苷键→苷元+ 2-去氧糖Glc与2-去氧糖苷键→二糖或三糖⑵强酸水解法:条件:3~5%盐酸或硫酸/含水醇时间延长、加压特点:2-羟基糖等所有苷键均断键→脱水苷元+单糖7.不饱和五元内酯环反应Legal反应亚硝酰铁氰化钠深红或蓝Kedde反应 3,5-二硝基苯甲酸深红或红Raymond反应间二硝基苯紫红或蓝8.2-去氧糖反应FeCl3—冰HAc(Keller-Kiliani)反应:供试液水浴蒸干→冰HAc+FeCl3 →浓硫酸(1)冰HAc层蓝色(2)界面处呈红棕色(随苷元不同而异)游离2-去氧糖、 2-去氧糖与苷元连接的苷——显色2-去氧糖与葡萄糖相联、羟基糖连接的二糖、三糖——不反应9.醋酐-浓硫酸(Liebermann-Burchard)反应样品/冰HAc + 浓硫酸-醋酐(1:20)→黄→红→紫→绿→逐渐褪色(甾体皂苷)→蓝→逐渐褪色(三萜皂苷)10.三氯醋酸(Rosenheim)反应:样品液/滤纸 + 25%CCl3COOH→→加热60℃红~紫(甾体皂苷)→加热100℃红~紫(三萜皂苷)11. Ehrlich反应呋甾烷皂苷+HCl.对二甲氨基苯甲醛→红螺甾烷皂苷+HCl.对二甲氨基苯甲醛→不显色萜类化合物1、经验异戊二烯规则萜类化合物:由异戊二烯衍变而来,是异戊二烯的聚合体或衍生物。
2、生源的异戊二烯法则:萜类化合物是经甲戊二羟酸途径衍生的一类化合物,通式为 (C5H8 )n3、. 萜类化合物的化学性质4、(1) 加成反应(双键加成、羰基加成反应):A、双键与卤化氢(氢碘酸或氯化氢)、溴、亚硝酰氯 (Tilden试剂)可用于不饱和萜类成分的分离和鉴定。
Diels-Alder加成反应。
CHOCH 2OH OH H H HO H OH OH H CHO CH 2OH H H HO H OH OH H HO CHO CH 2OH OH H H HO H OH H HO CHO CH 2OH OH H H H OH OH H OH B 、羰基加成反应:与亚硫酸氢钠、 硝基苯肼、吉拉德试剂加成(吉拉德(Girard)试剂是一类带有季铵基团的酰肼,常用的Girard T 和Girard P )反应步骤:将吉拉德试剂的乙醇溶液加入含羰基的萜类化合物中,再加入10% 醋酸促进反应,加热回流。
反应完毕后加水稀释,分取水层,加酸酸化,再用乙醚萃取,蒸去乙醚后复得原羰基化合物。
(2) 氧化反应:意义:用来测定分子中双键的位置,醛酮合成等。
常用氧化剂:臭氧、铬酐(三氧化铬)、四醋酸铅、高锰酸钾、二氧化硒等。
A 、铬酐为广泛的一种氧化剂,可与所有可氧化的基团作用生成酮。
铬酐几乎与所有可氧化的基团作用。
用强碱型离子交换树脂与三氧化铬制得具有铬酸基的树脂,它与仲醇在适当溶剂中回流,则生成酮,B 、高锰酸钾是常用的中强氧化剂,可使环断裂而氧化成羧酸C 、二氧化硒具有特殊氧化性能,专一氧化羰基的a-甲基或亚甲基,以及碳碳双键旁的a-亚甲基糖和苷1、 五碳醛糖L-阿拉伯糖 D-来苏糖 D-木糖 D-核糖2、 六碳醛糖D-葡萄糖 D-甘露糖 D-半乳糖 D-阿洛糖(Glc) (Man) (Gal.) (All.)3六碳酮糖D-果糖 L-山梨糖(Fructose) (Sorbose) 4、甲基五碳醛糖 CHO CH 2OH OH H H HO HO H CHOCH 2OH OH H H HO HO H CHO CH 2OH OH H H HO H OH CHO CH 2OH OH H H H OH OH CH 2OH H H HO OH OH H OCH 2OH CH 2OH H H HO OH H O CH 2OH HO CHO CH 3OH H HHO H OH H HO CHO CH 3OH H H HO HOH H HOCHO CH 3OH H H HO H OH H OHL-鼠李糖 D-鸡纳糖 L-夫糖(Rha) (Guinovose)5、糖醛酸葡萄糖醛酸 半乳糖醛酸6、糖醇D-山梨醇 D-甘露醇(D-sorbitol) (D-mannitol)β-消除反应: 苷键的β-位有吸电子基团者,使α-位氢活化,在碱液中与苷键起消除反应而开裂。