大学微积分l知识点总结(一)
高等数学一微积分考试必过归纳总结要点重点

高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续(包括级数) 第二部分 导数及其应用(包括多元函数)第三部分 积分计算及其应用 (包括二重积分和方程)第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
二、 极限与连续 常见考试题型:1、求函数或数列的极限。
2、考察分段函数在分段点处极限是否存在, 函数是否连续。
3、函数的连续与间断。
4、求函数的渐进线。
5、级数的性质及等比级数。
6、零点定理。
每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。
3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。
每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。
第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
log log x的定义域是___________. 2007.7例1..函数y=23知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。
解 要使根式函数有意义必须满足23log log 0x ≥,要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥.注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的+-×÷运算及有限次的复合得到的函数称为初等函数。
微积分大一考试必背知识点

微积分大一考试必背知识点微积分是数学中重要的一个分支,是描述变化和运动的工具。
对于大一学习微积分的学生来说,掌握一些必备的知识点可以帮助他们更好地理解微积分的概念和应用。
下面是一些大一微积分考试中必背的知识点。
1. 无穷小与极限在微积分中,无穷小是一个基本概念。
对于函数f(x),当x趋向于某一点a时,如果f(x)的值趋近于0,那么f(x)就是无穷小。
极限是无穷小的重要概念,表示函数f(x)在某一点的值的趋近情况。
大一考试中,对于极限的求解是一个重点,学生需要了解极限的定义、性质和求解方法。
2. 导数与微分导数是微积分中的一个重要概念,表示函数在某一点上的变化率。
导数的求解是微积分的基本操作之一,对于大一学生来说,熟练掌握导数的计算方法是至关重要的。
此外,微分是导数的一个应用,表示函数在某一点上的线性近似。
在考试中,学生需要掌握导数和微分的定义、性质和计算方法。
3. 积分与不定积分积分是微积分的另一个重要概念,表示函数在某一区间上的累积效应。
不定积分是积分的一种形式,表示函数的原函数。
对于大一学生来说,了解积分和不定积分的定义、性质和计算方法是必须的。
在考试中,学生需要掌握积分和不定积分的基本性质和计算方法。
4. 微分方程微分方程是微积分的一个重要应用领域,用于描述变化和运动的规律。
对于大一学生来说,掌握解微分方程的方法是考试的一个重点。
学生需要了解一阶和二阶微分方程的基本概念和解法,并能够应用到实际问题中。
5. 泰勒展开与级数泰勒展开是微积分中的一个重要工具,用于将一个函数在某一点附近用无穷级数的形式表示。
对于大一学生来说,理解泰勒展开的思想和应用是必要的。
在考试中,学生需要掌握泰勒展开的定义和计算方法,并能够应用到函数的近似计算和函数性质的研究中。
6. 曲线的切线与法线切线和法线是微积分中常用的概念,用于描述曲线在某一点的特性。
对于大一学生来说,熟练掌握曲线的切线和法线的求解方法是必要的。
在考试中,学生需要了解切线和法线的定义和计算方法,并能够应用到曲线性质的研究中。
大一微积分主要知识点

大一微积分主要知识点微积分作为数学的重要分支,是大学数学课程中的一门基础课程。
学好微积分对于理解和掌握相关学科具有重要意义。
本文将介绍大一微积分主要的知识点,供学生参考。
1. 函数与极限大一微积分的起点是函数与极限。
函数是自变量和因变量之间的关系,通常用公式表示。
极限是研究函数变化趋势的工具,表示变量无限接近某个值时的情况。
2. 导数导数是微积分的核心概念之一。
它描述了函数在某一点上的变化率。
导数可以用来求解函数的最大值、最小值,以及曲线的切线方程等。
3. 微分微分是导数的一种几何解释和应用。
微分可以近似地表示函数在某一点附近的变化情况。
微分在物理学、经济学等领域有广泛的应用。
4. 积分积分是微积分的另一个核心概念。
它是导数的逆运算,表示函数在某一区间上的累积效果。
积分可以计算图形下的面积、函数的定积分等。
5. 微分方程微分方程是描述自然现象及其变化规律的方程。
它通常包含未知函数及其导数、微分项等。
微分方程在物理学、生物学等领域有重要应用。
6. 一元函数的应用微积分在实际问题中有广泛的应用。
一元函数的应用包括最大最小值问题、曲线的凹凸性、函数的图像等。
7. 泰勒展开泰勒展开是将一个函数在某一点附近展开成幂级数的形式。
它在数值计算中有重要的应用,可以用来近似计算函数的值。
8. 多元函数与偏导数多元函数是有多个自变量的函数。
偏导数是多元函数在某一变量上的变化率。
多元函数与偏导数是微积分中扩展的概念。
9. 重积分重积分是对二重或三重积分的推广,用于计算曲面的面积、体积等。
重积分在物理学、工程学中有广泛的应用。
10. 曲线积分与曲面积分曲线积分是沿曲线对函数进行积分,曲面积分是对曲面上的函数进行积分。
曲线积分与曲面积分在物理学、电磁学等领域有重要的应用。
以上是大一微积分主要的知识点,这些知识点是学习微积分的基础。
通过深入学习和练习,可以更好地理解微积分,并应用于实际问题中。
希望本文对大一学生学习微积分有所帮助。
大一微积分知识点总结

大一微积分知识点总结微积分是高等数学的重要组成部分,对于大一的同学来说,是一门具有挑战性但又十分重要的课程。
以下是对大一微积分主要知识点的总结。
一、函数与极限函数是微积分的基础概念之一。
我们需要理解函数的定义、定义域、值域、单调性、奇偶性、周期性等性质。
比如,单调递增函数指的是当自变量增大时,函数值也随之增大;偶函数满足 f(x) = f(x) ,奇函数满足 f(x) = f(x) 。
极限是微积分中一个极其重要的概念。
极限的计算方法有很多,例如直接代入法、化简法、等价无穷小替换法、洛必达法则等。
等价无穷小在求极限时经常用到,比如当 x 趋近于 0 时,sin x 与 x 是等价无穷小。
洛必达法则则适用于“0/0”或“∞/∞”型的极限。
二、导数与微分导数反映了函数在某一点处的变化率。
对于常见的基本初等函数,如幂函数、指数函数、对数函数、三角函数等,要熟练掌握它们的求导公式。
导数的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
复合函数的求导法则是一个重点也是难点,需要通过链式法则来求解。
微分是函数增量的线性主部。
函数在某一点的微分等于函数在该点的导数乘以自变量的增量。
三、中值定理与导数的应用中值定理包括罗尔定理、拉格朗日中值定理和柯西中值定理。
这些定理在证明一些等式和不等式时非常有用。
利用导数可以研究函数的单调性、极值和最值。
当导数大于 0 时,函数单调递增;当导数小于 0 时,函数单调递减。
导数为 0 的点可能是极值点,但还需要通过二阶导数来判断是极大值还是极小值。
在实际问题中,经常需要通过求导数来找到最优解,比如求成本最小、利润最大等问题。
四、不定积分不定积分是求导的逆运算。
要熟练掌握基本积分公式,如幂函数的积分、指数函数的积分、三角函数的积分等。
积分的方法有换元积分法和分部积分法。
换元积分法包括第一类换元法(凑微分法)和第二类换元法。
分部积分法通常适用于被积函数是两个函数乘积的形式,比如 xe^x 。
大一微积分知识点总结

大一微积分知识点总结
函数与极限:
函数的定义与性质(奇偶性、周期性、单调性等)函数的四则运算与复合运算极限的概念与性质极限的运算法则无穷小与无穷大的概念极限存在准则(如夹逼准则)导数:
导数的定义(增量比、差商、导数)导数的几何意义(切线斜率)导数的计算法则(常数、幂函数、指数函数、对数函数、三角函数的导数等)高阶导数隐函数与参数方程的导数函数的单调性与导数的关系微分:
微分的定义与性质微分的计算法则微分在近似计算中的应用中值定理与导数的应用:
*罗尔定理(Rolle's Theorem)
拉格朗日中值定理(Lagrange's Mean Value Theorem)柯西中值定理(Cauchy's Mean Value Theorem)泰勒公式(Taylor's Formula)函数图形的描绘(利用导数判断凹凸性、拐点等)最值问题(一阶、二阶导数判断最值)不定积分:
不定积分的定义与性质不定积分的计算法则(幂函数、指数函数、对数函数、三角函数的不定积分等)积分表的使用换元积分法分部积分法定积分:
定积分的定义与性质微积分基本定理(牛顿-莱布尼茨公式)定积分的计算(直接计算、换元积分法、分部积分法)定积分的应用(面积、体积、弧长、旋转体体积等)无穷级数:
数列的概念与性质无穷级数的概念与性质正项级数的审敛法(比较审敛法、比值审敛法、根值审敛法等)交错级数的审敛法(莱布尼茨审敛法)幂级数的概念与性质函数展开成幂级数(泰勒级数、麦克劳林级数)
以上是对大一微积分主要知识点的总结,每个知识点都有许多细节和深入的内容需要学习和掌握。
在学习过程中,要注重理解概念和原理,多做练习,加强实践应用。
大一微积分知识点总结

大一微积分知识点总结微积分是数学的一个分支,主要研究函数、极限、导数和积分等概念与问题。
作为大一学生,学习微积分是非常重要的,因为它是后续数学课程的基础。
下面是对大一微积分的知识点进行的总结,希望对你有所帮助。
一、函数与极限1. 函数:函数是一种描述自变量与因变量之间关系的规则。
常见的函数类型有多项式函数、指数函数、对数函数、三角函数等。
2. 极限:极限是函数在某一点或无穷远处的特定值。
常见的极限类型包括左极限、右极限、无穷极限等。
二、导数与微分1. 导数:导数衡量了函数在某一点附近的变化率。
导数的几何意义是函数曲线在该点处的切线斜率。
2. 基本导数公式:常数函数导数为0,幂函数导数为幂次减1乘以系数,指数函数导数为函数自身乘以常数系数。
3. 高阶导数:高阶导数是指对函数进行多次求导得到的导数。
二阶导数表示函数在某一点的变化率的变化率。
4. 微分:微分是导数的一个应用,用来计算函数在某一点处的值。
微分的符号表示为dx,代表函数在离该点很近的地方的增量。
三、积分与不定积分1. 积分:积分是导数的逆运算,表示函数在某一区间上的累积量。
积分的几何意义是曲线所围成的面积。
2. 定积分:定积分是对区间上函数的积分,表示区间上的累积量。
定积分的几何意义是函数在该区间上的曲线所围成的面积。
3. 不定积分:不定积分是对未知函数进行积分,表示函数的一个原函数。
符号∫表示不定积分。
四、常用函数的导数与积分1. 幂函数:幂函数的导数可以使用幂函数的基本导数公式计算,而幂函数的积分可以使用幂函数的积分公式计算。
2. 指数函数:指数函数的导数是该函数自身乘以常数ln a,其中a为底数。
指数函数的积分也是指数函数。
3. 对数函数:对数函数的导数是其自变量的导数的倒数。
对数函数的积分可以使用换元法进行计算。
4. 三角函数:三角函数的导数可以使用基本导数公式计算,而三角函数的积分可以使用换元法或特定积分公式进行计算。
五、微分方程与应用1. 微分方程:微分方程是含有未知函数及其导数的方程。
微积分大一重要知识点

微积分大一重要知识点微积分是数学的一门重要分支,深受大一学生的关注和学习。
在大一学习微积分时,有一些重要的知识点需要掌握。
本文将介绍微积分大一重要知识点,希望能帮助大家更好地理解和应用微积分。
1. 导数与函数导数是微积分中的重要概念之一,是描述函数变化率的工具。
在大一学习微积分时,我们需要掌握导数的定义和求导法则,包括常用函数(如多项式函数、指数函数、对数函数、三角函数等)的导数计算方法,以及导数的几何意义和应用(如切线、法线方程等)。
2. 不定积分与定积分不定积分是求解函数原函数的过程,也叫做不定积分。
定积分是函数在某一区间上的积分值,也叫做定积分。
在大一学习微积分时,我们需要学习不定积分的基本法则(如幂函数、三角函数、指数函数等的积分法则),以及定积分的计算方法(如换元积分法、分部积分法等),并理解积分的几何意义和应用。
3. 泰勒展开与级数泰勒展开是将函数表示为幂级数的形式,是微积分中的重要工具之一。
在大一学习微积分时,我们需要学习如何根据函数的某一点展开泰勒级数,并掌握泰勒级数在函数逼近和计算中的应用。
4. 极限与连续极限是微积分中的核心概念,是函数性质研究的基础。
在大一学习微积分时,我们需要理解极限的定义,掌握常用函数的极限计算方法,以及极限的性质和应用。
连续是极限的重要应用之一,我们需要学习函数连续的概念,了解连续函数的性质和判定方法。
5. 偏导数与多元函数偏导数是多元函数中的导数推广,用于描述函数关于某一变量的变化率。
在大一学习微积分时,我们需要学习多元函数的偏导数计算方法,包括一阶偏导数和高阶偏导数,并理解偏导数在函数的切平面方程和近似计算中的应用。
6. 曲线积分与曲面积分曲线积分用于计算曲线上的一些物理量,如质量、电荷等。
曲面积分用于计算曲面上的一些物理量,如流量、电通量等。
在大一学习微积分时,我们需要学习曲线积分和曲面积分的计算方法,包括第一类曲线积分和第二类曲线积分,以及曲面积分和高斯积分、斯托克斯积分等。
大一微积分知识点总结

大一微积分知识点总结一、引言微积分是高等数学中的一个重要分支,主要研究函数的极限、导数、积分等概念。
对于大学一年级的学生来说,微积分的学习是理解现代科学和工程问题的基础。
本文旨在总结大一微积分课程中的关键知识点。
二、极限与连续性1. 极限的概念:描述函数在某一点附近的行为。
- 极限的定义:如果序列 $\{x_n\}$ 趋向于 $x$,则 $\lim_{n \to \infty} f(x_n) = L$。
- 极限的性质:唯一性、局部有界性、保号性等。
2. 连续函数:在任意点都无间断的函数。
- 连续性的定义:如果 $\lim_{x \to c} f(x) = f(c)$,则称$f(x)$ 在 $c$ 处连续。
- 连续函数的性质:介值定理、闭区间上连续函数的一致连续性。
三、导数1. 导数的定义:函数在某一点的切线斜率。
- 导数的几何意义:曲线在点 $(a, f(a))$ 处的切线斜率。
- 导数的计算:利用极限定义,$f'(a) = \lim_{h \to 0}\frac{f(a+h) - f(a)}{h}$。
2. 常用导数公式:- 幂函数:$(x^n)' = nx^{n-1}$。
- 指数函数:$(e^x)' = e^x$。
- 对数函数:$(\ln x)' = \frac{1}{x}$。
3. 高阶导数:导数的导数。
- 高阶导数的计算:对导数再次求导。
4. 隐函数与参数方程的导数:- 隐函数求导:利用隐函数的导数公式。
- 参数方程求导:利用链式法则。
四、微分1. 微分的概念:函数的局部线性近似。
- 微分的定义:$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$。
2. 微分的应用:- 线性近似:用于近似计算函数值。
- 相关变化率问题:如速度、加速度等。
五、积分1. 不定积分:求函数原函数的过程。
- 基本积分表:记忆一些基本的积分公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学微积分I 知识点总结【第一部分】大学阶段准备知识1、不等式:2 2a b 2ab3abcc 3 3abca b a 2 b 2 2 ' 2当且仅当,a i b i 为常数,i 1,2,3...n 时取等号2、函数周期性和对称性的常用结论1、若 f (X+a ) =± f (X+b ),则 f (x )具有周期性;若 f (a+X )=± f (b-X ),则 f ( X )具有对称性。
双向不等式:扩展:若有y -bb两侧均在ab > 0或ab < 0时取等号且x 1 n 则的最大值为:Xl X2... X n nx 1 ?X 2?...?X n , X 2 ... x n p p 为常数 柯西不等式: ^设 a i 、a 2、...a n , b i 、 b 2、..・b n 均是实数,则有:a 〔 b-] a 22 2 2a n bnaia22 2 2 ... a n b| b?bn 2a i a 2・・・a n nn口诀:“内同表示周期性,内反表示对称性”2、周期性(1) 若f (x+a) =f (b+x),贝U T=|b-a|(2) 若f (x+a) =-f (b+x),则T=2|b-a|(3) 若f (x+a) =± 1/f (x),贝U T=2a(4) 若f (x+a)=【1-f (x)】/【1+f (x)】,则T=2a(5) 若f (x+a)=【1+f (x)】/【1-f (x)】,则T=4a 3、对称性(1) 若f (a+x) =f (b-x),贝U f (x)的对称轴为x= (a+b) /2(2) 若f (a+x) =-f (b-x) +c,则f (x)的图像关于((a+b) /2,c/2)对称4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。
(1) 若f (x)的图像有两条对称轴x=a和x=b,则f (x)必定为周期函数,其中一个周期为2|b-a| 。
(2) 若f (x)的图像有两个对称中心(a,0)和(b,0),(a^b),则f (x)必定为周期函数,其中一个周期为2|b-a|(3) 若f (x)的图像有一个对称轴x=a和一个对称中心则f (x)必定为周期函数,其中一个周期为4|b-a|3、三角函数正弦sin 余弦cos 十「十n正切tan b,0) ,( a^ b),余切cotm 正割sec 一余割csc —nmn倒数关系:丄111tansin coscotcscsec商的关系:sin 丄seccos丄csctancotcoscscsinsec平方关系:・2 21sin cos 1 tan 21 1 cot 21平常针对不同条件的两个常用公式:.2 2 .sin cos 1 tan ?cot 1一个特殊公式:sin sin sin -sin sin sin -二倍角公式:2sinA?cosA2 2 cos A - sin A2tanA1-ta n 2A半角公式:sin2A cos2A tan2A 21-2sin Asin 2 a 1 1 - cosa2 2 2a 1彳cos — 1 cosa2 2tan asina 1 -cosa 21 cosa si nacot asina 1 cos a 21-cosa sina三倍角公式:4sina?sin — a ?sin —-a3 3 cos3a 4cosa?cos a ?cos -a33万能公式:c 丄a 2ta n2 sina 2a 1 tan 2 一22a 1-ta n —2 cosa 2 a 1 tan 2 —2~ a 2ta ntana ---------- —2 a 1-ta n— 2两角和公式:tan3a tan a?ta n — 3a ?tan-a 3sin3asin sin ?cos cos ?sin sin - sin ?cos -cos ?sin cos cos ?cos - sin ?sincos - cos ?cos sin?si ntan tan tan1-ta n ?ta ntan -tan -tan1 tan ?tan和差化积公式:sin sin 2si n 11cos -- — 22sin -sin 2cos 1 . 1 sin -2 2 cos cos 2cos 1 1 cos -22cos - cos - 2 sin 1 . 1 sin - 2 2tanA ta nB sin A B tan A B cos A?cosB 1 tan A?tan B tanA- -tanB sin A- B tan A - B cosA ? cosB 1 tanA ?tanB积化和差公式: sin ?sin - cos 1 -cos -2 cos ?cos cos 1 cos -2sin ?cossin1 sin -2口诀:奇变偶不变,符号看象限证明:acoaA bsi nA 、a2b2si nA M,其中tanM — b证:设acosA bsinA x?sin A MacosA bsinA x -cosA b sinAx x2 2由题,1, sinM —, cosM -xx xxx a2b2原式得证4、数学归纳法数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
例如:前n个奇数的总和是n2,那么前n个偶数的总和是:n2+n最简单和最常见的数学归纳法证明方法是证明当n属于所有正整数时一个表达式成立,这种方法由下面两步组成:①递推的基础:证明当n=1时表达式成立②递推的依据:证明如果当n=m时成立,那么当n=m+1时同样成立(1)第一数学归纳法①证明当n取第一个值n o时命题成立,n o对于一般数列取值为0或1,但也有特殊情况②假设n=k (k>n o,k为自然数)时命题成立,证明当n=k+1时命题也成立(2)第二数学归纳法对于某个与自然数有关的命题P(n)①验证n=n o时P(n)成立②假设n o< n v k时P(n)成立,并在此基础上,推出P(k+i)成立(3)倒推归纳法①验证对于无穷多个自然数n命题P(n)成立②假设P(k+1)成立,并在此基础上,推出P(n)成立(4)螺旋式归纳法对两个与自然数有关的命题 ① 验证n=n o 时P (n )成立② 假设P (k ( k >n o )成立,能推出Q (k 成立,假设Q (k 成立,能推出P (k ) 成立。
5、 初等函数的含义概念:初等函数是由幕函数、指数函数、对数函数、三角函数、反三角函数与常 数经过有限次的有理运算以及有限次数函数复合所产生,并且能用一个解析式表 示的函数。
【有理运算:加、减、乘、除、有理数次乘方、有理数次开方】【基本初等函数:对数函数、指数函数、幕函数、三角函数、反三角函数】6、 二项式定理:即二项展开式,即(a+b ) n 的展开式a b n C n 0a n C n 1a n-1?b ... C n k a n-k ?b k ... C n n b n其中C n k 称为二次项系数C n k a n-k ?b k 叫做二次项展开式的通 项,它是第k 1项,用T k i 表示7、高等数学中代换法运用技巧① 倒代换把原式中的一个变元或原式中的一部分用另一个变元的倒数来代替, 此种方法被称为“倒代换”法 ② 增量代换若题目中已知x >m ,则引入辅助元x=m+a (a >0),再将辅助元代入题中解题。
此种代换方法称为“增量代换法”其中, C n kn ? n -1... ? n - k -1k-1 !?k-k-1 -n - k C n③三角代换2 2 2 2 2 2x a、:a x、二x a④双代换n严Xlim 飞:引入两个辅助元进行代换n y8其他一些知识点(1)0不是正数,不是负数。
是自然数。
和0(2)正偶数称为“双数”(3)正常数:常数中的正数(4)质数:又称“素数”。
一个大于不能被其他自然数整除的数,否则称为“合数” 不是素数,也不是合数。
(5)exp:高等数学中,以自然对数(6)在数学符号中,sup表示上界;(7)三:表示恒等于(8)0的阶乘是1.阶乘是一个递推定义,递推公式为:n! =n (n-1)!因为1 的阶乘为1,即1! =1 X 0!,故0! =1【第二部分】函数与极限常用结论(等价无穷小很重要)1nx1nx1111x n xn x e1x0是偶数,偶数分为:正偶数、负偶数1的自然数,如果除了1和它自身以外,最小的质(素)数是2。
1既e为底的指数函数inf表示下界X X v 1时成立Xr X ln 1 1-1 nn1v -e其中, e 为初等函数,又称“幕指函数” e 即根据此公式得到,e ~ 2.718 1二n 1222 1 2n 1 613 23 a n a 2a 1 -a a-1-b n a n-2b ... b n-1n-1a1 1a m -b m 若 lim u X X 0 a >0, lim v XXXb a、b 为常数,则x m u x一些重要数列的极限: In 1 x xXe -1a X -1 xlna另一些重要的数列极限:nlim — 0 a 为常数 lim VK 1 nn !nx0时,sinxxtanx x1 -cosx1 2 —x2列举一些趋向于0的函数:① q <1, q n 0② a >0, b >0, --------- a 0n-cn③ a >1,*n1 ④ 丄0Inn柯西极限存在准则:柯西极限存在准则又叫柯西收敛原理。
给出了极限收敛的充分必要条件是: 对于任意给定的正数£,存在这样的正整数N,使得当m >N,n >N 时就有|x n -x m | <£。
这个准则的几何意义表示,数列{ X }收敛的充分必要条件是:该数列中 足够靠后的任意两项都无限接近。
夹逼定理的两个条件:①左右极限存在;②左右极限相等 【极限计算的技巧总结(不包含教材介绍的方法以及公式):】 (1) 洛比达法则设函数f(x )和F(x )满足下列条件: ① x — a 时,lim f(x)=O,lim F(x)=O;② 在点a 的某去心邻域内f(x )与F(x )都可导,且F(x )的导数不等于0; ③ x — a 时,lim (f(x)/F'(x))存在或为无穷大 则 x —a 时,lim (f(x)/F(x))=lim (f(x)/F'(x))1 x -1arcs inx x arcta nx xlimnlim q n 0 q V 1为常数lim n a 1 a >1n(2) 等价无穷小「般要将变量的取值变为趋向于 0的代数式,如x —x ,令t=1/x无穷小的概念: ①高阶无穷小:当lim A=0时,如果lim (B/A)=0就说B 是比A 高阶的无穷小 ②低阶无穷小: 当lim A=0时,如果lim (B/A)=x ,就说B 是比A 低阶的无穷小③如果lim ( B/A)=K( Q 0,1),就说B 是A 的同阶非等价无穷小 ④等价无穷小: lim (B/A ) =1,就说B 为A 的等价无穷小(3) 斯托尔茨定理设数列y n 单调增加到无穷大,则(4) .f(x)是连续函数:lim f g x f lim g x aX X ox x 0(5) 求两个数列之商的极限,在两数列都具有高次项的情况下,可以直接比较 最高次项而忽略较低次项,该原理仅仅限于无穷数列,对于有穷数列不能直取。