江苏专转本高数考纲及重点总结
江苏专转本高等数学考纲及重点总结

江苏专转本高等数学考纲及重点总结一、考纲概述江苏省专升本高等数学考纲主要包括以下几个部分:数列的概念及运算、函数的概念与性质、极限与连续、导数与微分、计算题和应用题等。
下面将更具详细的内容进行总结。
二、考纲详解1.数列的概念及运算(1)数列的概念和基本性质:如等差数列、等比数列等。
(2)数列的运算:包括加减、乘除以及幂运算等。
2.函数的概念与性质(1)函数的定义与性质:如定义域、值域、单调性等。
(2)复合函数与反函数。
(3)高次函数的性质:如奇偶性等。
3.极限与连续(1)极限的定义和性质:如无穷小量、无穷大量等。
(2)极限存在准则与计算:如夹逼准则、拉格朗日中值定理等。
(3)连续性:如连续函数的性质。
4.导数与微分(1)导数的定义与性质。
(2)函数的求导法则:如和差积商等。
(3)高阶导数和隐函数求导等。
(4)函数的微分与高阶导数的应用。
5.计算题该部分主要考察学生对数学基本运算和推理能力的运用,题型多样,如解方程、求极限、求导数、求积分、解微分方程等。
重点是考察基础知识的灵活运用。
6.应用题该部分主要考察学生对数学知识在实际问题中的应用能力。
题型较多样化,如最优化问题、曲线的切线与法线等。
三、重点内容总结根据考纲的要求,我们可以总结出以下几个重点内容:1.等差数列和等比数列学生需要掌握这两种特殊数列的概念和性质,能够进行数列的运算,如求通项、求和等。
2.函数的性质和复合函数、反函数的运算学生需要理解函数的定义域、值域、单调性等性质,能够进行复合函数和反函数的运算。
3.极限和连续性学生需要理解极限的定义和性质,熟练掌握极限存在的判定准则,能够计算极限,理解连续函数的性质。
4.导数的计算和应用学生需要熟练掌握导数的定义和性质,能够进行函数的求导计算,掌握常见函数的导数公式,能够计算高阶导数和隐函数的导数,理解微分的概念和应用。
5.计算题和应用题学生需要熟练掌握数学基本运算和推理能力,灵活运用基础知识解决各类计算题,理解数学在实际问题中的应用。
江苏省专转本《高等数学》考试大纲

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载江苏省专转本《高等数学》考试大纲地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容江苏省专转本《高等数学》考试大纲一、答题方式答题方式为闭卷,笔试二、试卷题型结构试卷题型结构为:单选题、填空题、解答题、证明题、综合题三、考试大纲(一)函数、极限、连续与间断考试内容函数的概念及表示法:函数的有界性、单调性、周期性和奇偶性、复合函数、反函数分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立。
数列极限与函数极限的定义及其性质:函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算。
极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质。
考试要求1、理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
江苏专转本高数计算机考纲

江苏专转本考试高等数学考试大纲重点强调数学一2010-11-01 11:43一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)掌握函数的四则运算与复合运算。
(5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练掌握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,掌握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。
(2)掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型。
(3)掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
江苏省专转本高数全部知识点第一讲:极限、洛比塔法则第二讲:连续,导数、微分

y sgn x, 在(,)上, ymax 1, ymin 1;
在(0,)上, ymax ymin 1.
定理1(最大值和最小值定理) 在闭区间上连续 的函数一定有最大值和最小值.
若 f ( x ) C [a , b], 则 1 , 2 [a , b], 使得 x [a , b], 有 f ( 1 ) f ( x ), f ( 2 ) f ( x ).
x 0 x 0
lim f ( x ) lim(a x ) a ,
x0 x0
要使 f (0 0) f (0 0) f (0), a 1,
故当且仅当a 1时, 函数 f ( x )在 x 0处连续.
三、小结
1.函数在一点连续必须满足的三个条件;
x 0
或
lim [ f ( x 0 x ) f ( x 0 )] 0 ,那末就称函数
f ( x ) 在点 x 0 连续, x 0 称为 f ( x ) 的连续点.
设 x x0 x,
y f ( x ) f ( x0 ),
x 0 就是 x x0 , y 0 就是 f ( x ) f ( x0 ).
第二讲:连续、导数、微分
1函数的连续性 2 导数的概念 3函数微分
lim f ( x) A f ( x0 0) f ( x0 0) A. (1) x x
0
(2) 函数 f ( x )在 x0 处连续 是函数 f ( x )在 x0
处既左连续又右连续.
(3) 函数 f ( x )在点x 处可导 左导数 f ( x ) 和右 0 0
定义 2
设函数 f ( x ) 在U ( x 0 ) 内有定义, 如果
专转本数学考点

江苏专转本数学考点一、考试内容江苏省“专转本”统一考试——高等数学部分,其涉及的考点具体有以下内容:函数的概念和性质。
函数极限、连续的性质和间断,一元函数微分学(导数计算与应用),不定积分、定积分,常微分方程,级数,矢量与空间解析几何,多元函数微积分,所涉及的概念和公式较多,并且有部分内容好多考生以前从未学过,这就给考生复习备考带来了一定的难度。
认真总结梳理所有的考点,我们发现,其实考查的主要内容就是微分和积分两大主要板块,以及级数和向量。
先分析第一大块——微分,函数的极限、连续是研究微分的基础和前提,因为导数本质上是一“特殊形式”(因变量的变化量与自变量的变化量之比,然后取极限)的极限(注:本书中不严格区分导数和微分两者的概念,计算表示形式的差别题目中均已写出,下同)。
函数限的常见求法,间断点的判别是历年考查的重点;微分的主要内容包括一元函数的导数和二元函数的导数两部分,一元函数导数的概念、计算公式和计算法则是整个微积分的基石,不仅在二元函数的导数中经常应用,而且对整个积分公式的掌握也是大有好处,而一元函数导数的应用甚广,包括几何应用、洛必达法则、微分中值定理等,在考试中也是频繁出现;二元函数微分主要就是考查一般函数、隐函数以及抽象函数求一阶、二阶偏导,与一元函数不同之处就是增加一个自变量,我们在处理某个自变量的导数时只需把另一自变量当作常数即可。
另一块主要内容就是积分,包括一元函数积分(不定积分和定积分)和二元函数积分(二重积分),由于微分与积分二者是互逆运算,因此是对应的。
不定积分中常考的就是求积分的三种方法(凑微分法、分部积分法、换元法),不定积分加上上下限就是定积分了,上述三种方法同样也适用于定积分,所不同的就是积出结果后需要带上上下限,此外,定积分中的变上限积分是个考查的重点,而广义积分也应了解其基本求法;对二重积分而言,需要重点掌握的就是直角坐标系下和极坐标系下求二重积分,其前提条件就是会正确的画出二维积分域,并能正确的选择积分次序,从而变为处理两个一次积分的问题,另外,交换积分次序也是每年考查的一个热点。
江苏专升本函数知识点归纳

江苏专升本函数知识点归纳江苏专升本考试是许多专科生提升学历的重要途径,其中数学是必考科目之一。
函数作为高等数学中的核心内容,其知识点的掌握对于考试至关重要。
以下是江苏专升本函数知识点的归纳:函数的定义与性质- 函数的定义:设A和B是两个非空的集合,如果存在一个确定的对应关系f,使得对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)与之对应,那么我们就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),其中x称为自变量,y称为因变量。
- 函数的三要素:定义域、值域、对应法则。
- 函数的性质:单调性、奇偶性、周期性等。
函数的表示方法- 列表法:适用于定义域有限的情况。
- 分段函数:适用于函数在不同区间有不同的表达式。
- 公式法:最常见的表示方法,如多项式函数、指数函数、对数函数等。
- 图像法:直观展示函数的图形特征。
基本初等函数- 幂函数:形如y=x^n的函数,其中n为实数。
- 指数函数:形如y=a^x的函数,其中a>0且a≠1。
- 对数函数:形如y=log_a(x)的函数,其中a>0且a≠1。
- 三角函数:正弦函数、余弦函数、正切函数等。
复合函数与反函数- 复合函数:两个函数的组合,如f(g(x))。
- 反函数:如果f(x)是一个函数,那么它的反函数f^-1(x)满足f(f^-1(x))=x。
函数的极限与连续性- 极限:函数在某一点或无穷远处的逼近值。
- 连续性:函数在某一点或某区间内无间断的特性。
导数与微分- 导数:函数在某一点处的瞬时变化率。
- 微分:函数在某一点处的线性主部。
积分学- 不定积分:求原函数的过程。
- 定积分:计算曲线与x轴所围成的面积。
级数- 无穷级数:项数无限多的数列。
- 收敛性:级数的和是否趋向于一个有限的值。
函数方程与不等式- 函数方程:涉及函数的等式。
- 不等式:函数值之间的大小关系。
结束语:掌握上述函数知识点,对于江苏专升本的考生来说,是提高数学成绩的关键。
【精品】江苏专转本高数考试大纲
数学考试大纲第一章函数1.区间与邻域2.函数(1)函数的定义(2)函数的表示法与分段函数(3)函数的几何特性:单调性(4)复合函数(5)反函数有界性、奇偶性、周期性(6)常见的经济函数:成本函数、收益函数、利润函数、需求函数二、考核目标和基本要求1.理解区间和邻域的概念。
2.理解函数的定义,会区别两个函数的相同与不同,会求函数的定域。
3.能熟练地求初等函数、分段函数的函数值。
4.掌握基本初等函数的表达式、定义域、图形和简单的几何性质。
5.理解复合函数的概念,会正确地分析复合函数的复合过程,理解初等函数的概念。
6.了解反函数的概念,会求简单函数的反函数。
7.了解常见的经济函数:需求函数、成本函数、收益函数、利润函数,会建立一些较简单的经济问题的函数关系。
第二章极限与连续一、考核知识点1.数列的极限(1)数列(2)数列的极限定义2.函数的极限(1)x?x0时函数极限的定义(2)单侧极限及x?x0时f(x)极限存在的充分必要条件(3)x?∞时函数的极限(4)极限的性质3.极限的运算法则4.极限存在的准则和两个重要极限5.函数的连续性(1)函数的连续性定义(2)函数的间断点(3)初等函数的连续性(4)闭区间上连续函数的性质6.无穷小量与无穷大量(1)无穷小量与无穷大量(2)无穷大量及它与无穷小量的关系(3)无穷小量的阶二、考核目标和基本要求1.了解数列与函数极限的概念(分析定义不作要求)(1)能将简单数列的前若干顶用数轴上的点表示出来,从而观察出它是否存在极限(2)知道常见发散数列有振荡发散和无穷发散两种情形(3)能从函数图象x?x0或x?∞时,它是否存在极限2.能正确运用极限的四则运算法则、两个重要极限求数列与函数的极限。
3.了解无穷小量与无穷大量的概念,能判别无穷小量与无穷大量的关系,会对无穷小量的阶进行比较。
4.了解函数连续性的概念,会判断分段函数在分段点处的连续性,会求函数的间断点(但不要求判断间断点的类型)和连续区间.5.会利用函数的连续性求函数的极限。
江苏专转本高等数学考试大纲
江苏专转本高等数学考试大纲文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)江苏省专转本《高等数学》考试大纲一、答题方式答题方式为闭卷,笔试二、试卷题型结构试卷题型结构为:单选题、填空题、解答题、证明题、综合题三、考试大纲(一)函数、极限、连续与间断考试内容函数的概念及表示法:函数的有界性、单调性、周期性和奇偶性、复合函数、反函数分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立。
数列极限与函数极限的定义及其性质:函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算。
极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质。
考试要求1、理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
(二)导数计算及应用考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数隐函数以及参数方程所确定的函数的导数、高阶导数、一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数的最大值和最小值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘。
江苏专转本高数新考纲解读2024
引言概述:江苏省专转本高数考纲的新变化是在专业转本科的情况下,对高等数学课程内容的调整和要求的进一步提高。
新考纲对于学生来说是一个挑战,但也是一个机遇,可以帮助他们更好地理解和掌握高等数学知识,为未来的学习和职业发展打下坚实的基础。
本文将对江苏专转本高数新考纲进行解读,分为引言概述、正文内容、总结三个部分。
正文内容:一.考纲背景与意义1.专转本政策的推出2.高等数学在专转本科中的重要性3.新考纲对学生的意义二.考纲变化及主要内容1.课程设置的调整a.数列与级数的要求b.函数与极限的要求c.导数与微分的要求d.积分与定积分的要求e.二重积分与三重积分的要求2.考试形式的修改a.题型结构的变化b.答题要求的调整三.新考纲带来的挑战1.课程难度的提升2.学生学习压力的增加3.教师教学方法的改进4.学生自主学习的重要性四.应对策略和建议1.认真备课,熟悉教材2.合理安排学习时间3.多做题,培养解题技巧4.寻求帮助,与同伴合作5.注重实践,应用数学于实际问题五.培养数学思维和创新能力1.发展逻辑思维和数学推理能力2.培养解决实际问题的能力3.提高数学建模和应用技巧总结:江苏专转本高数新考纲的解读主要包括背景与意义、考纲变化及主要内容、新考纲带来的挑战、应对策略和建议以及培养数学思维和创新能力等方面。
对于学生而言,面对新考纲的挑战需要积极应对,合理安排学习时间,多做题,注重实践,培养解题技巧和数学思维能力。
同时,学生也应该注重发展逻辑思维和数学建模能力,提高应用数学于实际问题的能力。
只有全面掌握新考纲要求,才能更好地应对学习和职业发展的挑战。
江苏专转本高数考纲及重点总结
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数.(2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)掌握函数的四则运算与复合运算。
(5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→—∞)时函数的极限。
(4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练掌握用两个重要极限求极限的方法.重点:会用左、右极限求解分段函数的极限,掌握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。
(2)掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.(3)掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的间断点.理解闭区间上连续函数的性质,并会应用这些性质(如介值定理、最值定理)用于不等式的证明.二、一元函数微分学(一)导数与微分(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏专转本高数考纲及重点总结
一、函数、极限和连续
(一)函数
(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)掌握函数的四则运算与复合运算。
(5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数
(二)极限
(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练掌握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,掌握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续
(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。
(2)掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型。
(3)掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的间断点。
理解闭区间上连续函数的性质,并会应用这些性质(如介值定理、最值定理)用于不等式的证明。
二、一元函数微分学
(一)导数与微分
(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。
(2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
(4)掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简单函数的n阶导数。
(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
重点:会利用导数和微分的四则运算、复合函数求导法则和参数方程的求导,会求简单函数的高阶导数(尤其是二阶导数)。
(二)中值定理及导数的应用
(1)了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。
(2)熟练掌握洛必达法则求“0/0”、“∞/∞”、“0 ∞”、“∞-∞”、“1 ∞”、“0 0”和“∞ 0”型未定式的极限方法。
(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。
(4)理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。
(5)会判定曲线的凹凸性,会求曲线的拐点。
(6)会求曲线的水平渐近线与垂直渐近线。
重点:会用罗必达法则求极限,掌握函数单调性的判别法,利用函数单调性证明不等式,掌握函数极值、最大值和最小值的求法及其运用,会用导数判别函数图形的拐点和渐近线。
三、一元函数积分学
(一)不定积分
(1)理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理。
(2)熟练掌握不定积分的基本公式。
(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。
(4)熟练掌握不定积分的分部积分法。
(二)定积分
(1)理解定积分的概念与几何意义,了解可积的条件。
(2)掌握定积分的基本性质。
(3)理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法。
(4)掌握牛顿—莱布尼茨公式。
(5)掌握定积分的换元积分法与分部积分法。
(6)理解无穷区间广义积分的概念,掌握其计算方法。
(7)掌握直角坐标系下用定积分计算平面图形的面积、旋转体的体积。
重点:掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元法与分部积分法,会求一般函数的不定积分;掌握积分上限的函数并会求它的导数,掌握牛顿—莱布尼兹公式以及定积分的换元积分法和分部积分法;会计算反常积分,会利用定积分计算平面图形的面积、旋转体的体积。
四、向量代数与空间解析几何
(一)向量代数
(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。
(2)掌握向量的线性运算、向量的数量积与向量积的计算方法。
(3)掌握二向量平行、垂直的条件。
(二)平面与直线
(1)会求平面的点法式方程、一般式方程。
会判定两平面的垂直、平行。
(2)会求点到平面的距离。
(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。
会判定两直线平行、垂直。
(4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。
重点:会求向量的数量积和向量积、两向量的夹角,会求平面方程和直线方程。
五、多元函数微积分
(一)多元函数微分学
(1)了解多元函数的概念、二元函数的几何意义及二元函数的极值与连续概念(对计算不作要求)。
会求二元函数的定义域。
(2)理解偏导数、全微分概念,知道全微分存在的必要条件与充分条件。
(3)掌握二元函数的一、二阶偏导数计算方法。
(4)掌握复合函数一阶偏导数的求法。
(5)会求二元函数的全微分。
(6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法。
(7)会求二元函数的无条件极值。
重点:会求多元复合函数的一阶、二阶偏导数,会求多元隐函数的偏导数。
(二)二重积分
(1)理解二重积分的概念、性质及其几何意义。
(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。
重点:掌握二重积分的计算方法,会将二重积分化为累次积分以及会交换累次积分的次序
六、无穷级数
(一)数项级数
(1)理解级数收敛、发散的概念。
掌握级数收敛的必要条件,了解级数的基本性质。
(2)掌握正项级数的比值数别法。
会用正项级数的比较判别法。
(3 ) 掌握几何级数、调和级数与p级数的敛散性。
(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。
(二)幂级数
(1)了解幂级数的概念,收敛半径,收敛区间。
(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。
(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。
重点:掌握正项级数收敛性的判别法,几何级数与P级数及其收敛性,了解任意项级数绝对收敛与条件收敛的概念以及它们之间的关系,了解交错级数的莱布尼茨判别法,会求幂级数的收敛半径、收敛区间及收敛域。
八、常微分方程
(一)一阶微分方程
(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。
(2)掌握可分离变量方程的解法。
(3)掌握一阶线性方程的解法。
(二)二阶线性微分方程
(1)了解二阶线性微分方程解的结构。
(2)掌握二阶常系数齐次线性微分方程的解法。
重点:掌握变量可分离微分方程、齐次微分方程和一阶线性微分方程的求解方法、会解二阶常系数齐次线性微分方程,会解自由项为多项式、指数函数的二阶常系数非齐次线性微分方程。