简易数字频率计
简易数字频率计鉴定优秀

前言数字频率计是一种用数字显示地频率测量仪表,它不仅可以测量正弦信号、方波信号和尖脉信号地频率,而且还能对其他多种物理量地变化频率进行测量,诸如机械振动次数,物体转动速度,明暗变化地闪光次数,单位时间里经过传送带地产品数量等等,这些物理量地变化情况可以由有关传感器先转变成周期变化地电信号,然后用数字频率计测量单位时间内变化次数,再用数码显示出来.因此它是一种测量范围较广地通用型数字仪器.设计要求:1.被测信号地频率范围100HZ~100KH;2.输入信号为正弦信号或方波信号;3.四位数码管显示所测频率,并用发光二极管表示单位;4.具有超量程报警功能;第一章系统概述1.1基本原理数字频率计地主要功能是测量周期信号地频率.频率是单位时间( 1S )内信号发生周期变化地次数.如果我们能在给定地 1S 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号地频率.数字频率计首先必须获得相对稳定与准确地时间,同时将被测信号转换成幅度与波形均能被数字电路识别地脉冲信号,然后通过计数器计算这一段时间间隔内地脉冲个数,将其换算后显示出来.这就是数字频率计地基本原理.1.2系统框图系统框图:图1数字频率计框图1.3系统各部分地功能设计1.3.1波形整形电路0°图21.3.2 分频器U2A4518BD_5V1A 31B 41C 51D6EN12MR17CP11图3(a )图3(b )分频器地作用是为了获得 1S 地标准时间.电路中首先用两片如图3(a )所示地分频器对经过整形后得到地 100Hz 信号进行 100 分频得到如图4( a )所示周期为 1S 地脉冲信号.然后再用D 触发器如图3(b )进行二分频得到如图4( b )所示占空比为 50 %脉冲宽度为 1S 地方波信号,由此获得测量频率地基准时间.利用此信号去打开与关闭控制门,可以获得在 1S 时间内通过控制门地被测脉冲地数目.图4示波器输出波形1.3.3 信号放大、波形整形电路为了能测量不同电平值与波形地周期信号地频率,必须对被测信号进行放大与整形处理,使之成为能被计数器有效识别地脉冲信号.信号放大与波形整形电路地作用即在于此.信号放大可以采用一般地运算放大电路(如图5所示),波形整形采用555构成地施密特触发器(如图6所示)U13288RT12543图5 运算放大器 图6 由555构成地斯密特触发器图7 信号放大与波形整形电路原理图1.3.4 控制门控制门用于控制输入脉冲是否送计数器计数.它地一个输入端接标准秒信号,一个输入端接被测脉冲.控制门可以用与门或或门来实现.当采用与门时,秒信号为正时进行计数,当采用或门时,秒信号为负时进行计数. 我们地设计采用地是或门,秒信号为低电平时进行计数.如图8所示U8A 74LS32D图8 或门作为控制门1.3.5 计数器计数器地作用是对输入脉冲计数.根据设计要求,最高测量频率为 100kHz ,应采用6位十进制计数器.可以选用由74161(74161是同步16位二进制加计数器,它有异步清零,同步预置数等功能.)改装而成地10进制计数器.U674161NQA 14QB 13QC 12QD 11RCO15A 3B 4C 5D 6ENP 7ENT 10~LOAD 9~CLR 1CLK2图9 计数器74161 图10 由74161连成地十进制计数器1.3.6 超量程报警器如图11所示,报警器由一个与门控制一个D 触发器和一个信号指示灯x1实现.由于设计要求最大频率为100.0KHZ,当计数器计数输出地结果小于100.0KHZ 时,与门7409N 输出一直为低电平,报警信号灯一直处于熄灭状态;当输出结果大于100.0KHZ 时,在计数地过程中与门7409N 输出将变为高低电平交替出现,信号灯一闪一亮.图11 超量程报警器1.3.7 寄存器在确定地时间( 1S )内计数器地计数结果(被测信号频率)必须经寄存后才能获得稳定地显示值.寄存器地作用是通过触发脉冲控制,将测得地数据寄存起来,送显示译码器.寄存器为使数据稳定,最好采用边沿触发方式地器件.U1474175N1D 4CLK91Q 2~CLR 12D 53D 124D 13~1Q 3~2Q 63Q 10~3Q 112Q 74Q 15~4Q14图12如图12所示,在设计中我们采用了74LS175,74LS175是用四个D 触发器组成地四位寄存器,用以存储4位二进制数.在CP 上升沿到达时1D ~4D 端状态被同时到各个触发器中,形成1Qn+1~4Qn+1状态.RD 为异步清零控制端.当RD=0时,不需要和CP 同步,就可完成寄存器1Q ~4Q 清零工作. 1.3.8 显示译码器与数码管显示译码器地作用是把用 BCD 码表示地10进制数转换成能驱动数码管正常显示地段信号,以获得数字显示.选用显示译码器时其输出方式必须与数码管匹配.本设计中采用地是7447七段数码显示译码器以及相应地七段数码管.显示译码器7447 如图13(a )所示,七段译码管如图13(b )所示,电路连接图如图14所示.(a)(b)U257447NA 7B 1C 2D6OA 13OD10OE 9OF 15OC 11OB 12OG14~LT 3~RBI 5~BI/RBO4图137447N图14第二章 单元电路地设计与分析在本次设计中,我地主要任务就是实现占空比为50%地方波信号,我实现它所用地电路原理图如图:0°图2-1本模块中所用芯片有:555构成地斯密特触发器、4518BD,D —FF. 其功能分别是:图2-1-2555构成地斯密特触发器:连接图如图2-1-2.为了消除高频干扰,提高比较其参考电压地稳定性,通常将C ON 管脚通过0.01uf 地电容接地.施密特触发器地构成施密特触发器也有两个稳定状态,但与一般触发器不同地是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不R7同化方向地输入信号,施密特触发器有不同地阀值电压.门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路地状态将发生变化.施密特触发器是一种特殊地门电路,与普通地门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压.在输入信号从低电平上升到高电平地过程中使电路状态发生变化地输入电压称为正向阈值电压,在输入信号从高电平下降到低电平密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压.在输入信号从低电平上升到高电平地过程中使电路状态发生变化地输入电压称为正向阈值电压,在输入信号从高电平下降到低电平地过程中使电路状态发生变化地输入电压称为负向阈值电压.正向阈值电压与负向阈值电压之差称为回差电压.它是一种阈值开关电路,具有突变输入——输出特性地门电路.这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起地输出电压地改变.斯密特波形图利用施密特触发器状态转换过程中地正反馈作用,可以把边沿变化缓慢地周期性信号变换为边沿很陡地矩形脉冲信号.输入地信号只要幅度大于vt+,即可在施密特触发器地输出端得到同等频率地矩形脉冲信号.555定时器555定时器是一种集成电路[如图2-1-3所示],因集成电路内部含有三个5千欧电阻而得名利用555定时器可以构成施密特触发器、单稳态触发器和多谐振荡器.本次设计我采用555定时器构成施密特触发器,因为它只需将2号脚和六号脚连在一起作信号地输入端,即可方便地构成施密特触发器.图2-1-3 CB555地电路结构只要将555定时器地2号脚和6号脚接在一起,就可以构成施密特触发器.可以简记为“二六一搭”.如图2-1-4图2-1-4 施密特触发器连接图4518BD功能:十进制同步加/减计数器4518.如图2-1-5图2-1-54518BD 为双BCD 加计数器,该器件由两个相同地同步4 级计数器组成.计数器级为D 型触发器.具有内部可交换CP 和EN 线,用于在时钟上升沿或下降加计数.在单个单元运算中,EN 输入保持高电平,且在CP 上升沿进位.CR 线为高电平时,计数器清零.计数器在脉动模式可级联,通过将Q3 连接至下一计数器地EN 输入端可实现级联.同时后者地CP 输入保持低电平.将两个4518BD 串联起来,可以实现对经过555触发器地输入信号地100分频.连接图如图2-1-2所示,CP1接输入信号,CP2接D 触发器地CLK 输入端.D —FF 功能:电路图如图2-1-6所示.图 2-1-6为D 触发器.其功能是实现二分频.从而输出占空比为50%地标准秒信号,然后完成计数功能CLK端接上步中地分频器地输出端,Q接控制门U8A(74LS332D)其中一个输入端.各部分地实现结果如下图所示电源波形经555构成地斯密特触发器变形后地波形.555构成地斯密特触发器输出地信号经过二分频得到地标准秒信号.第三章 电路地检测方法与步骤(1) 电源测试用示波器检测产生基准时间地全波整流电路输出波形. 检验电路图如3-1-1所示,如果示波器地输出波形如图3-1-2所示.由波形图可以证明将电源信号变为标准秒信号可以正确实现.0°图3-1-1图3-1-2(2) 输入检测信号从被测信号输入端输入幅值在 1V 左右频率为 1.2KHz 左右地正弦信号检验电路如图3-2-1所示.由示波器地输出波形所示可证明已经将被测信号变为方波信号.图3-2-1图3-2-2(3) 控制门检测检测控制门 U8A(74LS32D) 输出信号波形,正常时,每间隔 1S 时间,可以在荧屏上观测到被测信号地矩形波.如观测不到波形,则应检测控制门地两个输入端地信号是否正常 , 并通过进一步地检测找到故障电路,消除故障.如电路正常,或消除故障后频率计仍不能正常工作,则检测计数器电路.(4) 计数器电路地检测依次检测6 个计数器 74161 时钟端地输入波形,正常时,相邻计数器时钟端地波形频率依次相差 10 倍.如频率关系不一致或波形不正常,则应对计数器和反馈门地各引脚电平与波形进行检测.正常情况各电平值或波形应与电路中给出地状态一致.通过检测与分析找出原因,消除故障.如电路正常,或消除故障后频率计仍不能正常工作,则检测寄存器电路.(5)寄存电路地检测依次检测 74175寄存器各引脚地电平与波形.正常情况各电平值应与电路中给出地状态一致.(6) 显示译码电路与数码管显示电路地检测检测显示译码器7447各控制端与电源端引脚地电平,同时检测数码管各段对应引脚地电平及公共端地电平.通过检测与分析连接好电路.第四章总结在数字频率计地设计当中,基本完成了设计任务书中地基本要求.本课题用Mulitism软件设计,数字频率计是数字电路中地一个典型应用,实际地硬件设计用到地器件较多,联机比较复杂,而且会产生比较大地延时,造成测量误差、可靠性差.而且还存在着许多不足之处.为了能测量不同电平值与波形地周期信号地频率,必须对被测信号进行放大与整形处理,数字频率计是直接用十进制数字来显示被测信号频率地一种测量装置.它可以测量正弦波、方波信号地频率.通过本设计使我们对数字频率计有更深一步地了解.附录一.电路图:二.元件表:参考文献:[1]林涛.数字电子技术基础清华大学出版社 2006年第1版[2]刘南平.数字频率计设计方案现代电子设计与制作技术[M]. 2004年第2版[3]毕满清.电子技术实验与课程设计[M].北京:机械工业出版社,2005[4]张洪润.电子线路与电子技术[M].清华大学出版社.2005年[5]郝波.数字电路[M].电子工业出版社.2003年[6] 徐成,刘彦, 李仁发, 等. 一种全同步数字频率测量方法地研究[J]. 电子技术应用[7] 魏西峰.全同步数字频率测量方法地研究[J]. 现代电子技术, 2005,[8] 谢自.电子线路设计•实验•测试[M].华中科技大学出版社.2000年[9] 任中民.数字电子技术[M].清华大学出版社.2005年。
简易数字频率计设计

简易数字频率计设计简易数字频率计是一种统计计算工具,用于频率统计,使用适当的算法来测量特定序列中给定元素或者元素组合出现的频率,主要用于数据分析和统计工作,帮助使用者深入分析数据,得到较为精准的结果。
本文将详细说明一种简易的数字频率计的设计实现过程和分步流程。
设计步骤第一步:准备设计简易数字频率计所需要的硬件设备设计简易数字频率计需要的硬件设备有:计算机、网络设备、数据存储器、输入输出设备等。
计算机配备相应的硬件设备和软件,网络设备用于连接多台计算机,数据存储器用于存储数据,输入输出设备允许输入和输出各种不同类型的数据。
第二步:制定相应的算法根据具体情况,应制定出相应的算法,用于计算数据序列中给定元素或者元素组合出现的频率,主要包括排序算法,查找算法,求和算法,概率分布算法等。
比如:可以使用冒泡排序或者快速排序对数据序列进行排序,使用二分查找等技术快速查找元素,在运算时可以使用求和、乘法、平方等算法来计算数据,使用贝叶斯理论等方法来求取概率分布。
第三步:实现数据处理根据设计上的算法,使用计算机及其相应的软件和硬件设备,进行数据处理,对相关的数据序列进行相应的操作,实现频率的统计计算,得到精准的统计结果。
第四步:测试并可视化在完成简易数字频率计的设计之后,应当对数据处理过程进行测试,以验证所编写算法的正确性和可靠性。
完成测试之后,可以通过图表和表格的方式可视化频率计算结果,更加直观地显示出数据之间的关系以及频率变化趋势。
以上就是一种简易数字频率计的设计实现过程,它可以为使用者提供准确的统计数据和频率结果,促进数据深入分析等工作,为企业的发展带来重要的帮助。
简易频率计实验报告

实验二简易数字频率计实验目的:(1)学会各种简易数字频率计的设计方法(2)学会VHDL的多进程及多层次设计方法实验原理:设计一个四位数字频率计,此频率计共分四档。
一档:0~9999Hz二档:10~99.99kHz三档:100~999.9kHz四档:1~10MHz分频器模块FEN通过对1Hz的时钟的分频得到0.5Hz的时钟信号。
测频模块FTEST,是整个程序的核心,此模块完成在1s的时间内对被测信号计数的功能,并通过输出数据实现自动换挡的功能。
LOCK模块用来锁存数据。
实验内容:在MAX+plusII中用VHDL语言输入FEN2 、MUX21、CD源程序,保存名字与实体名一致,后缀为vhd,选择目标器件为EP1K30TC144-3,然后进行编译、仿真。
参考程序:1、FEN通过对1Hz的时钟的分频得到0.5Hz的时钟信号。
LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY fen ISPORT(clk:IN STD_LOGIC;q:OUT STD_LOGIC);END fen;ARCHITECTURE fen_arc OF fen ISBEGINPROCESS(clk)VARIABLE x:STD_LOGIC;BEGINIF clk'EVENT AND clk='1'THENx:=NOT x;END IF;q<=x;END PROCESS;END fen_arc;波形仿真图:2、FTSET此模块完成在1s的时间内对被测信号计数的功能,并通过输出数据实现自动换挡的功能。
LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ftest ISPORT(clr,Fx,door:IN STD_LOGIC;alm:OUT STD_LOGIC;q3,q2,q1,q0,dang:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END ftest;ARCHITECTURE CORN_ARC OF ftest ISBEGINPROCESS(door,Fx)VARIABLE c0,c1,c2,c3,c4,c5,c6 :STD_LOGIC_VECTOR(3 DOWNTO 0);VARIABLE x:STD_LOGIC;BEGINIF Fx'EVENT AND Fx='1'THENIF door='1'THENIF c0<"1001"THENc0:=c0+1;ELSEc0:="0000";IF c1<"1001"THENc1:=c1+1;ELSEc1:="0000";IF c2<"1001"THENc2:=c2+1;ELSEc2:="0000";IF c3<"1001"THENc3:=c3+1;ELSEc3:="0000";c4:=c4+1;ELSEc4:="0000";IF c5<"1001"THEN c5:=c5+1;ELSEc5:="0000"; IF c6<"1001"THEN c6:=c6+1;ELSEc6:="0000";alm<='1';END IF;END IF;END IF;END IF;END IF;END IF;END IF;ELSEIF clr='0'THENalm<='0';END IF;c6:="0000";c5:="0000";c4:="0000";c3:="0000";c2:="0000";c1:="0000";c0:="0000";END IF;IF c6/="0000"THENq3<=c6;q2<=c5;q1<=c4;q0<=c3;dang<="0100";ELSIF c5/="0000"THEN q3<=c5;q2<=c4;q1<=c3;q0<=c2;dang<="0011";q3<=c4;q2<=c3;q1<=c2;q0<=c1;dang<="0010";ELSEq3<=c3;q2<=c2;q1<=c1;q0<=c0;dang<="0001";END IF;END IF;END PROCESS;END CORN_ARC;波形仿真图:3、LOCK模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY LOCK ISPORT(A0,A1,A2,A3,A4:IN STD_LOGIC_VECTOR(3 DOWNTO 0);q0,q1,q2,q3,q4:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);clk:IN STD_LOGIC);END LOCK;ARCHITECTURE ART OF LOCK ISBEGINPROCESS(clk)BEGINIF(clk'EVENT AND clk='1')THEN q0<=A0;q1<=A1;q2<=A2;q3<=A3;q4<=A4;END IF;END PROCESS;END ART;波形仿真图:顶层仿真波形:实验结果:实现了四位数字频率计的设计。
基于单片机简易数字频率计

基于单片机简易数字频率计基于单片机的简易数字频率计概述:数字频率计是一种用于测量信号频率的仪器,它能够将输入的模拟信号转换为数字信号,并通过单片机进行处理和显示。
本文将介绍基于单片机的简易数字频率计的原理和实现方法。
一、原理介绍数字频率计的原理基于信号的频率与周期的倒数之间的关系。
当输入信号的频率较高时,直接测量周期较为困难,因此常采用测量信号的脉宽来间接推算频率。
本文所介绍的简易数字频率计就是基于这一原理。
二、硬件设计1. 信号输入:将待测信号接入单片机的GPIO口,通过外部电路对信号进行电平转换和滤波处理,确保输入信号稳定且符合单片机的输入电压范围。
2. 定时器:单片机内部的定时器用于测量输入信号的脉宽。
通过配置定时器的计数器和预分频器,可以实现不同精度的测量。
一般情况下,选择合适的计数器和预分频器,使得定时器的溢出周期与待测信号的周期相当,以提高测量的准确性。
3. 显示模块:通过数码管或LCD显示模块,将测量到的脉宽转换为频率值并进行显示。
可以根据需要选择合适的显示方式和显示精度。
三、软件设计1. IO口配置:在单片机的软件中,需要配置GPIO口的输入和输出模式,以及中断触发条件等。
通过配置正确的IO口,可以实现对信号输入和输出的控制。
2. 定时器配置:配置定时器的计数器和预分频器,并设置中断触发条件。
在定时器中断服务函数中,可以对计数器的值进行读取和处理。
3. 测量算法:在定时器中断服务函数中,可以根据测量到的脉宽值计算出信号的频率。
具体的计算方法有多种,例如可以通过测量多个周期的脉宽平均值来提高测量的准确性。
4. 显示控制:将计算得到的频率值转换为合适的显示格式,并通过显示模块进行显示。
可以根据需要选择合适的显示精度和显示方式。
四、实现方法基于以上原理和设计,可以通过以下步骤来实现简易数字频率计:1. 硬件连接:将待测信号接入单片机的GPIO口,并通过外部电路进行电平转换和滤波处理。
2. 软件编程:根据单片机的型号和开发环境,编写相应的软件程序。
简易数字频率计

简易数字频率计引言数字频率计是一种用来测量信号频率的仪器。
在电子工程、通信工程和音频工程等领域中都有广泛的应用。
本文将介绍一个简易的数字频率计,它基于微控制器和计数器电路,能够精准地测量输入信号的频率。
设计原理该简易数字频率计的设计原理主要包括三个部分:输入电路、计数器电路和显示电路。
输入电路输入电路用于接收待测量的信号,并将其转换为微控制器可以处理的数字信号。
一般使用一个信号放大器将输入信号放大,并通过一个阻抗匹配电路将信号阻抗与测量电路相匹配。
计数器电路计数器电路是本频率计的核心部分。
它通过计数器器件来测量输入信号的周期时间,并计算出频率值。
常见的计数器器件有74HCxx系列、CD40xx系列等。
在该设计中,我们选择了74HC160 4位可编程同步二进制计数器。
显示电路显示电路用于将测量得到的频率值以可读性良好的方式展示出来。
一般使用数码管进行数字显示。
本设计中使用了共阴极的4位7段数码管,通过串口通信将测量到的频率值发送给数码管进行显示。
硬件设计硬件设计主要包括信号放大电路、计数器电路和显示电路。
信号放大电路设计信号放大电路使用了一个运放进行信号放大,具体的放大倍数可以根据实际需求进行调整。
为了防止输入信号的干扰,还可以添加一个低通滤波器来滤除高频噪声。
计数器电路设计74HC160计数器电路的设计如下: - 连接74HC160的CLK 引脚到信号输入引脚,即可通过输入信号的上升沿触发计数器的计数。
- 使用74HC160的O0~O3输出引脚接到后续的显码驱动电路。
显示电路设计数码管的控制可以使用74HC595移位寄存器进行。
通过接口电路和微控制器进行通信,将测量到的频率值发送给74HC595,然后74HC595控制数码管进行数字显示。
软件设计软件设计主要包括信号处理和数据显示。
信号处理软件部分主要是通过计数器来测量输入信号的周期时间并计算出频率值。
通过编写的程序,将计数器的数值传输给微控制器,并进行运算得到频率值。
简易数字频率计

频率计算:通过测量信号的周期或 频率,计算出数字频率值
添加标题
添加标题
添加标题
添加标题
信号处理:通过数字滤波器对采集 到的信号进行滤波,以消除噪声和 干扰
数据输出:将计算出的频率值通过 串口或其他方式输出到计算机或其 他设备
计数器和计时器的编程实现
使用计时器对计数器进行计 时,计算信号的周期
将计数器和计时器的结果通 过软件进行显示和控制
能源监测:简易数字频率计可实现对新能源发电设备的实时监测,提高能源利用效率。 环保监测:简易数字频率计可用于监测环保设备的运行状态,确保污染物排放达标。 智能电网:简易数字频率计可应用于智能电网中,实现电网的智能化管理和优化。 节能减排:简易数字频率计可帮助企业实现节能减排,降低生产成本。
简易数字频率计的技术挑战和发展方向
分析仪等。
科学实验领域: 用于各种与频率 相关的实验,如 电磁波的发射与 接收、无线电通
信等。
工业生产领域: 用于生产过程中 的各种频率测量 和控制,如电机 转速的测量和控 制、生产线上各 种设备的状态监
测等。
简易数字频率计在生物医学工程领域的应用
监测生理信号:简易数字频率计可 以用于监测人体的心电图、脑电图 等生理信号,辅助医生进行疾病诊 断和治疗。
添加标题
添加标题
添加标题
添加标题
频谱分析:对信号进行频谱分析, 了解信号的成分和特性
音频处理:用于音频信号的频率测 量和处理,如音频压缩、降噪等
简易数字频率计在通信和电子测量领域的应用
通信领域:用于 信号频率的测量, 如调频信号、调
相信号等。
电子测量领域: 用于测量电子设 备的频率特性, 如示波器、频谱
界面优化:根据实际需求对显示和控制界面进行优化,提高用户体验和操作便捷性
简易数字频率计(数字电路课程设计)

数字电路课程设计报告1)设计题目简易数字频率计2)设计任务和要求要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为:1)测量范围:1H Z—9.999K H Z,闸门时间1s;10 H Z—99.99K H Z,闸门时间0.1s;100 H Z—999.9K H Z,闸门时间10ms;1 K H Z—9999K H Z,闸门时间1ms;2)显示方式:四位十进制数3)当被测信号的频率超出测量范围时,报警.3)原理电路和程序设计:(1)整体电路数显式频率计电路(2)单元电路设计;(a)时基电路信号号(b)放大逻辑电路信号通信号(c)计数、译码、驱动电路号(3)说明电路工作原理;四位数字式频率计是由一个CD4017(包含一个计数器和一个译码器)组成逻辑电路,一个555组成时基电路,一个9014形成放大电路,四个CD40110(在图中是由四个74LS48、四个74LS194、四个74LS90组成)及数码管组成。
两个CD40110串联成一个四位数的十进制计数器,与非门U1A、U1B构成计数脉冲输入电路。
当被测信号从U1A输入,经过U1A、U1B两级反相和整形后加至计数器U13的CP+,通过计数器的运算转换,将输入脉冲数转换为相应的数码显示笔段,通过数码管显示出来,范围是1—9。
当输入第十个脉冲,就通过CO输入下一个CD40110的CP+,所以此四位计数器范围为1—9999。
其中U1A与非门是一个能够控制信号是否输入的计数电路闸门,当一个输入端输入的时基信号为高电平的时候,闸门打开,信号能够通过;否则不能通过。
时基电路555与R2、R3,R4、C3组成低频多谐振荡器,产生1HZ的秒时基脉冲,作为闸门控制信号。
计数公式:]3)2243[(443.1CRRRf++=来确定。
与非门U2A与CD4017组成门控电路,在测量时,当时基电路输出第一个时基脉冲并通过U2A反相后加至CD4017的CP,CD4017的2脚输出高电平从而使得闸门打开。
简易数字频率计定优秀

前言数字频率计是一种用数字显示的频率测量仪表,它不仅可以测量正弦信号、方波信号和尖脉信号的频率,而且还能对其他多种物理量的变化频率进行测量,诸如机械振动次数,物体转动速度,明暗变化的闪光次数,单位时间里经过传送带的产品数量等等,这些物理量的变化情况可以由有关传感器先转变成周期变化的电信号,然后用数字频率计测量单位时间内变化次数,再用数码显示出来。
因此它是一种测量范围较广的通用型数字仪器。
设计要求:1.被测信号的频率范围100HZ~100KH;2.输入信号为正弦信号或方波信号;3.四位数码管显示所测频率,并用发光二极管表示单位;4.具有超量程报警功能;第一章系统概述1.1基本原理数字频率计的主要功能是测量周期信号的频率。
频率是单位时间( 1S )内信号发生周期变化的次数。
如果我们能在给定的 1S 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
这就是数字频率计的基本原理。
1.2系统框图系统框图:图1数字频率计框图1.3系统各部分的功能设计1.3.1波形整形电路A1555_VIRTUALGNDDISOUTRSTVCCTHRCONTRIR110kΩC10.01µF5VV2120 Vrms100 Hz0°图21.3.2 分频器U2A4518BD_5V1A31B41C51D6EN12MR17CP11U4D_FFD Q~QRESETCLKSET图3(a)图3(b)分频器的作用是为了获得 1S 的标准时间。
电路中首先用两片如图3(a)所示的分频器对经过整形后得到的 100Hz 信号进行 100 分频得到如图4( a )所示周期为 1S 的脉冲信号。
然后再用D触发器如图3(b)进行二分频得到如图4( b )所示占空比为 50 %脉冲宽度为 1S 的方波信号,由此获得测量频率的基准时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易数字频率计论文摘要:本系统用单片机89C51为核心,设计了能够测量频率、周期、脉宽和占空比的简易数字频率计。
本系统包括前端放大整形、分频处理和单片机数据处理三大模块。
前级放大整形模块采用74HC04做放大器对信号进行放大;分频处理模块提高测量的频率范围;单片机数据处理模块利用软件分频的方法,克服了±1误差在高低频段精度不等的缺陷,提高了测量系统的精度。
本系统实现了测量频率、周期、脉宽和占空比的测量要求,且测量的频率可以达到0.1Hz—10MHz。
频率和周期的测量误差小于0.01%,脉宽的测量误差小于1%。
基本完成了任务设计的要求。
引言设计并制作一台简易的数字显示频率计。
基本要求:对幅度为0.5V—5V,频率为1Hz—1MHz的正弦波和方波信号进行频率和周期的测量,测量误差≤0.1%。
能对幅度为0.5—5V,脉冲宽度≥100μS的脉冲波进行测量,测量误差≤1%。
发挥部分:扩展频率测量范围为0.1Hz—10MHz(信号幅度0.5V—5V),测试误差降低为0.01%(最大闸门时间≤10s)。
测量并显示脉冲信号(幅度0.5V —5V、频率1Hz—1kHz)的占空比,占空比变化范围为10%—90%,测量误差≤1%。
在1Hz—1MHz范围内及测试误差≤0.1%的条件下,进行小信号的频率测量,提出并实现抗干扰的措施。
一.方案比较与论证方案一:系统测频部分采用中小规模数字集成电路,用机械式功能转换开关换档,完成测频率、测周期及测脉宽等功能。
该方案的特点是中小规模集成电路应用技术成熟,能可靠的完成频率计的基本功能,但由于系统功能要求较高,所以电路过于复杂。
而且多量程转换开关使用不便。
原理框图如图1所示。
图1 方框图方案二:采用直接测频法,把被测频率信号经脉冲形成电路后加到闸门开通时间T(以秒计)内,被计数的脉冲被送到十进制计数器进行计数。
设计数器的值为N,由频率定义式可以计算得到被测信号频率为f=N/T。
经过分析,本种测量方法在低频段的相对测量误差较大。
增大T可以提高测量精度,但在低频段仍不能满足设计的要求。
方案三:系统采用89C51单片机为核心,门控信号由单片机内部的计数定时器产生。
由于单片机的计数频率上限较低(12M晶体振荡器时约为500KHz),所以需对高频被测信号进行硬件预分频处理,89C51则完成运算、控制及显示功能。
由于使用单片机使整个系统具有极为灵活的可编程性,能方便地对系统进行功能扩展和改进。
系统方框图如图2所示。
图2 系统方框图比较以上三种方案,都有一个共同就是为了提高系统的测量精度和灵敏度,三中方案都使用了小信号放大整形电路。
但是每个方案各有不同,方案一由于电路复杂,系统实现起来不方便,而且调试困难。
对于方案二从系统设计的测量范围0.1Hz—10MHz,以频率下限0.1Hz来说,要达到误差<0.01%的目的,必须显示5位的有效数字,而使用直接测频的方法,要达到这个测量精度,需要主门连续开启10000s,由此可见,直接测频方法对低频测量是不现实的,而采用带有运算器的单片机则可以很容易地解决这个问题,实现课题的要求。
也就是对低频信号采用先测信号的周期,然后在通过单片机求周期倒数的方法,从而得到我们所需要的低频信号的测量精度。
另外由于使用了功能较强的89C51芯片,使本系统可以通过对软件改进而扩展功能,提高测量精度,因此我们选用方案三作为具体实施的方案。
二.测量原理1.频率测量由于单片机具有程序运算功能,且频率为周期的倒数,使频率测量与周期测量可以互通。
按照频率的定义,即单位时间内周期信号的发生次数,通过参考晶体振荡提供了测量的时间基准,分频后通过控制电路去开启与关闭时间闸门。
闸门开启时,经放大整形后的测量信号进入计数器进行计数,闸门关闭时,停止计数。
若闸门开放时间为T g,计数值为N,则被测频率f x=N/T g。
测频的框图如图3所示。
图3 测频框图用这种频率测量原理,对于频率较低的被测信号来说,存在着测量实时性与测量精度之间的矛盾,由分频系数M=T g /T r (T r 为参考晶振的周期)本身是没有误差的(若电路工作正常的话),测量误差主要由以下两种因数产生的:计数误差和参考晶体振荡的误差,也即/(/)(/)(/)(/)r r r r r f f N N f f Nf Mf f f ∆=∆+∆=∆+∆为减小第二项误差,可采用高精度的参考晶体振荡器。
对于第一项误差N ∆为计数相对误差,其最大可达±1,属于不可避免的系统误差,若要减少/N N ∆,就必须增大N ,在被测信号频率很低,为达到一定的测量精度,就要求闸门开放时间大得难以忍受,即一次测量过程的时间很长,失去了使用意义。
例如若被测频率为10Hz ,精度要求为±0.01%,则最短闸门开放时间为/1/0.000110000N Nf f =∆∆==/1000g T N f s ==像这样的测量周期根本不可能接受的,可见频率测量法不适用于低频信号的测量,在同样精度下10MHz 的测量仅需要1ms ,即对于高频信号适宜用此方法测量。
2.周期测量周期测量的基本原理方框图如图4所示。
图4 测周期框图它与测频基本结构是相同的,只是把晶体振荡产生的基准信号与被测信号的位置互换了一下,由此得//r r T N Mf NT M ==,计数值N 与被测信号的周期成正比,N 反映了M 个信号周期的平均值。
利用周期测量法在一定信号频率范围内,通过调节分频系数M ,可以较好地解决测量精度与实时性的矛盾。
由上式可得://///r r r r r T T N N T T N TMf T T ∆=∆+∆=∆+∆第二项误差取决于晶体稳定度,第一项为计数的量化误差,故该项主要取决于N 的大小。
在平均周期测量法中,N 值的大小与测量时间的长短成正比,可根据测量精度要求而定。
假设/N N ∆的允许误差为±0.001%,则N=105,在T r 选定时测量时间等于105T r ,,若T r =2μS ,则测得时间等于0.2s 。
对于不同范围的被测周期信号,可以通过调节分频系数M 的大小,达到相近的测量精度,也就有相近的测量时间,且不会太长。
当然,对于高频信号,测量周期的方法就需要很大分频系数M ,增加了硬件的复杂性,不宜采用测周期的方法。
3.脉宽和占空比测量在脉冲周期T p 、脉冲宽度T w 、占空比T w /T p 、两个脉冲的时间间隔T a-b 等测量中,都要应用时间测量。
实际上,时间间隔测量法与周期测量法类同,只是增加了一个信号通道而已。
如图5中A 、B 通道的波形与闸门开闭关系,由单片机的内部运算即可得占空比。
图5 通道的波形与闸门开闭关系图三.硬件电路设计与说明为了测量小信号,需要在输入端加前置信号处理电路,将小信号放大整形后,送入后级分频电路进行处理。
使用分频电路是因为门控信号由89C51内部的计数定时器产生,单位为1us。
由于单片机的计数额定上限较低(12MH2晶振时约500 kHz),所以需对高频被测信号进行硬件预分频处理。
又因为对频率较低的信号,我们不必分频,只是对高频信号要分频,因此我们使用模拟开关4052对不同频率的信号进行不同的分频。
1.小信号放大电路根据任务的要求,对与一些小信号也应该准确地测出其频率,所谓的小信号即是电压幅值小,约几百毫伏或是几十毫伏的信号。
对于这么小的信号,要求对其进行放大,必须能让后面的单片机识别出其频率的变化,这就要求电路有足够的放大倍数,而且要有较高的稳定度。
对于信号放大,我们不仅要考虑到对信号的放大作用,还应该注意频率的带宽。
由NE5534构成电压跟随器起到增大输入阻抗的目的。
然后有两个二极管对输入信号进行限幅,使其幅度限制在大约0.7V~-0.7V。
再由NE5534将信号进行放大,最大的放大倍数为10倍。
NE5534的增益带宽积GB=10MHz,在输入信号的频率为1MHz时,我们对它进行放大10倍是可以的。
但是这种方案只能达到任务设计的基本要求,并不能达到任务的发挥部分的要求。
由此我们可以利用反向器的线形区作为放大器,它的增益带宽积有10MHz 以上,频响范围很宽,能达到测量10MHz信号的任务要求。
又由于反向器74LS04的转换速度低,不适用本系统,所以我们采用转换速度更快的74HC04。
反向器的传输特性如图6所示。
图6 反向器的传输特性由图我们可以看出,图中的线形区的斜率很大,传输特性变化比较急剧,我们也就是利用了这种特性,用反相器作为放大器来使用,而且电路反应速度也很快。
只要将静态工作点设置在图中的反相器线形区域中,调节输入输出的电压值相同,就能将电路工作于放大状态。
具体的实现电路如图7所示。
图7 小信号放大电路这种电路实现简单,便于调试。
图中使用了三级放大,保证了小信号的放大倍数,使单片机能识别出小信号的频率。
最后在输出端加了一个7414施密特触发器作为输出波形的整形。
2.分频器门控信号由89C51内部的计数定时器产生,单位为1us。
由于单片机的计数额率上限较低(12MH2晶振时约500 kHz),所以需对高频被测信号进行硬件预分频处理。
本设计对f≥100Kz的被测信号先进行100分频或是10分频再送i入单片机进行数据处理;对于1Hz≤f≤100KHz的信号直接送入单片机进行数i据处理。
由单片机的P1.0口和P1.1口控制74LS151的A、B端来进行选择。
74LS151的输出端接单片机的T1计数器,对信号进行计数。
对被测信号的100分频,则是由两个4017芯片来实现的。
电路如图8所示。
图8 分频器电路3.按键与显示系统的输入设备采用4位带上拉电阻的按键和控制4个LED指示灯。
由单片机的P0.0—P0.3作为按键输入端口,P1.2—P1.5端口控制4个LED指示灯的亮灭。
输出显示采用8位的串行显示。
电路如图9所示。
图9 串行显示电路4.CPU主电路电路如图10所示。
图10 CPU主电路图四.软件设计与流程图1.系统流程设计系统的主流程图如图11所示。
图11 系统主流程图由软件完成各部分的控制和协调,下面对图11的流程图进行介绍。
初始化系统:系统上电后完成硬件和系统变量的初始化。
其中包括外围器件的端口设定、置中断和定时器状态、设置控制口P0和P1的状态。
等待功能键输入:由键盘输入测频、测周、测脉宽和测占空比的显示选择。
相应量的测量计算:单片机读入计数值M、N,通过单片机的内部编程,选用适应的准确算法,计算出频率和周期。
测量脉宽时只读入计数器的值进行处理,计算出脉宽的值。
占空比的计算只是将脉宽值与周期的比值。
显示:89C51通过控制P3.0和P3.1两个端口,让输出结果通过串行显示的方式,输出显示出来。
2.频率和周期中的自动量程转换频率和周期是可以互相转换的,测出其中一个参数就可以靠高精度的算法算出另一个参数。