An unbalanced spatial panel data approach to US state tax competition

合集下载

面板数据模型

面板数据模型

第十讲经典面板数据模型一、面板数据(panel data)一维数据:时间序列数据(cross section data):变量在时间维度上的数据截面数据(time series data):变量在截面空间维度上的数据)。

二维数据:面板数据(同时在时间和截面空间上取得的,也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。

面板数据=截面数据+时间序列数据。

面板数据用双下标变量表示。

例如y i t, i = 1, 2, …, N; t = 1, 2, …, TN表示面板数据中含有N个个体。

T表示时间序列的最大长度。

若固定t不变,y i ., ( i = 1, 2, …, N)是随机变量在横截面上的N个数据;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。

平衡面板数据(balanced panel data)。

非平衡面板数据(unbalanced panel data)。

例1998-2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(不变价格)和人均收入数据见表1。

人均消费和收入两个面板数据都是平衡面板数据,各有15个个体。

表1.中国部分省级地区的居民数据(不变价格,元)二、面板数据模型及其作用1.经典面板数据模型建立在古典假定基础上的线性面板数据模型.2.非经典面板数据模型(1)非平稳时间序列问题的面板数据模型(面板数据协整模型)(2)非线性面板数据模型(如面板数据logit模型, 面板数据计数模型模型)(3)其他模型(如面板数据分位数回归模型)3.面板数据模型作用(1)描述个体行为差异。

(2)Panel Data能够提供更多信息、更多变化性、更少共线性、更多自由度和更高效率。

反观时间序列经常受多重共线性的困扰。

(3)Panel Data能够更好地研究动态调节,横截面分布看上去相对稳定但却隐藏了许多变化,Panel Data由于包含较长时间,能够弄清诸如经济政策变化对经济状况的影响等问题。

玩手机的弊端英语作文

玩手机的弊端英语作文

Playing with smartphones has become an integral part of modern life,but it also comes with several drawbacks that are worth considering.Here are some of the key disadvantages associated with excessive smartphone use:1.Health Issues:Prolonged exposure to screens can cause eye strain and discomfort, often referred to as digital eye strain or computer vision syndrome.Additionally,the blue light emitted by smartphones can disrupt sleep patterns,leading to poor sleep quality.2.Physical Inactivity:Spending excessive time on smartphones often leads to a sedentary lifestyle,which can contribute to obesity and other health problems.It reduces the time spent on physical activities and outdoor games,which are essential for maintaining a healthy body.3.Mental Health Impact:Excessive use of smartphones can lead to increased anxiety and depression.The constant need to check for notifications and the fear of missing out FOMO can create a sense of unease and dissatisfaction.4.Distraction and Reduced Productivity:Smartphones can be a significant source of distraction,especially during work or study hours.This can lead to reduced productivity and focus,affecting academic or professional performance.5.Impaired Social Skills:Overreliance on digital communication can hinder the development of facetoface social skills.People may become less adept at reading social cues and engaging in meaningful conversations.6.Privacy Concerns:Smartphones collect a vast amount of personal data,which can be a concern for privacy.Unauthorized access or data breaches can lead to personal information being compromised.7.Cyberbullying:The anonymity and reach provided by smartphones can facilitate cyberbullying,which can have severe emotional and psychological effects on victims. 8.Dependency and Addiction:The constant need to check ones phone can lead to a form of addiction,where individuals feel anxious or uneasy without their device.This can interfere with daily life and relationships.9.Financial Implications:The cost of owning and maintaining a smartphone,including data plans and the purchase of new devices,can be a financial burden for many individuals.10.Environmental Impact:The production and disposal of smartphones contribute to electronic waste,which can have negative environmental effects.The mining of rare earth metals for smartphone components also raises ethical and environmental concerns.In conclusion,while smartphones offer numerous benefits,it is essential to be aware of their potential drawbacks and use them responsibly to maintain a balanced lifestyle.。

面板数据模型理论

面板数据模型理论

5.2 面板数据模型理论5.2.1 面板数据模型及类型。

面板数据(panel data )也称时间序列截面数据(time series and cross section data )或混合数据(pool data )。

面板数据是同时在时间和截面空间上取得的二维数据。

面板数据从横截面(cross section )上看,是由若干个体(entity, unit, individual )在某一时刻构成的截面观测值,从纵剖面(longitudinal section )上看是一个时间序列。

面板数据用双下标变量表示。

例如:it y , N i ,,2,1 =;T t ,,2,1 =其中,N 表示面板数据中含有的个体数。

T 表示时间序列的时期数。

若固定t 不变,•i y ),,2,1(N i =是横截面上的N 个随机变量;若固定i 不变,t y •,),,2,1(T t =是纵剖面上的一个时间序列。

对于面板数据来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据(balanced panel data )。

若在面板数据中丢失若干个观测值,则称此面板数据为非平衡面板数据(unbalanced panel data )。

面板数据模型是建立在面板数据之上、用于分析变量之间相互关系的计量经济模型。

面板数据模型的解析表达式为:it it it it it x y μβα++= T j N i ,2,1;,2,1==其中,it y 为被解释变量;it α表示截距项,),,,(21k it it itit x x x x =为k ⨯1维解释变量向量;'21),,,(k it it it it ββββ =为1⨯k 维参数向量;i 表示不同的个体;t 表示不同的时间;it μ为随机扰动项,满足经典计量经济模型的基本假设),0(~2μσμIIDN it 。

面板数据模型通常分为三类。

SPSS统计词汇

SPSS统计词汇

英汉统计学常用词汇(SPSS)Aabsolute deviation 绝对离差absolute residuals 绝对残差acceptable hypothesis 可接受假设acceptable region 接受域actual frequency 实际频数adaptive estimator 自适应估计量addition theorem 加法定理additivity 可加性adjusted R square 调整判别系数admissible error 容许误差alphafactorin g α因子提取法alternative hypothesis 备择假设among groups 组间analysis of correlation 相关分析analysis of covariance 协方差分析analysis of regression 回归分析BBayesian estimation Beyes估计bell-shaped curve 钟形曲线best-trim estimator 最好切尾估计量beta distribution β分布between groups 组间的between measures 重复测量间的bivariate 双变量的bivariate correlate 二变量相关biweight interval 双权区间biweight M-estimator 双权M估计量block 区组/配伍组boxplot 箱线图Ccanonical correlation 典型相关case-control study 病例对照研究categorical variable 分类变量Cauchy distribution 柯西分布centering and scaling 中心化和定标central tendency 集中趋势chance statistics 随机统计量chance variable 随机变量chi-square distribution 卡方分布chi-square statistics 卡方统计量chi-square test 卡方检验classified variable 分类变量coefficient of skewness 偏度系数coefficient of variation 变异系数communality variance 共性方差compare means 均值比较分析complete association 完全正相关concomitant variable 伴随变量conditional likelihood 条件似然conditional probability 条件概率confidence limit 置信限consistency check 一致性检验consistent estimate 一致估计contingency tables 列联表continuous variable 连续变量control charts 控制图controlled experiments 对照实验conventional depth 常规深度correction coefficient 校正系数critical point 临界点critical ratio 临界比cumulative probability 累计概率curvature 曲率cyclist 周期性Ddata capacity 数据容量data deficiencies 数据缺乏1data handling 数据处理data reduction 数据简化分析data transformation 数据变换degree of precision 精密度degree of reliability 可靠性程度density function 密度函数density of data points 数据点的密度derivative matrix 导数矩阵description 描述descriptive 描述性的deviation from average 离均差Df. Fit 拟合差值df(degree of freedom)自由度dichotomous variable 二分变量discriminant analysis 判别分析discriminant coefficient 判别系数disproportional 不成比例的dissimilarity 不相似性distribution shape 分布形状disturbance 随机扰动项double logarithmic 双对数Eeffect 实验效应effects of interaction 交互效应efficiency 有效性eigenvector 特征向量enumeration data 计数资料equal size 相等的数量error of estimate 估计误差error type Ⅰ第一类错误error type Ⅱ第二类错误estimation 估计量Euclidean distance 欧氏距离expectation plane 期望平面expectation surface 期望曲面expected value 期望值experimental sampling 试验抽样explanatory variable 解释变量explore Summarize 探索-摘要EXSMOOTH 指数平滑方法extended fit 扩充拟合extra parameter 附加参数extreme observation 末端观测值extreme value 极值Ffactor score 因子得分factorial designs 因子设计factorial experiment 因子试验failure rate 失效率family of estimators 估计量族fatality rate 病死率finite population 有限总体finite-sample 有限样本first derivative 一阶导数first quartile 第一四分位数Fisher information Fisher信息量fitting a curve 曲线拟合fixed model 固定模型fixed variable 固定变量fluctuation 随机起伏fourth 四分点fractional error 相对误差frequency polygon 频数多边图frontier point 界限点F-test F检验function 函数function relationship 泛函关系Ggamma distribution 伽玛分布general census 全面普查geometric mean几何均值Gini’s mean difference 基尼均差goodness-of-fit 拟合优度gross-error sensitivity 大错敏感度group averages 分组平均grouped data 分组资料grouped median 组中值growth curve 生长曲线Hhalf-life 半衰期happenstance 偶然事件harmonic mean 调和均值hazard function 风险均数hazard rate 风险率Hessian array Hessian立体阵Heterogeneity 不同质heterogeneity 不齐性HOMAIS 多重响应分析homogeneity of variance 方差齐性homogeneity test 齐性检验Huber M-estimators Huber M 估计量hyperbola 双曲线hypothesis 假设hypothesis test 假设检验hypothetical universe 假设总体Iimage factoring 典型因子提取法impossible event 不可能事件independent samples 独立样本independent variable 自变量indirect standardization 间接标准化法infinitely great 无穷大information capacity 信息容量interclass correlation 组内相关inter-item correlation 样本内相关interpolation 内插法interquartile range 四分位距interclass correlation 组间相关inverse matrix 逆矩阵item means 样本均值L large sample problem 大样本问题Latin square 拉丁方Latin square design 拉丁方设计Least-square estimation 最小二乘估计L-estimator of location 位置L估计量level of significance 显著性水平leverage value 中心化杠杆值life expectance 预期期望寿命life table 寿命表life table method 生命表法light-tailed distribution 轻尾分布likelihood function 似然函数likelihood ratio 似然比likelihood ratio test 似然比检验linear relation 线性关系linear trend 线性预测值loading 载荷location invariance 位置不变性log rank test 时序检验logarithmic scale 对数尺度logic check 逻辑检查logistic 逻辑的logistic distribution logistic分布logit model logit模型logit transformation logit转换logarithms 对数lost function 损失函数lower limit 下限MMahal Distance 马氏距离main effect 主效应maintainability 可维护度matched data 配对资料matched distribution 匹配分布matrix 矩阵maximum 最大值mean 均值mean difference 均值差值mean square 均方mean sum of square 均方和measure 度量median 中位数median lethal dose 半数致死量median polish 中位数平滑m-estimator M估计midpoint 中值model specification 模型的确定modeling statistics 型统计models for outliers 离群值模型modifying the model 模型的修正Monte Carle method 蒙特卡洛法multiple comparison 多重比较multiple correlation 多元相关系数multiple response 多重响应multiple response sets 多重响应集合multiple solutions 多解multiplication theorem 乘法定理multi-response 多元响应multi-stage sampling 多阶段抽样multivariate 多元的multivariate analysis 多元分析mutual exclusive 互不相容mutual independence 互相独立Nnegative correlation 负相关nominal variable 名义变量nonlinear regression 非线性相关nonlinear regression 非线性回归nonparamtric statistics 非参数统计nonparametric test 非参数检验normal distribution 正态分布normal P-P 正态P-P图normal probability 正态概率normal Q-Q 正态Q-Q图normal value 正常值null hypothesis 零假设Oobjective function 目标函数observation unit 观察单位observed value 观察值one sided test 单侧检验one-sample 单样本one-tailed test 单侧检验one-way classification 单因素分类order statistics 顺序统计量ordered categories 有序分类ordinal 序数ordinal variable 有序变量origin 原点orthogonal 正交的orthogonal design 正交试验设计Ppaired observations 成对观测数据paired design 配对设计paired sample 配对样本parametric statistics 参数统计Pearson curves Pearson曲线P-estimator P估计量pie chart 饼(圆)图Pitman estimator Pitman估计量pivot 枢轴量pivot table 枢轴表polynomial regression 多项式回归population 总体positive correlation 正相关posterior distribution 后验分布preliminary analysis 预备性分析probability 概率probability density 概率密度probability of F F显著性概率probit analysis 概率分析product moment 乘积矩/协方差QQ-Q Plot Q-Q概率图quadratic regression 二次多项式回归quadratic term 二次项quality control charts 质量控制图quantitative analysis 定量分析quartile 四分位数RR square 判别系数random 随机random event 随机事件random number 随机数random sampling 随机取样random variable 随机变量randomization 随机化rank statistic 秩统计量rank sum test 秩和检验rank test 秩检验ranked data 等级资料ratio analysis 比率分析raw data 原始资料Rayleigh's test 雷氏检验reciprocal 倒数reject region 拒绝域rejection point 拒绝点relative dispersion 相对离散度relative number 相对数reliability 可靠性reliability analysis 可靠性分析reliability test 可靠性检验report summaries 报告摘要residual 残差residual sum of square 残差平方和response 响应root mean square 均方根rotation 旋转row effects 行效应run test 游程检验S S. E.mean 均值的标准差S.E.of Kurtosis 峰度的标准差S.E.of Skewness 偏度的标准差sample size 样本容量sample space 样本空间sampling design 抽样设计sampling distribution 抽样分布sampling error 抽样误差sampling inspection 抽样检验scatter diagram 散点图schematic plot 示意图/简图score statistic 得分统计score test 计分检验sensitivity curve 敏感度曲线sequential analysis 贯序分析sequential data set 顺序数据集serial tests 系列试验series mean 系列均值sign test 符号检验signed rank 符号秩significance digits 有效数字significance test 显著性检验significant figure 有效数字similarity 相似性simple regression 简单回归skewed distribution 偏态分布skewness 偏度small sample problem 小样本问题Smirnov test Smirnov检验specific factor 特殊因子specific factor variance 特殊因子方差standard deviation 标准差standard error 标准误standard residual plots 标准化残差图standardize 标准化standardized coefficients标准化系数standardized residual 标准化残差statistics 统计学(量)、统计图表std.predicted value 标准预测值Std.residual 标准残差stem and leaf display 茎叶图step factor 步长因子stochastic models 随机模型stochastic process 随机过程survival 生存分析symmetry 对称systematic error 系统误差systematic sampling 系统抽样Ttest criterion 检验判据test for linearity 线性检验test of goodness of fit 拟和优度检验test of homogeneity 齐性检验test oh independence 独立性检验test rules 检验法则testing function 检验函数testing of hypotheses 假设检验theoretical frequency 理论频数time series 时间序列tolerance 容忍度tolerance interval 容忍区间tolerance limits 容限tolerance lower limit 容忍下限tolerance upper limit 容忍上限total sum of square 总平方和total variation 总变异transfer function 转换函数Uunbiased estimation 无偏估计unbiasedness 无偏性unequal size 不等含量unweight 不加权upper limit 上限upward rank 升秩Vvalidity 有效性value 数值value of estimator 计值variability 变异性variable 变量variance components 方差成分variance ratio 方差比variation 变异various 不同的vector 向量WWeibull distribution 威布尔分布weighted mean square 加权平均方差weighted sum of square 加权平方和weighting coefficient 权重系数weighting method 加权法weighted average 加权平均值ZZ score Z分数Z test Z检验zero correlation 零相关Z-transformation Z变换6。

9 Panel data regression models

9 Panel data regression models

Panel data regression modelsPanel data: the same cross-sectional unit is surveyed over time·the advantages of panel data1.heterogeneity of the unit2.“more informative data, more variability, less collinearity, more degrees offreedom and more efficiency”3.dynamics of change4.better detect and measure effects5.more complicated behavioral models6.minimize the bias·an illustrative exampleBalanced panel and unbalanced panel·estimation of panel data regression models the fixed effects approachPossibilities of error term assumptions1.all coefficients constant across time and individualspooled regressionProblems: dw is small, misspecification of the model,2.slope coefficients constant but the intercept varies across individuals: the fixedeffects or least-squares dummy variable(LSDV) regression modelthe modelFixed effect model(FEM)Although the intercept may differ across individuals, each individual’s intercept does not vary over time; that is, it is time invariant.Different intercept dummiesLeast-squares dummy variable(LSDV) modelThe term fixed effects and LSDV can be used interchangeably.Which one is better? Restricted F testUsing fixed effects or LSDV: holding different interceptThe time effectThe year or time effect is not significantThe investment function has not changed much over time3.slope coefficients constant but the intercept varies over individuals as well as timeThe company dummies as well as the coefficients of the X are individually statistically significant, but none of the time dummies are.There is pronounced individual company effect but no time effect.4.all coefficients vary across individualsIntercepts are not significantXs are significant and some differential slope coefficients are significantIn shorter, it seems that the investment functions of the four companies are different.Notes:(1)many dummy variables reduce the degrees of freedom(2)many variables may lead to multicollinearity(3)may not identify the time invariant effect such as sex ….(4)The assumption·estimation of panel data regression models: the random effects approachThe reasoning underlying the Fixed Effect model is that in specifying the regression model we have failed to include relevant explanatory variables that do not change over time( and possibly others that do change over time but have same value for all cross-sectional units), and that the inclusion of dummy variables is a cover up of our ignorance.Error components model(ECM,误差组成模型) or random effects model(REM) Basic ideaExpress the ignorance through the disturbance termInstead of treating as fixed, we assumeIndividual error components are not correlated with each other and are notautocorelated across both cross-section and time series units.is homoscedasticHowever, autocorrelation:(1)the value of the correlation between error terms at two different times remains thesame no matter how far apart the two time periods are.(2)The correlation structure remains the same for all cross-sectional units.GLS for ECM(1)summary of random effect values is zero(2)mean value of the random error component is the common intercept value(3)R2 value is obtained form the transformed GLS regression·fixed effects(LSDV) versus Random effects ModelWhich is better?e.g. wage or earning function: innate ability and education FEMrules of thumb(1)T is large, N is small, little differences in the values of the parameters, using FEM(2)N is large, T is small, differ significantly in the values of the parameters, random sample ECM, not random sample, FEM(3)if the individual error component and one or more regressors are correlated, then the ECM estimators are biased where there obtained from FEM are unbiased(4)N is large, T is small, and if the assumptions underlying ECM hold, ECM estimators are more efficient than FEM estimatorsHausman test(豪斯曼检验)Null hypothesis: ECM。

Spatial Panel Data Analysis II

Spatial Panel Data Analysis II

Panel Data Model

ln(GSP) = b0 + b1 ln(Public) + b2ln(Private) + b3ln(Labor) + b4(Unemp) + e e iu + v ln(GSP) = b0 + b1 ln(Public) + b2ln(Private) + b3ln(Labor)+ b4(Unemp) + λW ln(GSP) + e e iu + v ln(GSP) = b0 + b1 ln(Public) + b2ln(Private) + b3ln(Labor) + b4(Unemp) + e e We e , e iu + v


Spatial Error Model: A=I or =0 Spatial Lag Model: B=I or =0 Panel Data Model: A=B=I
Spatial Panel Data Models
Example: U. S. Productivity (48 States, 17 Years)
Spatial Econometric Analysis
Using GAUSS
10
Kuan-Pin Lin Portland State University
Spatial Panel Data Models

The General Model
y (IT W )y Xβ ε ε (IT W )ε iT u v y (IT A1 )[ Xβ (IT B 1 )(iT u v )] where A (I N W ), B (I N W )

panel method 方法

panel method 方法

panel method 方法Panel Method 方法引言Panel Method 方法是一种用于解决流体力学问题的数值求解方法。

该方法通过将流场划分为多个面板,并在每个面板上计算边界条件以获得流体流动的解析解。

基本原理Panel Method 方法基于以下基本原理:1.流场划分:将流体领域划分为多个面板,通常使用平面面板或源面板进行建模。

2.边界条件:根据流体问题的特性,确定每个面板上的边界条件,如速度、压力等。

3.高斯求解:通过在每个面板上应用高斯定理,求解出每个面板上的速度和压力。

4.涡强度计算:根据求解得到的流场,计算出每个面板上的涡强度。

5.排列矩阵:将面板的涡强度和边界条件排列成线性方程组的形式。

6.线性方程组求解:求解线性方程组,得到每个面板上的涡强度。

7.流场计算:利用求解得到的涡强度,计算整个流体领域内的流场。

Panel Method 方法的多种形式平面面板法1.平面面板法是 Panel Method 方法最基本的形式。

2.流场被划分为多个平面面板,通常使用直线或弧线来形成每个面板的边界。

3.平面面板法适用于简单的二维流体问题。

源面板法1.源面板法是 Panel Method 方法的一种改进形式。

2.流场被划分为多个源面板,每个面板上通过设置源强度来模拟流场。

3.源面板法适用于二维和轴对称的流体问题。

三维面板法1.三维面板法是 Panel Method 方法的扩展形式。

2.流场被划分为多个三维面板,每个面板上的涡强度和源强度都被考虑进流场计算。

3.三维面板法适用于处理复杂的三维流体问题,如航空或海洋工程。

非定常面板法1.非定常面板法是 Panel Method 方法的时间依赖形式。

2.流场被划分为多个面板,并考虑了时间因素。

3.非定常面板法适用于研究流体流动的变化和动态行为。

应用领域Panel Method 方法广泛应用于以下领域:•空气动力学:用于研究飞行器的气动特性和稳定性。

六西格玛专业术语一览

六西格玛专业术语一览

六西格玛专业用语词汇表⇨ANOV A(ANalysis Of Variance):变异数分析。

一比较两个或以上的群体之间平均值的差异程度, 作为相关性辨别的方法。

⇨Balanced Design :设计在每组试验中有相同的实验单位。

⇨BB(Black Belt):黑带。

⇨Black Belt Certification:黑带认证。

完成两个符合条件的项目后取得的认证。

⇨Block:一群具有同构型的实验单位。

⇨Blocking:一个试验在既定的顺序或条件下完成。

任何有妨碍的因子并不会影响真正的结果或重要性。

⇨Capability:能力,达成目标的过程中能维持下去的能力。

⇨Cause & Effect Diagrams :因果关系图。

能表达出一个结果及可能的原因两者关系的图表。

⇨Center Points:以所有因子的最高及最低点的中点值来执行的实验。

只能用在计量的数据。

⇨CI(Confidence Interval):信赖区间。

响应的数值能真实代表母体,使人信赖的百分比程度。

⇨Confounded Effects :不能被独立预测出的令人困惑的结果。

⇨Confounding:一个或多个结果,无法明确的归因于某个因素或相互间的影响。

⇨Control Chart :控制图。

用来辨识一个控制下的操作过程的方法(在既定的统计范畴内)。

⇨Cp(Process Capability):衡量过程能力的指数Cp = 公差(Tolerance) / 6s。

⇨Cpk :Performance Capability Index – Cpk = (USL – mean)或(mean - LSL)的最小值除以3s。

⇨CRD (Completely Randomized Design):完全随机设计。

在各种程度下,研究某个重要的因子,而实验以完全随机的顺序来执行,使不可控制的变因最小化。

⇨CTQ Flow down :以非常严谨的方法分配需求,并评估比关键性的产品及其部门的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

An unbalanced spatial panel data approach toUS state tax competitionPeter Egger a,T ,Michael Pfaffermayr b ,Hannes Winner baIfo-Institute for Economic Research,University of Munich,and CESifo,P .O.Box 860460,Munich 81631,GermanybDepartment of Economics,University of Innsbruck,Universitaetsstrasse 15,Innsbruck A-6020,AustriaReceived 17March 2004;accepted 28March 2005Available online 13June 2005AbstractThis paper assesses spatial competition in excise taxation among US states over the time period 1975–1999.We estimate the slope and shifters of the tax reaction curves using spatial panel data methods recently proposed by Kapoor et al.(in press)[Kapoor,M.,Kelejian,H.H.,Prucha,I.R.,in press.Panel data models with spatially correlated error components.J.Econ.].D 2005Elsevier B.V .All rights reserved.Keywords:Commodity tax competition;Spatial panel data econometrics JEL classification:H87;F15;C331.IntroductionCommodity tax competition emerges if independent jurisdictions set their excise tax rates strategically to extend their tax base by attracting mobile consumers (cross-border shoppers).Recent theoretical research has taken a spatial view on this issue (see Kanbur and Keen,1993;Ohsawa,1999;Nielsen,2001).According to these models,commodity tax rates are (i)positively affected by higher commodity tax rates of neighboring/adjacent jurisdictions,suggesting upward sloping tax reaction curves;(ii)0165-1765/$-see front matter D 2005Elsevier B.V .All rights reserved.doi:10.1016/j.econlet.2005.03.002T Corresponding author.Tel.:+498992241238;fax:+4989985369.E-mail address:egger@ifo.de (P.Egger).Economics Letters 88(2005)329–335/locate/econbasepositively associated with the size of the domestic jurisdiction,indicating an upward shift of reaction curves;and (iii)affected by the (weighted)size of competing jurisdictions.1Empirically,there is only evidence on spatial commodity tax competition between US states (Rork,2003;Devereux et al.,2004),confirming upward sloping reactions curves.However,although both studies rely on panel data,they do not consider recent contributions to spatial panel data ing tax rates for gasoline,cigarettes,beer,and wine of US states between 1975and 1999,this paper provides a rigorous assessment of the above hypotheses based on spatial GMM estimation methods by Kelejian and Prucha (1999),in general,and the spatial panel data model proposed by Kapoor et al.(in press)and Kelejian and Prucha (2003),in particular.2Since these papers focus on balanced panel data,we propose an adaptation to the unbalanced case.Based on the empirical estimates,we further calculate the direct effects of a state’s tax cut on the excise rates of its neighbors as indicated by the slope of the spatial tax reaction curve,and the indirect equilibrium feedback effects through the adjustment to the new Nash equilibrium induced by such a change.2.Econometric specificationThe econometric specification of the tax reaction function is motivated by the tax competition literature (see Kanbur and Keen,1993;Ohsawa,1999;Nielsen,2001).In particular,it accounts for the spatial pattern of tax competition:s it ¼q 1W N t s ðÞi þx it b þk t þu it ;u ¼q 2W N t u þe ;e it ¼l i þm it :ð1ÞThe data are first sorted by time (t )and second by states (i ).Bold letters indicate matrices or vectors.Specifically,s denotes the vector of the respective tax rate and x >it for (k Â1)vector of the explanatory variables (comprising size,spatially weighted size,and the remaining controls)for state i at time t .Sincethe panel is unbalanced,the (N t ÂN t )spatial weighting matrix,W N t ,is specific for each year and indexed by N t .The typical row-normalized element is given by w ij =b ij /Pj =1N (b ij ).b ij =1if i p j and two states share a common border,and 0if they do not.w ij =0if i =j .Rows and columns of missing observations have been deleted.For the whole panel,the spatial weighting matrix is bloc-diagonal with typical bloc W N t .q 1represents the slope of the tax reaction function.In line with the spatial tax competition models,the excise rate of state i depends on the (weighted)neighboring states’tax rates.|q 1|b 1ensures that the tax setting is consistent with a Nash equilibrium.The errors may be likewise spatially autocorrelated (SAR)with |q 2|b 1.The hypothesis of q 2p 0can be tested by the Moran I test (see Kelejian and Prucha,2001).Fixed time effects k t capture all time-variant influences common to all1The impact of foreign jurisdiction size is ambiguous in theoretical terms,depending on the definition and measurement of size (see Kanbur and Keen,1993vs.Ohsawa,1999).2Kelejian and Prucha (2003)generalize the framework in Kapoor et al.(in press)to allow for a spatially lagged dependent variable.We are grateful to Ingmar Prucha for making the unpublished manuscript available and for helpful communications on this issue.P .Egger et al./Economics Letters 88(2005)329–335330states such as the US business cycle.In addition,we allow for fixed or random state effects l i (withl i ~iid (0,r l2),E [l i m it ]=0and E [x kit m it ]=0in the latter case)to control for time invariant heterogeneity of the states.m it is a classical error term (with m it ~iid (0,r m2)).We follow Kapoor et al.(in press)and Kelejian and Prucha (2003)in using a GMM estimator,which proceeds in several steps.Due to the imbalance of our panel,their approach has to be modified,however.The moment conditions for the unbalanced panel data case are derived in Baltagi et al.(2005).First,a consistent 2SLS within estimator of q 1and b is employed (Baltagi,2001,p.112),using second-and higher-order spatial lags of the within-transformed explanatory variables as proper instruments for (W N t s )i .Second,the corresponding generalized residuals,which include the fixed or random state-specific effects,form the basis of the GMM estimator of Kapoor et al.(in press)and Kelejian and Prucha (2003)for q 2.Assuming for the moment that the remaining parameters (and,hence,u t )are known and using thenotation ¯u ¼Wu ;¯u ¼W 2u ,the (first four)moment conditions for the GMM estimator of q 2,r m 2,and r l 2read:E u Àq 2¯u ðÞV Q u Àq 2¯u ðÞÀr 2mn ÀN ðÞÀÁ¼0E ¯u Àq 2¯u ðÞV Q ¯u Àq 2¯u ðÞðÞÀr 2m tr W V QW ðÞÀr 2l tr W V QW D 1D 1V ðÞ¼0E ¯uÀq 2¯u ðÞV Q u Àq 2¯u ðÞðÞ¼0E u Àq 2¯uðÞV P u Àq 2¯u ðÞÀn r 2l ÀN r 2m¼0where n denotes the total number of observations and N is the number of unique US states in the sample.#1=(D 1V ,D 2V ,...,D T V )V is the selector matrix of dimension n ÂN ,and D t is an N t ÂN matrix obtained from I N ,skipping the rows corresponding to states not observed in year t .Further,P =#1(#1V #1)À1#1and Q =I n ÀP ,where the latter represents the within two transformations.We use the identity matrix for weighting and an NLS procedure to solve these four equations in three unknowns (see Kapoor et al.,in press;Baltagi et al.,2005).Third,we transform the data,say z ,as follows:(i)we remove the SAR error using an Cochrane–Orcutt-type transformation:z *(qˆ2)=(I n Àq ˆ2W )z ,and (ii)we apply the GLS transformation to account for the random effects (see Wansbeek and Kapteyn,1989):z it 44ˆq 2;ˆh i¼z it 4Àˆh i ¯z :t4with h i ¼1Àffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiˆr 2mT j ˆr 2l þˆr 2ms :Lastly,we apply 2SLS on the transformed data using the optimal set of instruments H it =z it***(h ˆi ),(W N t z t ***)i ,and (W N t 2z t ***)i ,where z it ***ˆh i ¼z it Àˆh i ¯z t .Kapoor et al.(in press)and Kelejian and Prucha (2003)demonstrate that this procedure obtains consistent and asymptotically normal estimates.P .Egger et al./Economics Letters 88(2005)329–3353313.Empirical resultsTable 1presents the fixed effects (FE)and random effects (RE)estimation results for gasoline,cigarettes,beer,and wine tax rates 3The RE estimator uses the GLS weights as discussed above,while the FE estimator relies on the within-transformed data with h i =1.As is obvious from the number of covered states and observations reported in the table,imbalance is an important issue.We only report estimates using relevant instruments,which pass the F -tests in the first-stage regressions and also the Sargan overidentification test.The main findings can be summarized as follows.First and most importantly,we identify a significant positive slope coefficient of the tax reaction function for each tax rate.In absolute terms,the point estimates are smaller than one,which guarantees the existence of a Nash equilibrium.These findings are consistent with the theoretical literature and the previous studies (Rork,2003;Devereux et al.,2004).Second,in all models,qˆ2is negative and exhibits a relatively high absolute value.On average,unobserved positive stochastic shocks in one state impede tax competition in others.Third,only for cigarettes and beer,we find significant evidence for the hypothesis that domestic state size exerts a positive impact on tax rates.For the panel of wine taxes,there is even evidence for the opposite.However,we should interpret this result with care,given the low data coverage in this case.Fourth,the negative parameter estimate of spatially weighted neighbors’size (again,except for wine)lends indirect support to Kanbur and Keen’s (1993,Proposition 1,p.882)hypothesis that tax rate undercutting is attractive for small states,which,in turn,leads to a negative impact of the competitors’size on the domestic Nash commodity tax rate (see also Nielsen,2001,p.603).Fifth,a liberal political orientation exerts a negative impact on tax rate setting,if any.In line with Devereux et al.(2004),the dependency ratio coefficient tends to be significantly positive.Further,public expenditure (lagged once to avoid endogeneity problems)tends to be associated with higher tax rates as expected.Concerning the tax structure,we find mixed support for the (general)sales tax and the top income tax rate (both,again,lagged once).A negative parameter estimate of both would indicate that tax competition is limited by the overall tax burden.The reported estimates illustrate that US state-specific effects should be modelled as random.This considerably improves the efficiency,maintaining consistent parameter estimates (note that the REparameters are almost indistinguishable from their FE counterparts).The significance of qˆ1and q ˆ2makes a strong case for spatial models using the Cochrane–Orcutt-type transformation and IV estimation with the appropriate instruments (discussed above).It should be emphasized that the selection of relevant and appropriate instruments is extremely important.This issue is not addressed in Rork (2003)and Devereux et al.(2004)due to their application of maximum likelihood estimators.4Given the consistent estimates in Table 2,we can proceed and quantify the underlying estimated tax competition effects.For this purpose,we distinguish between seven different groups of US states:Middle Atlantic,Midwest,New England,Pacific Coast,Rocky Mountains,South,and Southwest (see Table 2for details on the grouping).The table is produced as follows.First,we reduce each states tax rate by one r (standard deviation),based on the entire available period.Second,we compute the overall resulting change of such an exogenous shock on the domestic tax rate,and the part of this that3Due to missing observations and small time variation,the robust estimation for tax rates on distilled spirits is not feasible.4Rork (2003)relies on least squares dummy variable (LSDV)estimates of the cross-sectional Kelejian and Prucha (1998)estimator.P .Egger et al./Economics Letters 88(2005)329–335332is due to the adjustment to the new Nash equilibrium based on the positively sloped reaction functions (the feedback effect;expressed in both absolute and relative terms).Third,we weight all associated changes by a state’s labor force to derive the group-specific and the overall US average changes in tax rates.Table 2provides the following insights.The Middle Atlantic (gasoline and beer)and Midwestern states (cigarettes and wine)have undertaken the strongest tax reductions in this period.However,the US average is dominated by the large Midwest.On average,the spatial feedback effect of an exogenous tax reduction is strongest in the Midwest and the Middle Atlantic states.In relative terms,spatial tax competition is lowest for beer.The extremely large feedback effect for wine taxes should be interpreted with care given the poor data coverage.For cigarettes,an exogenous change in tax rates leads to a more than 40%higher change than it would without spatial tax competition.Table 2Direct and indirect effects on tax rates after an exogenous one j decline of a typical US state’s tax rate in each group of states in percent (based on random effects models in Table 1)Tax change ln(1+t V )Àln(1+t )Spatial feedback effectOverall effectSpatial feedback in %of overallTax change ln(1+t V )Àln(1+t)Spatial feedback effectOverall effectSpatial feedback in %of overallGasolineCigarettes Middle Atlantic States À0.061À0.009À0.07013.2À0.063À0.093À0.15659.8Midwestern States À0.032À0.006À0.03815.7À0.117À0.098À0.21545.5New England States À0.048À0.007À0.05512.1À0.037À0.020À0.05634.6Pacific Coast States À0.033À0.005À0.03913.6À0.046À0.029À0.07538.9Rocky Mountain States À0.045À0.008À0.05314.3À0.081À0.051À0.13238.8Southern States À0.039À0.007À0.04715.3À0.056À0.041À0.09742.2Southwestern States À0.040À0.006À0.04612.1À0.040À0.031À0.07243.9AverageÀ0.041À0.007À0.04714.1À0.068À0.056À0.12445.4BeerWine Middle Atlantic States À0.040À0.010À0.05019.8À0.001À0.002À0.00463.1Midwestern States À0.036À0.005À0.04111.3À0.096À0.821À0.91789.5New England States À0.0030.000À0.0037.4À0.029À0.129À0.15881.4Pacific Coast States À0.025À0.002À0.0288.7À0.126À0.658À0.78483.9Rocky Mountain States À0.033À0.003À0.0368.5À0.019À0.069À0.08877.9Southern States À0.023À0.002À0.0258.9À0.027À0.098À0.12578.1Southwestern States À0.0040.000À0.0059.3À0.019À0.085À0.10481.4AverageÀ0.027À0.004À0.03111.7À0.061À0.383À0.44586.2The figures refer to the labor force weighted averages of the direct effect of a tax reduction amounting to 1S.D.in a particular state on this state.The above groups consist of the following US states (Alaska and Hawaii are excluded throughout).Middle Atlantic States :New Jersey (NJ),New York (NY),Pennsylvania (PA).Midwestern States :Illinois (IL),Indiana (IN),Iowa (IA),Kansas (KS),Michigan (MI),Minnesota (MN),Missouri (MO),Nebraska (NE),North Dakota (ND),Ohio (OH),South Dakota (SD),Wisconsin (WI).New England States :Connecticut (CT),Maine (ME),Massachusetts (MA),New Hampshire (NH),Rhode Island (RI),Vermont (VT).Pacific Coast States :California (CA),Oregon (OR),Washington (WA).Rocky Mountain States :Colorado (CO),Idaho (ID),Montana (MT),Nevada (NV),Utah (UT),Wyoming (WY).Southern States :Alabama (AL),Arkansas (AR),Delaware (DE),Florida (FL),Georgia (GA),Kentucky (KY),Louisiana (LA),Maryland (MD),Mississippi (MS),North Carolina (NC),South Carolina (SC),Tennessee (TN),Virginia (V A),West Virginia (WV).Southwestern States :Arizona (AZ),New Mexico (NM),Oklahoma (OK),Texas (TX).P .Egger et al./Economics Letters 88(2005)329–335334P.Egger et al./Economics Letters88(2005)329–335335 AcknowledgementThe authors gratefully acknowledge comments from an anonymous referee and financial support from the Austrian Fonds zur Foerderung der wissenschaftlichen Forschung through grant P17028-G05. Appendix A.Data sourcesTax rates on beer,wine,gasoline,and cigarettes;Top income tax rate;Public expenditure:Office for Tax Policy Research,World Tax Database(/index.html).Labor force:US Department of Labor,Bureau of Labor Studies,2002,Historical state labor force data,Washington,DC.Dependency ratio:Own calculations based on US Census Bureau,2002,Demographic trends in the 20th century,Washington,DC.Government ideological orientation:Berry,W.D.,Ringquist,E.J.,Fording,R.C.,Hanson,R.L.,1998, Measuring citizen and government ideology in the American states,1960–93,American Journal of Political Science42,327–348(updated1999version)(this index ranges from0to100,with100 indicating the most liberal policy orientation and it comprises several components,such as the ideology of the governor and the major legislative chambers).ReferencesBaltagi,B.H.,2001.The Econometrics of Panel Data,2nd ed.John Wiley&Sons,Chichester.Baltagi,B.H.,Egger,P.,Pfaffermayr,M.,2005.Estimating Models of Complex FDI:Are There Third-Country Effects?Texas A&M University,unpublished manuscript.Devereux,M.P.,Lockwood,B.,Redoano,M.,2004.Horizontal and vertical indirect tax competition:theory and some evidence from the USA.CEPR Discussion Papers vol.4470.Kanbur,R.,Keen,M.,1993.Jeux sans frontier:tax competition and tax coordination when countries differ in size.American Economic Review83,877–892.Kapoor,M.,Kelejian,H.H.,Prucha,I.R.,in press.Panel data models with spatially correlated error components,Journal of Econometrics.Kelejian,H.H.,Prucha,I.R.,1998.A generalized spatial two-stage least squares procedures for estimating a spatial autoregressive model with autoregressive disturbances.Journal of Real Estate Finance and Economics17,99–121. Kelejian,H.H.,Prucha,I.R.,1999.A generalized moments estimator for the autoregressive parameter in a spatial model.International Economic Review40,509–533.Kelejian,H.H.,Prucha,I.R.,2001.On the asymptotic distribution of the Moran I test statistic with applications.Journal of Econometrics104,219–257.Kelejian,H.H.,Prucha,I.R.,2003.Estimation of Spatially Autoregressive Models with Spatially Correlated Error Components from Panel Data.University of Maryland,unpublished manuscript.Nielsen,S.B.,2001.A simple model of commodity taxation and cross-border shopping.Scandinavian Journal of Economics 103,599–623.Ohsawa,Y.,1999.Cross-border shopping and commodity tax competition among governments.Regional Science and Urban Economics29,33–51.Rork,J.C.,2003.Coveting thy neighbor’s taxation.National Tax Journal56,775–787.Wansbeek,T.J.,Kapteyn,A.,1989.Estimation of the error components model with incomplete panels.Journal of Econometrics 41,341–361.。

相关文档
最新文档