智能控制-刘金琨编著PPT..

合集下载

大学课件-智能控制基础(完整)

大学课件-智能控制基础(完整)

Curiosity 蛟龙号
智能控制:是应用人工智能的理论 与技术和运筹学的优化方法,并将 其同控制理论方法与技术相结合, 在未知环境下,仿效人的智能,实 现对系统的控制。
Artificial Intelligence
Operation Research
IC=AI∩AC∩OR 一个知识处理系统,具有记忆、 一种定量优化方法,如线性规划、
1.2.3 智能控制系统的特征模型
➢ 特征模型:是对系统动态特性的 一种定性与定量相结合的描述。是 针对问题求解和控制指标的不同要 求,对系统动态信息空间的一种划 分。
智能控制系统的特征模型
fi
{e e 0
e e
e
1 e
2}
上述特征表明,系统正处于受扰动的作用, 以较大的速度偏离目标值的状态。其中参 数为阈值。
组织级
➢ 执行级进行高精度控制 精

度 协调级

执行级
专家控制系统
➢分为专家控制器和专家控制系统; ➢应用于故障诊断、过程控制等; ➢工程控制论与专家系统的结合。
模糊控制系统
➢ 实现基于自然语言描述规则的控制;
➢ 可替代、改进非线性控制器;
➢ 由知识库、模糊化、模糊推理和反模
糊化组成。
知识库
输入
形成期
发展期
1991-至今
• 萌芽期(1970以前)
• 控制系统具有初步的智能和一定的适应性, 比如模型参考自适应控制。
• 1965年普渡大学的傅京孙(Fu, K. S.)教 授把人工智能引入到控制技术中,提出将 人工智能的启发式推理规则用于学习控制 系统的思想和方法。
• 1966年Mendel将人工智能用于飞船控制 系统的设计并首先提出“人工智能控制” 的概念。

智能控制(第三版)chap7-刘金琨

智能控制(第三版)chap7-刘金琨
x 'j f (x j ) 1 1 e
x j

x 'j x j
x 'j (1 x 'j )
(1)前向传播:计算网络的输出。 隐层神经元的输入为所有输入的加权之和:
xj
w x
i
ij i
隐层神经元的输出采用S函数激发:
x 'j f (x j ) 1 1 e
x j
7.2.6 BP网络模式识别
由于神经网络具有自学习、自组织和并行处理 等特征,并具有很强的容错能力和联想能力,因此,

神经网络具有模式识别的能力。


在神经网络模式识别中,根据标准的输入输
出模式对,采用神经网络学习算法,以标准的模 式作为学习样本进行训练,通过学习调整神经网 络的连接权值。当训练满足要求后,得到的神经 网络权值构成了模式识别的知识库,利用神经网
含一个隐含层的BP网络结构如图7-5所示,
j k 图中 i 为输入层神经元,为隐层神经元,为
输出层神经元。
图7-5
BP神经网络结构
7.2.3 BP网络的逼近
BP网络逼近的结构如图 7-6 所示,图中 k 为网络
的迭代步骤,u(k)和y(k)为逼近器的输入。BP为网 络逼近器, y(k) 为被控对象实际输出, yn(k) 为 BP 的输出。将系统输出 y(k) 及输入 u(k) 的值作为逼近 器 BP 的输入,将系统输出与网络输出的误差作为
yn E ' w j 0 e(k ) e(k ) x j w j 0 w j 0
k+1时刻网络的权值为:
wj 0 (k1) wj 0 (k) wj 2
隐层及输入层连接权值学习算法为:

智能控制ppt课件

智能控制ppt课件
发展历程
从经典控制理论到现代控制理论 ,再到智能控制理论,经历了数 十年的发展。
智能控制与传统控制的区别
01
02
03
控制目标
传统控制追求精确的数学 模型,而智能控制更注重 实际控制效果。
控制方法
传统控制主要采用基于模 型的控制方法,而智能控 制则采用基于知识、学习 和经验的方法。
适应性
传统控制对环境和模型变 化适应性较差,而智能控 制具有较强的自适应能力 。
仿真调试、实验调试
调试方法
优化策略
性能评估
05
CATALOGUE
智能控制在工业领域的应用
工业自动化概述
工业自动化的定义和 发展历程
工业自动化对现代工 业的影响和意义
工业自动化的主要技 术和应用领域
中的应用
02
智能传感器和执行器在工业自动化中的应用
模糊控制器设计
包括模糊化、模糊推理、去模糊化等步骤,实现输入 输出的非线性映射。
神经网络控制技术
神经元模型
模拟生物神经元结构和功 能,构建基本计算单元。
神经网络结构
通过神经元之间的连接和 层次结构,构建复杂的神 经网络系统。
学习算法
基于样本数据训练神经网 络,调整连接权重和阈值 ,实现特定功能的控制。

智能控制在智能家居中的应用
智能照明控制
通过智能控制器和传感器,实 现灯光的自动调节和远程控制 ,提高照明舒适度和节能效果

智能窗帘控制
通过智能控制器和电机,实现 窗帘的自动开关和远程控制, 提高居住便捷性和私密性。
智能空调控制
通过智能控制器和温度传感器 ,实现空调的自动调节和远程 控制,提高居住舒适度和节能 效果。

智能控制-刘金琨编著PPT..

智能控制-刘金琨编著PPT..

一界智能控制学术讨论会,随后成立了
IEEE智能控制专业委员会;1987年1月,
在美国举行第一次国际智能控制大会,标
志智能控制领域的形成。
近年来,神经网络、模糊数学、专家 系统、进化论等各门学科的发展给智能 控制注入了巨大的活力,由此产生了各 种智能控制方法。 智能控制的几个重要分支为专家控制、 模糊控制、神经网络控制和遗传算法。
( 3 )针对实际系统往往需要进行一些比 较苛刻的线性化假设,而这些假设往往与 实际系统不符合。 ( 4 )实际控制任务复杂,而传统的控制 任务要求低,对复杂的控制任务,如机器 人控制、 CIMS 、社会经济管理系统等复 杂任务无能为力。
在生产实践中,复杂控制问题可通过
熟练操作人员的经验和控制理论相结合
自组织、自学习控制的基础上,
为了提高控制系统的自学习能力,
开始注意将人工智能技术与方法
应用于控制中。
1966年,J.M.Mendal首先提出将人工 智能技术应用于飞船控制系统的设计;
1971年,傅京逊首次提出智能控制这 一概念,并归纳了三种类型的智能控制 系统:
(1)人作为控制器的控制系统:人作为 控制器的控制系统具有自学习、自适应 和自组织的功能;
( 3 )自组织功能:智能控制器对复杂的 分布式信息具有自组织和协调的功能,当 出现多目标冲突时,它可以在任务要求的 范围内自行决策,主动采取行动。
( 4 )优化能力:智能控制能够通过不断 优化控制参数和寻找控制器的最佳结构形 式,获得整体最优的控制性能。
3.2、智能控制的研究工具
(1)符号推理与数值计算的结合 例如专家控制,它的上层是专家系统, 采用人工智能中的符号推理方法;下层是 传统意义下的控制系统,采用数值计算方 法。

智能控制-刘金琨编著PPT第6章

智能控制-刘金琨编著PPT第6章

术实现;
(5)能进行学习,以适应环境的变化。
6.6 神经网络控制的研究领域
1 基于神经网络的系统辨识 ① 将神经网络作为被辨识系统的模型,可在已知
常规模型结构的情况下,估计模型的参数。
② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测
模型,实现非线性系统的建模和辨识。
人恼的生理学和心理学着手,通过人工
模拟人脑的工作机理来实现机器的部分
智能行为。
人工神经网络(简称神经网络, Neural Network )是模拟人脑思维方 式的数学模型。 神经网络是在现代生物学研究人脑组 织成果的基础上提出的,用来模拟人类大 脑神经网络的结构和行为。神经网络反映 了人脑功能的基本特征,如并行信息处理 、学习、联想、模式分类、记忆等。
1982 年 , 物 理 学 家 Hoppield 提 出 了 Hoppield 神经网络模型,该模型通过引入 能量函数,实现了问题优化求解, 1984 年 他用此模型成功地解决了旅行商路径优化 问题(TSP)。 在1986年,在Rumelhart和McCelland等出 版《Parallel Distributed Processing》一书 ,提出了一种著名的多层神经网络模型, 即BP网络。该网络是迄今为止应用最普遍 的神经网络。
6.4.2 Delta(δ )学习规则
假设误差准则函数为:
1 E 2

p 1
P
(d p y p ) 2
E
p 1
P
p
其中, d p 代表期望的输出(教师信号);y p 为 网络的实际输出, y p f (W Xp ) ;W 为网络所有权 值组成的向量:
W w0, w1, , wn T

[智能控制[刘金琨 (10)[98页]

[智能控制[刘金琨 (10)[98页]

遗传算法可应用于目标函数无法求导数或导数不 存在的函数的优化问题,以及组合优化问题等。
(4)遗传算法使用概率搜索技术。遗传算法的选择、 交叉、变异等运算都是以一种概率的方式来进行的, 因而遗传算法的搜索过程具有很好的灵活性。随着进 化过程的进行,遗传算法新的群体会更多地产生出许 多新的优良的个体。
(2)交叉(Crossover Operator)
复制操作能从旧种群中选择出优秀者,但不能创造 新的染色体。而交叉模拟了生物进化过程中的繁殖现 象,通过两个染色体的交换组合,来产生新的优良品 种。
交叉的过程为:在匹配池中任选两个染色体,随机 选择一点或多点交换点位置;交换双亲染色体交换点 右边的部分,即可得到两个新的染色体数字串。

遗传算法从由很多个体组成的一个初始群体开始最 优解的搜索过程,而不是从一个单一的个体开始搜索, 这是遗传算法所特有的一种隐含并行性,因此遗传算 法的搜索效率较高。
(3)遗传算法直接以目标函数作为搜索信息。传统的 优化算法不仅需要利用目标函数值,而且需要目标函 数的导数值等辅助信息才能确定搜索方向。而遗传算 法仅使用由目标函数值变换来的适应度函数值,就可 以确定进一步的搜索方向和搜索范围,无需目标函数 的导数值等其他一些辅助信息。
10.1 遗传算法的基本原理
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
10.2 遗传算法的特点
(1)遗传算法是对参数的编码进行操作,而非对参数 本身,这就是使得我们在优化计算过程中可以借鉴生 物学中染色体和基因等概念,模仿自然界中生物的遗 传和进化等机理;

【智能控制】第一章 智能控制概述

2. 《模糊控制·神经控制和智能控制论》,李士勇 编著,哈尔滨:哈尔滨工业大学出版社,1998, 第2版;
3. 《智能控制理论与技术》,孙增圻等编著,北 京:清华大学出版社,南宁:广西科学技术出 版社,1997,第1版。
网络资料: 中国期刊网 万方数据服务平台
1.2.2智能控制系统的主要功能特征 1.2.2 智能控制系统的主要功能 系响统 应应能具力有。相当的对具在于有线复自实杂 组时任 织务 和和 协分 调散 功的 能系 行 的传 ,统 识 经感使对 别 验信系一 、 进息统一个 记步未忆改知、善环学自境习身提,性供并能的利的信用能息积力进累。
实时性 具有主动性和灵活性。在经历某种变化后,变化后的系统
•授课时间 •教材 •参考文献 •网络资料 •考核方法
授课时间: 13-20周每周一、三上午3、4节 13-20周每单周周五上午3、4节 10:10-12:00am
教材: 《智能控制技术》,易继锴、 侯媛彬编著,北京:北京工业 大学出版社,1999,第1版。
参考文献:
1. 《智能控制》,刘金锟编著,北京:电子工业 出版社,2009,第2版;
1.1 智能控制的基本概念
1.1.1 什么是智能控制 1.1.2 智能控制的研究对象
1.1.1 什么是智能控制 智能:能有效地获取、传递、处理、 再生和利用信息,从而在任意给定的 环境下成功地达到预定目的的能力。
思考题:智能是什么?何种情况下需要智能?
研究智能理论与技术的目的,是要 设计制造出具有高度智能水平的人 工系统(智能系统),以便在那些必 要的场合能够用人工系统替代人去 执行各种任务。
1.2.3 智能控制系统的特征模型
➢ 特征模型:是对系统动态特性的 一种定性与定量相结合的描述。是 针对问题求解和控制指标的不同要 求,对系统动态信息空间的一种划 分。

第2章-3-智能控制-幻灯片(1)

萌芽期(60年代) 形成期(70年代) 发展期(80年代) 高潮期(90年代至今)
智能控制的主要类型
专家控制 模糊控制 神经网络控制 学习控制 基于规则的仿人控制
2.3.2 专家控制(Expert Control)
什么是专家系统、专家控制?
“专家” 是具有某一领域专门知识或丰富实践经 验的人,而“专家系统”则是一个计算机系统,存 储有专家的知识和经验,并用推理的方式针对问题 给出结论。
u(k)
i1 6
u(ui )
i1
注:离散间隔一般较 该例小得多,计算结 果会更接近连续情况
0.210.220.530.840.85 3.72 0.20.20.50.80.8
说明:
模糊控制器的输入量一般取误差 e 和误差变化率 Δe , 若 e , Δe 和控制量 u 均离散化 [注] , 则可离 线计算好 e , Δe 与 u 的对应关系 ( 查询表 ) , 实 时控制时采用查表法 ( 计算量小, 快速 );
集合
冷μ
适中

1.0
0.0
T( ℃)
-20 -10 0 10 20 30 40
为简化计算, 一般用离散形式表示模糊集合。
例如,以 2 ℃ 为间隔进行离散化, 可得
“热” = 0/25 + 0.14/27 + 0.29/29 + 0.43/31 + 0.57/ 33+
+ 0.71/35 + 0.86/37 + 1/39 + 1/41 + 1/43 + 1/45
模糊控制的发展:
1965年美国的Zadeh提出模糊集合理论; 1974年英国的Mamdani首次将模糊理论应用于蒸

智能控制(第三版)chap8-刘金琨

b j k b j k 1 b j k b j k 1 b j k 2
8.1.3 仿真实例
使用模糊RBF网络逼近对象:
y (k ) u (k ) 3 y (k 1) 1 y (k 1) 2
其中采样时间为1ms。
模糊RBF网络逼近程序见chap8_1.m。
i 1 i 1 m m


i i 1
m
2
x j c
i


i 2 j

1 bi j

2

yd yn
y i i i y i
i 1 i 1
m
m


m i i 1
i j i j
其中
m i i y E E y n i 1 y y d n i i m p j y n p j i i 1 p y d y n
i j
i

i 1
m
i
y i i p j
其中α 、β 为学习速率。
8.2.3 仿真实例
使用混合型pi-sigma神经网络逼近对象:
y (k 1) y (k ) u (k ) 1 y (k 1) 2
3
混合型pi-sigma神经网络逼近程序见chap8_2.m
8.3
小脑模型神经网络
8.3. 1 CMAC概述
小脑模型神经网络( CMAC-Cerebellar Model
1 2 E ek 2
网络的学习算法如下:
输出层的权值通过如下方式来调整:
E E e y m wk ek f 3 w e y m w

《智能控制》_刘金琨_第4章


• (1)={负大,负小,零,正小,正大}={NB, NS, ZO, PS, PB} • (2)={负大,负中,负小,零,正小,正中,正 大}={NB, NM, NS, ZO, PS, PM, PB} • (3)={大,负中,负小,零负,零正,正小,正 中,正大}={NB, NM, NS, NZ, PZ, PS, PM, PB}
3 模糊规则的描述 根据日常的经验,设计以下模糊规则: (1)“若e负大,则u正大” (2)“若e负小,则u正小” (3)“若e为0,则u为0” (4)“若e正小,则u负小” (5)“若e正大,则u负大”
上述规则采用“IF A THEN B”形式来描述: (1) if e=NB then u=NB (2) if e=NS then u=NS (3) if e=0 then u=0 (4) if e=PS then u=PS (5) if e=PB then u=PB 根据上述经验规则,可得模糊控制表4-3。
表4-3 模糊控制规则表
若(IF) 则(THEN) NBe NBu Nse Nsu Oe Ou PSe PSu PBe PBu
4 求模糊关系 模糊控制规则是一个多条语句,它可以表 示为U×V上的模糊子集,即模糊关系R:
R (NBe NBu) (NSe NSu) (Oe Ou) (PSe PSu) (PBe PBu)
图 模糊控制原理框图
模糊控制器( Fuzzy Controller — FC ) 也 称 为 模 糊 逻 辑 控 制 器 ( Fuzzy Logic Controller—FLC),由于所采用的模糊控制规 则是由模糊理论中模糊条件语句来描述的, 因此模糊控制器是一种语言型控制器,故也 称 为 模 糊 语 言 控 制 器 ( Fuzzy Language Controller—FLC)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档