《智能控制技术》复习

合集下载

智能控制技术复习材料

智能控制技术复习材料

一、经典控制和现代控制理论的统称为传统控制,智能控制是人工智能与控制理论交叉的产物,是传统控制理论发展的高级阶段。

智能控制是针对系统的复杂性、非线性和不确定性而提出来的,传统控制和智能控制的主要区别:传统控制方法在处理复杂化和不确定性问题方面能力很低;智能控制在处理复杂性、不确定性方面能力较高。

智能控制系统的核心任务是控制具有复杂性和不确定性的系统,而控制的最有效途径就是采用仿人智能控制决策。

传统控制是基于被控对象精确模型的控制方式;智能控制的核心是基于知识进行智能决策,采用灵活机动的决策方式迫使控制朝着期望的目标逼近。

传统控制和智能控制的统一:智能控制擅长解决非线性、时变等复杂的控制问题,而传统控制适于解决线性、时不变等相对简单的控制问题。

智能控制的许多解决方案是在传统控制方案基础上的改进,因此,智能控制是对传统控制的扩充和发展,传统控制是智能控制的一个组成部分。

二、智能控制应用对象的特点(1)不确定性的模型模型未知或知之甚少;模型的结构和参数可能在很大范围内变化。

(2)高度的非线性(3)复杂的任务要求例如,要求系统对一个复杂的任务具有自行规划和决策的能力;要求除了实现对各被控物理量定值调节外,还要实现整个系统的自动启停、故障的自动诊断以及紧急情况的自动处理等功能。

三、智能控制的基本特点(1)分层递阶的组织结构(2)多模态控制(3)自学习能力(4)自适应能力(5)自组织能力(6)优化能力四、智能控制系统的主要类型及各自特点模糊控制神经网络控制专家控制系统分层递阶智能控制(该系统由组织级、协调级、执行级组成,按照自上而下精确程度渐增、智能程度渐减的原则进行功能分配。

在这类多层智能控制系统中,智能主要体现在高层次上,其主要作用是模仿人的功能实现规划、决策、学习和任务协调等任务。

执行级仍然采用现有数学解析控制算法,对数值进行操作和运算。

)与常规控制方法相比,模糊控制有以下特点:①模糊控制完全是在操作人员控制经验基础上实现对系统的控制,无需建立数学模型,是解决不确定性系统的一种有效途径。

智能控制复习要点

智能控制复习要点

一、填空题1.传统控制方法包括经典控制和现代控制2.智能控制具有学习、抽象、推理、决策等功能3.智能控制的几个重要分支为专家控制、模糊控制、神经网络控制和遗传算法4.神经网络具有并行机制、模式识别、记忆和自学习能力的特点5.遗传算法是基于自然选择和基因遗传学原理的搜索算法6.遗传算法可用于模糊控制规则的优化及神经网络参数及权值的学习7.遗传算法根据适者生存、优胜劣汰等自然进化规则来进行搜索计算和问题求解。

8.智能控制的应用包括智能机器人控制、计算机集成制造系统(CIMS)、工业过程控制、航空航天控制、社会经济管理系统、交通运输系统、环保及能源系统等。

9.专家系统是一类包含知识和推理的智能计算机程序10.专家系统的发展分为3个时期:初创期、成熟期、发展期11.专家系统主要由知识库和推理机构成12.知识库包含多种功能模块,主要有知识查询、检索、增删、修改和扩充等13.推理机包括三种推理方式:正向推理、反向推理、双向推理14.常用的知识表示方法为:产生式规则,框架,语义网络,过程。

其中产生式规则是专家系统最流行的表达方法。

15.智能是脑特别是人脑的属性或产物。

智能的基础是知识。

智能的关键是思维。

智能取决于感知和行为。

内涵:智能=知识+思维;外延:智能就是发现规律、运用规律和分析问题、解决问题的能力。

16.专家系统知识库的数据库包括事实、证据、假设、目标因素。

17.专家控制器分为以下两种类型:直接型专家控制器、间接型专家控制器18.专家控制的特点:灵活性、适应性、鲁棒性19.模糊集是用隶属函数来表征的20.模糊集合的逻辑运算实质上就是隶属函数的运算过程。

21.模糊控制中应用较多的隶属函数有以下6种隶属函数:高斯型隶属函数、广义钟型隶属函数、S形隶属函数、梯形隶属函数、三角形隶属函数、Z形隶属函数22.隶属函数是模糊控制的应用基础23.遵照这一原则的隶属函数选择方法有以下几种:模糊统计法、主观经验法、神经网络法24.模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法25.知识库由数据库和规则库两部分构成。

智能控制基础复习总结

智能控制基础复习总结

智能控制基础复习总结第一部分(填空题)1.智能控制的几个主要分支:基于知识的专家系统、模糊控制、神经元网络控制、学习控制。

2.隶属度函数的建立方法:模糊统计法、例证法、专家经验法、二元对比排序法。

3.神经元网络系统的研究主要有三个方面的内容:神经元模型、神经网络结构、神经网络学习方法。

4.从网络结构方面来看,人工神经网络主要表现为三大类:前向网络、反馈网络、自组织网络。

5.神经网络的模型分类(按连接方式分类):前向网络、反馈网络、相互结合型网络、混合型网络。

6.神经网络的学习算法可分为(根据连接权系数的改变方式):相关学习、纠错学习、无导师学习(各类详细介绍见P88)。

7.对神经网络的训练过程有较大影响的有:权系数的初值、学习方式、激励函数、学习速率。

8.知识表达的种类:图示类、符号类、结构类。

9.含一个隐层以上的多层前向传播神经网络不仅可以以任意精度逼近连续函数本身,还可以逼近函数的导数项。

第二部分(简答题)1.智能控制系统由哪几部分组成?各部分作用是什么?智能控制系统的特点是什么?答:智能控制系统由六部分组成,包括执行器、传感器、感知信息处理、规划与控制、认知和通信接口。

执行器:是系统的输出,对外界对象发生作用,有电机、定位器、阀门、电磁线圈等;传感器:产生智能系统的输入,可以是关节位置传感器、视觉/触觉传感器、力传感器、距离传感器等,用来监测外部环境和系统本身的状态,向感知信息处理单元提供输入;感知信息处理:将传感器得到的原始信息加以处理,并与内部环境模型产生的期望值进行比较,在时间和空间上综合观测值与期望值之间的异同,检测事件识别环境;认知:接收存储信息、知识、经验和数据,并分析推理做出决策,送至规划和控制部分;通信接口:建立人机联系及各模块之间的联系;规划和控制:系统核心,根据任务要求、反馈信息及经验知识,进行自动搜索、推理决策、动作规划,最后产生控制作用。

智能控制系统的原理结构智能控制系统的分层递阶结构从智能控制系统的功能模块结构观点出发,提出了分层递阶结构的智能控制系统。

《智能控制技术》考试试题

《智能控制技术》考试试题

《智能控制技术》考试试题(备注:请将本试卷粘贴在答题本内页)一、概念题(每小题5分,共20分)(1)人工神经网络人工神经网络的研究是人工智能、认知科学、神经生理学、非线性动力学等学科的交叉热点。

2.模糊推理知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出的情况,这就叫“模糊推理”。

3.专家系统专家系统是一个具有大量专门知识与经验的程序系统,它应用人工智能技术,根据某个领域或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复制问题。

4.递阶控制对递阶结构的大系统所采用的控制方式。

二、简答题(每小题10分,共40分)1.简述智能控制的发展过程,并说明智能控制的特点。

从20世纪60年代至今,智能控制的发展过程通常被划分3个阶段:萌芽期、形成期和发展期。

智能控制具有以下基本特点:1)应能为复杂系统进行有效的全局控制,并具有较强的容错能力。

2)定性策划和定量控制相结合的多模态组合控制。

3)从系统的功能和整体优化的角度来分析和综合系统,以实现预定的目标,并具有自组织能力。

4)同时具有以知识表示的非数学广义模型和以数学表示的数学模型的混合控制过程,系统在信息处理上,既有数学运算,又有逻辑和知识推理。

2.智能控制学科有哪几种结构理论?这些理论的内容是什么?二元结构理论傅京孙曾对几个与自学习控制(learning control)有关的领域进行了研究。

为强调系统的问题求解和决策能力,他用“智能控制系统”来包括这些领域。

他指出“智能控制系统描述自动控制系统与人工智能的交接作用”。

我们可以用式(1.3)和(1.6)以与图1.3来表示这种交接作用,并把它称为二元交集结构。

1.4.2 三元结构理论萨里迪斯于1977年提出另一种智能控制结构,它把傅京孙的智能控制扩展为三元结构,即把智能控制看作为人工智能、自动控制和运筹学的交接,如图1.4所示。

萨里迪斯认为,构成二元交集结构的两元互相支配,无助于智能控制的有效和成功应用。

智能控制技术知识点复习总结

智能控制技术知识点复习总结


0.2 0.3
R

0.7
0.7


求: P Q R
P
Q R
P
Q R
26
0.6 0.6
P Q R

0.4
0.4


P
P
Q
0.7 0.7
R

0.7
0.7


Q
0.7 0.7
R

0.4
0.4


27
语气算子
例 有论域X a1 ,a 2 ,a 3 ,a 4 ,a 5 及
“小”= 1/1 + 0.7/2 + 0.3/3
“较小”= 1/1 + 0.6/2 + 0.4/3 + 0.2/4
已知规则:为若x小,则y大,
那么当x=较小时,y=?
30
近似推理
“大”= 0/1 + 0/2 +0.4/3 + 0.7/4 + 1/5
“小”= 1/1 + 0.7/2 + 0.3/3 + 0/4 + 0/5
1 2 3
4 5
36
模糊条件推理 if A then B else C
例:一个系统,当输入为A(温度高)时,输出为B(湿
度小),否则输出C(湿度不小)。
已知
A=1/x1 + 0.4/x2 + 0.1/x3
B=0.8/y1 + 0.5/y2 + 0.2/y3
C=0.5/y1 + 0.6/y2 + 0.7/y3
0.2 0.7 0.4 0.3

《智能控制》复习提纲

《智能控制》复习提纲

《智能控制》课程复习提纲1.自动控制的发展经历了三个阶段:经典控制论、现代控制论和智能控制。

请分别陈述上述三个阶段的研究对象的特点、数学工具和数学模型、主要研究内容和主要研究成果。

2.智能控制系统的主要功能特点包括:学习功能、适应功能和组织功能。

请分别陈述上述三个功能特点的具体含义。

3.请列举2个智能控制应用的例子,并说明被控对象的特点和所使用的数学工具。

4.预测控制算法包括以下三个步骤:建立预测模型、滚动时域优化和反馈校正。

请分别陈述上述三个步骤的具体过程。

5.设论域{}1234,,,U x x x x =,A 和B 是论域上的两个模糊集合,已知: 12340.30.50.70.4A x x x x =+++,1230.510.8B x x x =++请分别计算:A ,B ,A B ⋃和A B ⋂。

6.设论域{}12345,,,,U x x x x x =,A 和B 是论域上的两个模糊集合,已知: 12350.20.40.90.5A x x x x =+++,13450.10.7 1.00.3B x x x x =+++ 请分别计算:A B ⋅,A B +,A B ⊕和A B ⊗。

7.已知输入的模糊集合A 和输出的模糊集合B : 123451.00.80.50.20.0A a a a a a =++++,12340.7 1.00.60.0B b b b =+++,1)请计算A 到B 的模糊关系R 。

2)若输入123450.4/0.7/ 1.0/0.6/0.0/A a a a a a '=++++,求输出'B 。

8.有模糊控制规则如下:“如果温度低,则将风门开大”|。

设温度和风门开度的论域为{1,2,3,4,5}。

“温度低”=1/1+0.6/2+0.3/3+0.0/4+0/5,“风门大”=0/1+0.0/2+0.3/3+0.6/4+1/5。

已知“温度较低”=0.8/1+1/2+0.6/3+0.3/4+0/5,请用模糊推理确定风门开度。

智能控制复习(已整理)

智能控制复习(已整理)

1,模糊集合正态性定义如果模糊集合的核非空,则A 是正态的。

换句话说,我们总可以找到一个点x ∈X,使 MA (x )=1.2.模糊集合补定义模糊集合A 的补表示A (-A ,非A )定义为)(x A μ=1-)(x A μ 3.Kohonen 自组织网络,CMAC ,有监督学习?Kohonen 自组织网络无监督学习的神经网络,CMAC 有监督学习。

4.遗传算法的图式定理在选择、交换、变异运算的作用下,确定位数少、定义长度短和适应度高的图式(也称组块)将按指数增长的规律,一代一代地增长。

5.感知器与BAM 网络层数感知器是多层的网络层数,BAM 是由两层神经元网络组成6.在选择、交换、变异的作用下,若含图式H 的染色体平均适应度高于当前种群的平均适应度,则图式H 在下一代染色体中出现的机会将变大。

(对)7.遗传算法二进制编码比十进制编码所包含的图式信息多。

(对)8.神经元有强大的数据处理能力。

(对)9.模糊控制的输出是一个模糊量。

(错)10.遗传算法的重组运算降低了处于相近区域的个体的平均适应度值。

(对) 11.Kohonen 自组织网络可用来数据聚类。

(对) 二1 语言变量是多元组),,),(,(M G X x T x1 语言变量是多元组),,),(,(M G X x T x :其中x 是变量的名称;T (x )是x 的术语的集合,即x 的语言值名称的集合,每一个值定义在论域X 中;G 是产生x 值名称的句法规则;M 是与各值含义有关的语法规则。

2 P57模糊推理B y B y then A x if A x ''是结果(结论)是是(规则)前提是(事实)前提 , 2 1这里,A '接近于A ,B ’接近于B 。

当A ,B ,A ’和B ’是适当论域中的模糊集合时,上述推理过程称之为近似推理或模糊推理,也称作广义的假言推理。

3 精英选择法是把群种中最优秀的个体直接复制到下一代.可以提高优秀个体对群种控制的速度,从而改善局部搜索,但损害了全局搜索能力.4 Hopfield 网络结构形式 离散时间形式;连续时间形式5 神经网络特征P103(1)非线性;(2)平行分布处理;(3)硬件实现;(4)学习和自适应性;(5)数据融洽;(6)多变量系统6、单片机中应用模糊控制一般不进行的操作是(B) A 、标度变换 B 、模糊推理 C 、数字滤波 D 、查表7、神经元模型中不包括(B )A 、加法器B 、 除法器C 、静态非线性函数D 、线性动态SISO 系统 8、神经元模型中没有的部分是(A )A 、轴突B 、权C 、静态非线性函数D 、线性动态SISO 系统 9、多点交换的描述正确的是(C )A 、交换点为奇数B 、交换点为偶数C 、减少优良组块损失D 、交换点越多越好三、1、模糊集合和经典集合的区别,举一例说明模糊概念答:经典集合具有精确的边界;而模糊集合没有精确地边界,它体现了用语言表达一种事物的灵活性很多样性。

智能控制考试题及答案

智能控制考试题及答案

智能控制技术考试题及答案《智能控制技术》考试试题 A《智能控制》课程考试试题 A 参考答案(1) OPEN (2) 最有希翼(3) 置换(4) 互补文字(5) 知识库(6) 推理机(7) 硬件(8) 软件(9) 智能(10) 傅京孙(11) 萨里迪斯(12) 蔡自兴(13) 组织级(14) 协调级(15) 执行级(16) 递阶控制系统(17) 专家控制系统(18) 含糊控制系统(19) 神经控制系统(20) 学习控制系统1 、D2 、A3 、C4 、B5 、D6、B7、A8、D9、A 10、D1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不彻底性等,普通无法获得精确的数学模型。

(2) 研究这种系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。

(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。

(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。

传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开辟与应用计算机科学与工程的最新成果。

人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。

人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平——智能控制发展。

智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不彻底性、含糊性或者不确定性以及不存在已知算法的过程,并以知识进行推理, 以启示式策略和智能算法来引导求解过程。

(2) 智能控制的核心在高层控制, 即组织级。

高层控制的任务在于对实际环境或者过程进行组织, 即决策和规划,实现广义问题求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档