第6讲利用导数研究函数零点问题
利用导数研究函数的零点讲义 解析版

利用导数研究函数的零点题型一 数形结合法研究函数零点1.(2024·南昌模拟节选)已知函数f (x )=(x -a )2+be x (a ,b ∈R ),若a =0时,函数y =f (x )有3个零点,求b 的取值范围.解:函数y =f (x )有3个零点,即关于x 的方程f (x )=0有3个根,也即关于x 的方程b =-x 2ex 有3个根.令g (x )=-x 2e x ,则直线y =b 与g (x )=-x 2ex 的图象有3个交点.g ′(x )=x (x -2)e x,由g ′(x )<0解得0<x <2;由g ′(x )>0解得x <0或x >2,所以g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增.g (0)=0,g (2)=-4e2,当x >0时,g (x )<0;当x →+∞时,g (x )→0;当x →-∞时,g (x )→-∞,作出g (x )的大致图象如图所示,作出直线y =b .由图可知,若直线y =b 与g (x )的图象有3个交点,则-4e 2<b <0,即b 的取值范围为-4e 2,0 .感悟提升 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.2.设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x 3零点的个数.解:由题意知g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,∴x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点3.已知函数f (x )=(2a +1)x 2-2x 2ln x -4,e 是自然对数的底数,∀x >0,e x >x +1.(1)求f (x )的单调区间;(2)记p :f (x )有两个零点;q :a >ln 2.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.(1)解:∵f (x )=(2a +1)x 2-2x 2ln x -4,∴f (x )的定义域为(0,+∞),f ′(x )=4x (a -ln x ).∵当0<x <e a 时,f ′(x )>0,∴f (x )在(0,e a )上单调递增;∵当x >e a 时,f ′(x )<0,∴f (x )在(e a ,+∞)上单调递减.∴f (x )的单调递增区间为(0,e a ),单调递减区间为(e a ,+∞).(2)证明 先证充分性.由(1)知,当x =e a 时,f (x )取得最大值,即f (x )的最大值为f (e a )=e 2a -4.由f (x )有两个零点,得e 2a -4>0,解得a >ln 2.∴a >ln 2.再证必要性.∵a >ln 2,∴e 2a >4.∴f (e a )=e 2a -4>0.∵a>ln2>0,∀x>0,e x>x+1,∴e2a>2a+1>2a.∴f(e-a)=e-2a(4a+1)-4=4a+1e2a -4<4a+12a-4=12a-2<12ln2-2=1ln4-2<0.∴∃x1∈(e-a,e a),使f(x1)=0;∵f(e a+1)=-e2a+2-4<0,∴∃x2∈(e a,e a+1),f(x2)=0.∵f(x)在(0,e a)上单调递增,在(e a,+∞)上单调递减,∴∀x∈(0,+∞),x≠x1且x≠x2,易得f(x)≠0.∴当a>ln2时,f(x)有两个零点.感悟提升 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.4.(2022·全国乙卷节选)已知函数f(x)=ax-1x-(a+1)ln x,若f(x)恰有一个零点,求a的取值范围.解:由f(x)=ax-1x-(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).①当a=0时,f(x)=-1x-ln x,f′(x)=1-xx2,当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0,所以f(x)≤f(1)=-1<0,所以f(x)不存在零点;②当a<0时,f′(x)=a x-1a(x-1)x2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;③当a>0时,f′(x)=a x-1a(x-1)x2,(ⅰ)当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;(ⅱ)当a>1时,0<1a <1,故f(x)在0,1a,(1,+∞)上单调递增,在1a,1上单调递减.因为f(1)=a-1>0,所以f1a>f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在0,1a上必有一个零点,所以a>1满足条件;(ⅲ)当0<a<1时,1a >1,故f(x)在(0,1),1a,+∞上单调递增,在1,1a上单调递减.因为f(1)=a-1<0,所以f1a<f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在1a,+∞上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).题型三 构造函数法研究函数零点5.已知函数f(x)=e x-1+ax(a∈R).(1)当x≥0时,f(x)≥0,求a的取值范围;(2)若关于x的方程f(x)-ax+1e a=ln x+a有两个不同的实数解,求a的取值范围.解:(1)由题意,得f′(x)=e x+a.若a≥-1,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)≥f(0)=0,符合题意;若a<-1,令f′(x)<0,得x<ln(-a),∴f(x)在(0,ln(-a))上单调递减,∴当x∈(0,ln(-a))时,f(x)<f(0)=0,不符合题意.综上,a的取值范围为[-1,+∞).(2)法一 由f(x)-ax+1e a=ln x+a,得e x-a=ln x+a.令e x-a=t,则x-a=ln t,ln x+a=t,∴x+ln x=t+ln t.易知y=x+ln x在(0,+∞)上单调递增,∴t=x,得a=x-ln x.则原问题可转化为方程a=x-ln x有两个不同的实数解.令φ(x)=x-ln x(x>0),则φ′(x)=x-1 x,令φ′(x)<0,得0<x<1;令φ′(x)>0,得x>1,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=1,∴a≥1.当a=1时,易知方程1=x-ln x只有一个实数解x=1,不符合题意.下证当a>1时,a=x-ln x有两个不同的实数解.令g(x)=x-ln x-a(a>1),则g(x)=φ(x)-a,易知g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵g(e-a)=e-a>0,g(1)=1-a<0,∴g(x)在(e-a,1)上有一个零点.易知g(e a)=e a-2a,令h(a)=e a-2a,则当a>1时,h′(a)=e a-2>0,∴h(a)在(1,+∞)上单调递增,∴当a >1时,h (a )>h (1)=e -2>0,即g (e a )=e a -2a >0,∴g (x )在(1,e a )上有一个零点.∴当a >1时,a =x -ln x 有两个不同的实数解.综上,a 的取值范围为(1,+∞).法二 由f (x )-ax +1e a=ln x +a ,得e x =e a (ln x +a ),∴xe x =xe a (ln x +a ),即xe x =e a +ln x (ln x +a ).令u (x )=xe x ,则有u (x )=u (a +ln x ).当x >0时,u ′(x )=(x +1)e x >0,∴u (x )=xe x 在(0,+∞)上单调递增,∴x =a +ln x ,即a =x -ln x .下同法一.感悟提升 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.6.(2021·全国甲卷节选)已知a >0且a ≠1,函数f (x )=x a ax (x >0).若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.解:曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x 2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增;当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e )=1e ,且当x >e 时,g (x )∈0,1e ,又g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e )∪(e ,+∞).【A 级 基础巩固】7.已知函数f (x )=x -ae x ,a ∈R ,讨论函数f (x )的零点个数.解:f (x )=0等价于x -ae x =0,即x ex =a .设h (x )=x e x ,则h ′(x )=1-x ex ,当x <1时,h ′(x )>0,h (x )单调递增;当x >1时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1e.又当x <0时,h (x )<0;当x >0时,h (x )>0,且x →+∞时,h (x )→0,∴可画出h (x )大致图象,如图所示.∴当a ≤0或a =1e时,f (x )在R 上有唯一零点;当a >1e 时,f (x )在R 上无零点;当0<a <1e 时,f (x )在R 上有两个零点.8.(2024·青岛调研)已知函数f (x )=ln x +ax x,a ∈R .(1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解:若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln x x 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e )=1e.(2)证明 f ′(x )=1x +a x -ln x -ax x 2=1-ln x x 2,由(1)知,f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0,故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f 1e =a -e <0,f (e )=a +1e>0,且f (x )在(0,e )上单调递增,∴f (x )在(0,e )上有且只有一个零点,综上,当0<a <1时,f (x )有且只有一个零点.9.(2024·太原模拟节选)已知函数f (x )=xe x -x -1,讨论方程f (x )=ln x +m -2的实根个数.解;由f (x )=ln x +m -2,得xe x -x -ln x +1=m ,x >0,令h (x )=xe x -x -ln x +1,则h ′(x )=e x +xe x-1-1x =(x +1)(xe x -1)x(x >0),令m (x )=xe x -1(x >0),则m ′(x )=(x +1)·e x >0,∴m (x )在(0,+∞)上单调递增,又m 12 =e 2-1<0,m (1)=e -1>0,∴存在x 0∈12,1,使得m (x 0)=0,即e x 0=1x 0,从而ln x 0=-x 0.当x ∈(0,x 0)时,m (x )<0,h ′(x )<0,则h (x )单调递减;当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,则h (x )单调递增;∴h (x )min =h (x 0)=x 0e x 0-x 0-ln x 0+1=x 0·1x 0-x 0+x 0+1=2,又易知,当x →0+时,h (x )→+∞;当x →+∞时,h (x )→+∞.∴当m <2时,方程f (x )=ln x +m -2没有实根;当m =2时,方程f (x )=ln x +m -2有1个实根;当m >2时,方程f (x )=ln x +m -2有2个实根.【B 级 能力提升】10.(2024·郑州模拟节选)已知函数f (x )=ln (x +1)-x +1,g (x )=ae x -x +ln a ,若函数F (x )=f (x )-g (x )有两个零点,求实数a 的取值范围.解:函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根,即ln (x +1)-x +1=ae x -x +ln a 有两个实根,即e x +ln a +x +ln a =ln (x +1)+x +1有两个实根,即e x +ln a +x +ln a =e ln (x +1)+ln (x +1)有两个实根.设函数h (x )=e x +x ,则e x +ln a +x +ln a =e ln (x +1)+ln (x +1)⇔h (x +ln a )=h (ln (x +1)).因为h ′(x )=e x +1>0恒成立,所以h (x )=e x +x 在R 上单调递增,所以x +ln a =ln (x +1),x >-1,所以要使F (x )有两个零点,只需ln a =ln (x +1)-x 有两个实根.设M (x )=ln (x +1)-x ,则M ′(x )=-x x +1.由M ′(x )=-x x +1>0,得-1<x <0;由M ′(x )=-x x +1<0,得x >0,故函数M(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).故函数M(x)在x=0处取得极大值,也是最大值,且M(x)max=M(0)=0.易知当x→-1时,M(x)→-∞;当x→+∞时,M(x)→-∞.故要使ln a=ln(x+1)-x有两个实根,只需ln a<M(x)max=0,解得0<a<1.所以实数a的取值范围是(0,1).。
利用导数解决函数的零点问题

第六节 利用导数解决函数的零点问题考点1 判断、证明或讨论函数零点的个数判断函数零点个数的3种方法 直接法令f (x )=0,则方程解的个数即为零点的个数 画图法转化为两个易画出图象的函数,看其交点的个数即可 定理法利用零点存在性定理判定,可结合最值、极值去解决(2019·全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点; (2)f (x )有且仅有2个零点.[证明] (1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2.当x ∈⎝ ⎛⎭⎪⎫-1,π2时,g ′(x )单调递减,而g ′(0)>0,g ′⎝ ⎛⎭⎪⎫π2<0,可得g ′(x )在⎝ ⎛⎭⎪⎫-1,π2有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫α,π2时,g ′(x )<0. 所以g (x )在(-1,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,故g (x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点,即f ′(x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点. (2)f (x )的定义域为(-1,+∞).(ⅰ)当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0,故f (x )在(-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.(ⅱ)当x ∈⎝ ⎛⎦⎥⎤0,π2时,由(1)知,f ′(x )在(0,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,而f ′(0)=0,f ′⎝ ⎛⎭⎪⎫π2<0,所以存在β∈⎝ ⎛⎭⎪⎫α,π2,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫β,π2时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎝ ⎛⎭⎪⎫β,π2单调递减. 又f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1-ln ⎝ ⎛⎭⎪⎫1+π2>0,所以当x ∈⎝ ⎛⎦⎥⎤0,π2时,f (x )>0.从而,f (x )在⎝ ⎛⎦⎥⎤0,π2没有零点. (ⅲ)当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减.而f ⎝ ⎛⎭⎪⎫π2>0,f (π)<0,所以f (x )在⎝ ⎛⎦⎥⎤π2,π有唯一零点. (ⅳ)当x ∈(π,+∞)时,ln(x +1)>1,所以f (x )<0,从而f (x )在(π,+∞)没有零点.综上,f (x )有且仅有2个零点.根据参数确定函数零点的个数,解题的基本思想是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等),作出函数的大致图象,然后通过函数图象得出其与x 轴交点的个数,或者两个相关函数图象交点的个数,基本步骤是“先数后形”.设函数f (x )=ln x +m x ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3零点的个数.[解] (1)由题意知,当m =e 时,f (x )=ln x +e x (x >0),则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增,∴当x=e时,f(x)取得极小值f(e)=ln e+ee=2,∴f(x)的极小值为2.(2)由题意知g(x)=f′(x)-x3=1x-mx2-x3(x>0),令g(x)=0,得m=-13x3+x(x>0).设φ(x)=-13x3+x(x≥0),则φ′(x)=-x2+1=-(x-1)(x+1).当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=23,又∵φ(0)=0.结合y=φ(x)的图象(如图),可知,①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;当0<m<23时,函数g(x)有两个零点.考点2 已知函数零点个数求参数解决此类问题常从以下两个方面考虑(1)根据区间上零点的个数情况,估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足条件.(2)先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解.设函数f (x )=-x 2+ax +ln x (a ∈R ).(1)当a =-1时,求函数f (x )的单调区间;(2)若函数f (x )在[13,3]上有两个零点,求实数a 的取值范围.[解] (1)函数f (x )的定义域为(0,+∞),当a =-1时,f ′(x )=-2x -1+1x =-2x 2-x +1x, 令f ′(x )=0,得x =12(负值舍去),当0<x <12时,f ′(x )>0;当x >12时,f ′(x )<0.∴f (x )的单调递增区间为(0,12),单调递减区间为(12,+∞).(2)令f (x )=-x 2+ax +ln x =0,得a =x -ln x x .令g (x )=x -ln x x ,其中x ∈[13,3],则g ′(x )=1-1-ln x x 2=x 2+ln x -1x 2,令g ′(x )=0,得x =1,当13≤x <1时,g ′(x )<0;当1<x ≤3时,g ′(x )>0,∴g (x )的单调递减区间为[13,1),单调递增区间为(1,3],∴g (x )min =g (1)=1,∴函数f (x )在[13,3]上有两个零点,g (13)=3ln 3+13,g (3)=3-ln 33,3ln 3+13>3-ln 33,∴实数a 的取值范围是(1,3-ln 33].与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.(2018·全国卷Ⅱ)已知函数f (x )=e x -ax 2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .[解] (1)当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x . 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)只有一个零点等价于h (x )在(0,+∞)只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-4ae2是h(x)在(0,+∞)的最小值.①若h(2)>0,即a<e24,h(x)在(0,+∞)没有零点;②若h(2)=0,即a=e24,h(x)在(0,+∞)只有一个零点;③若h(2)<0,即a>e24,由于h(0)=1,所以h(x)在(0,2)有一个零点.由(1)知,当x>0时,e x>x2,所以h(4a)=1-16a3e4a=1-16a3(e2a)2>1-16a3(2a)4=1-1a>0,故h(x)在(2,4a)有一个零点.因此h(x)在(0,+∞)有两个零点.综上,f(x)在(0,+∞)只有一个零点时,a=e24.考点3函数零点性质研究本考点包括两个方向:一是与函数零点性质有关的问题(更多涉及构造函数法);二是可以转化为函数零点的函数问题(更多涉及整体转化、数形结合等方法技巧).能够利用等价转换构造函数法求解的问题常涉及参数的最值、曲线交点、零点的大小关系等.求解时一般先通过等价转换,将已知转化为函数零点问题,再构造函数,然后利用导数研究函数的单调性、极值、最值等,并结合分类讨论,通过确定函数的零点达到解决问题的目的.已知函数f(x)=12x2+(1-a)x-a ln x,a∈R.(1)若f(x)存在极值点为1,求a的值;(2)若f(x)存在两个不同的零点x1,x2,求证:x1+x2>2.[解](1)由已知得f′(x)=x+1-a-ax,因为f(x)存在极值点为1,所以f′(1)=0,即2-2a=0,a=1,经检验符合题意,所以a=1.(2)证明:f′(x)=x+1-a-ax=(x+1)(1-ax)(x>0),①当a≤0时,f′(x)>0恒成立,所以f(x)在(0,+∞)上为增函数,不符合题意;②当a>0时,由f′(x)=0得x=a,当x>a时,f′(x)>0,所以f(x)单调递增,当0<x<a时,f′(x)<0,所以f(x)单调递减,所以当x=a时,f(x)取得极小值f(a).又f(x)存在两个不同的零点x1,x2,所以f(a)<0,即12a2+(1-a)a-a ln a<0,整理得ln a>1-12a,作y=f(x)关于直线x=a的对称曲线g(x)=f(2a-x),令h(x)=g(x)-f(x)=f(2a-x)-f(x)=2a-2x-a ln 2a-x x,则h′(x)=-2+2a2(2a-x)x =-2+2a2-(x-a)2+a2≥0,所以h(x)在(0,2a)上单调递增,不妨设x1<a<x2,则h(x2)>h(a)=0,即g(x2)=f(2a-x2)>f(x2)=f(x1),又2a-x2∈(0,a),x1∈(0,a),且f(x)在(0,a)上为减函数,所以2a-x2<x1,即x1+x2>2a,又ln a>1-12a,易知a>1成立,故x1+x2>2.(1)研究函数零点问题,要通过数的计算(函数性质、特殊点的函数值等)和形的辅助,得出函数零点的可能情况;(2)函数可变零点(函数中含有参数)性质的研究,要抓住函数在不同零点处函数值均为零,建立不同零点之间的关系,把多元问题转化为一元问题,再使用一元函数的方法进行研究.已知函数f(x)=ln x-x.(1)判断函数f(x)的单调性;(2)若函数g(x)=f(x)+x+12x-m有两个零点x1,x2,且x1<x2,求证:x1+x2>1.[解](1)函数f(x)的定义域为(0,+∞),f′(x)=1x-1=1-xx.令f′(x)=1-xx>0,得0<x<1,令f′(x)=1-xx<0,得x>1.所以函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明:根据题意知g(x)=ln x+12x-m(x>0),因为x1,x2是函数g(x)=ln x+12x-m的两个零点,所以ln x1+12x1-m=0,ln x2+12x2-m=0,两式相减,可得ln x1x2=12x2-12x1,即ln x1x2=x1-x22x1x2,故x1x2=x1-x22lnx1x2,则x1=x1x2-12lnx1x2,x2=1-x2x12lnx1x2.令t=x1x2,其中0<t<1,则x1+x2=t-12ln t +1-1t2ln t=t-1t2ln t.构造函数h(t)=t-1t-2ln t(0<t<1),则h′(t)=(t-1)2t2.因为0<t<1,所以h′(t)>0恒成立,故h(t)<h(1),即t-1t -2ln t<0,可知t-1t2ln t>1,故x1+x2>1.课外素养提升④逻辑推理——构造法求f(x)与f′(x)共存问题在导数及其应用的客观题中,有一个热点考查点,即不给出具体的函数解析式,而是给出函数f(x)及其导数满足的条件,需要据此条件构造抽象函数,再根据条件得出构造的函数的单调性,应用单调性解决问题的题目,该类题目具有一定的难度.下面总结其基本类型及其处理方法.f′(x)g(x)±f(x)g′(x)型【例1】(1)定义在R上的函数f(x),满足f(1)=1,且对任意的x∈R都有f′(x)<12,则不等式f(lg x)>lg x+12的解集为________.(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集为________.(1)(0,10)(2)(-∞,-3)∪(0,3)[(1)由题意构造函数g(x)=f(x)-12x,则g′(x)=f′(x)-12<0,所以g(x)在定义域内是减函数.因为f(1)=1,所以g(1)=f(1)-12=1 2,由f(lg x)>lg x+12,得f(lg x)-12lg x>12.即g(lg x)=f(lg x)-12lg x>12=g(1),所以lg x<1,解得0<x<10.所以原不等式的解集为(0,10).(2)借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y =f(x)g(x)在(-∞,0)上单调递增.又由题意知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).][评析](1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0).xf′(x)±nf(x)(n为常数)型【例2】(1)设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)(2)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是()A.f(x)>0 B.f(x)<0C.f(x)>x D.f(x)<x(1)A(2)A[(1)令g(x)=f(x)x,则g′(x)=xf′(x)-f(x)x2.由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵f(x)是奇函数,∴当x∈(-∞,-1)时,f(x)>0;当x∈(-1,0)时,f(x)<0.综上,使f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).(2)令g(x)=x2f(x)-14x4,则g′(x)=2xf(x)+x2f′(x)-x3=x[2f(x)+xf′(x)-x2].当x>0时,g′(x)>0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x<0时,g′(x)<0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x=0时,由题意可得2f(0)>0,∴f(0)>0.综上可知,f(x)>0.][评析](1)对于xf′(x)+nf(x)>0型,构造F(x)=x n f(x),则F′(x)=x n-1[xf′(x)+nf(x)](注意对x n-1的符号进行讨论),特别地,当n=1时,xf′(x)+f(x)>0,构造F(x)=xf(x),则F′(x)=xf′(x)+f(x)>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )x n +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2>0.f ′(x )±λf (x )(λ为常数)型【例3】 (1)已知f (x )在R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0)B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0)C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0)D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e x f (x )-e x2>0的解集为________.(1)D (2)(2,+∞) [(1)构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e -2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D.(2)由f (x )+2f ′(x )>0,得2[12f (x )+f ′(x )]>0,可构造函数h (x )=e x 2f (x ),则h ′(x )=12e x 2[f (x )+2f ′(x )]>0,所以函数h (x )=e x 2f (x )在R 上单调递增,且h (2)=e f (2)=1.不等式ex f (x )-e x 2>0等价于e x 2f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e x f (x )-e x2>0的解集为(2,+∞).][评析](1)对于不等式f′(x)+f(x)>0(或<0),构造函数F(x)=e x f(x).(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x)e x.。
第2部分专题6第6讲 利用导数解决函数零点或方程根问题课件

当h(e)≤0,即a1e-1+e+1e≤0, 即a≥ee2-+11时,h(1)·h(e)≤0.
由零点存在定理可知,此时h(x)在1,e上有零点.
又因为函数h
(x)
在
1,e
上单调递减,所以此时h
(x)
在
1,e
上有
一个零点.
②当a≤0时,即a+1≤1时, 当x∈(1,e)时,h′(x)>0, 所以h(x)在1,e上单调递增. h(1)=2+a,h(e)=a1e-1+e+1e>0. 当h(1)=2+a≤0,即a≤-2时,h(1)·h(e)≤0. 由零点存在定理,知此时h(x)在1,e上有零点.
当x>ln 2a时,f ′(x)>0,函数f(x)单调递增,
由f(x)在(-∞,0)上单调递增且f(0)=b-1>2a-1>0,f
-
ab=-
ba-1e-
b
a<0,
可得f(x)在(-∞,0)上有唯一零点,
由f(x)在(0,ln 2a)上单调递减,在(ln 2a,+∞)上单调递增,
且f(ln 2a)=(ln 2a-1)·2a-aln2(2a)+b>(ln 2a-1)·2a-aln2(2a)
令h′(x)=0,解得x=3,在 (0,3) 上h′(x)<0,在 (3,+∞) 上 h′(x)>0,
所以y=h(x)在(0,3) 上单调递减,在(3,+∞)上单调递增,且 h(3)=4-2ln 3>0,
所以f ′(x)>0在 (0,+∞) 上恒成立,所以函数f(x)在 (0,+∞) 上 单调递增.
(2)①由(1)知,当x∈(0,α)时,f ′(x)>0,f(x)在(0,α)上单调递 增;当x∈(α,π)时,f ′(x)<0,f(x)在(α,π)上单调递减,所以f(x)在 (0,π)上存在唯一的极大值点απ3<α<π2,
第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)

第06讲利用导数研究函数的零点(方程的根)(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:判断、证明或讨论函数零点的个数高频考点二:证明唯一零点问题高频考点三:根据零点情况求参数①利用最值(极值)研究函数零点问题②利用数形结合法研究函数的零点问题③构造函数研究函数零点问题第四部分:高考真题感悟第五部分:第06讲利用导数研究函数的零点(方程的根)(精练)1、函数的零点(1)函数零点的定义:对于函数()y f x=,把使()0f x=的实数x叫做函数()y f x=的零点.(2)三个等价关系方程0)(=xf有实数根⇔函数)(xfy=的图象与x轴有交点的横坐标⇔函数)(xfy=有零点.2、函数零点的判定如果函数()y f x=在区间[,]a b上的图象是连续不断的一条曲线,并且有()()0f a f b⋅<,那么函数()y f x=在区间(,)a b内有零点,即存在(,)c a b∈,使得()0f c=,这个c也就是()0f x=的根.我们把这一结论称为函数零点存在性定理.注意:单调性+存在零点=唯一零点1.(2022·全国·高二)已知函数()f x的定义域为[]15-,,部分对应值如下表:()f x的导函数()y f x='的图象如图所示,则下列关于函数()f x的命题:① 函数()y f x=是周期函数;② 函数()f x在[]02,是减函数;③ 如果当[]1,x t∈-时,()f x的最大值是2,那么t的最大值为4;④ 当12a<<时,函数()y f x a=-有4个零点.其中真命题的个数是A.4个B.3个C.2个D.1个2.(2022·甘肃·金昌市教育科学研究所高三阶段练习(文))已知函数()2e1xf x x a=+-()a R∈有两个极值点,则实数a的取值范围为()A.1,0e⎛⎫- ⎪⎝⎭B.2,0e⎛⎫- ⎪⎝⎭C.1,e⎛⎫-+∞⎪⎝⎭D.2,e⎛⎫-+∞⎪⎝⎭3.(2022·全国·高二)若函数()3239f x x x x m =--+仅有一个零点,则实数m 的取值范围是( )A .()5,-+∞B .(,27)(5,)-∞-⋃+∞C .(,27)-∞D .(,5)(27,)-∞-⋃+∞4.(2022·甘肃武威·模拟预测(文))函数()326f x x x m =-+有三个零点,则实数m 的取值范围是( )A .(﹣4,4)B .[﹣4,4]C .(﹣∞,﹣4]∪[4,+∞)D .(﹣∞,﹣4)∪(4,+∞)5.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定高频考点一:判断、证明或讨论函数零点(根)的个数1.(2022·全国·高二)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间1(,1)e,(1,e )内均有零点 B .在区间1(,1)e,(1,e )内均无零点C .在区间1(,1)e 内有零点,在区间(1,e )内无零点D .在区间1(,1)e 内无零点,在区间(1,e )内有零点2.(2022·全国·高三专题练习(文))已知函数()()12xx e f x e=-+,其中e 为自然对数的底数, 2.7182818e =……,则()f x 的零点个数为( ) A .0B .1C .2D .33.(2022·全国·高三专题练习(理))函数()()1ln 03f x x x x =->的零点个数为( )A .0B .1C .2D .34.(2022·全国·高二课时练习)求函数3()231f x x x =-+零点的个数为( ) A .1B .2C .3D .45.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定6.(2022·江苏苏州·模拟预测)方程3269100x x x -+-=的实根个数是______ .7.(2022·全国·高三专题练习)函数()1x f x e x =-+的零点个数是__________.8.(2022·广东佛山·高二阶段练习)已知函数()()1ln 2af x x a x x=+---,其中R a ∈. (1)若()f x 存在唯一极值点,且极值为0,求a 的值; (2)若2e a <,讨论()f x 在区间2[1,e ]上的零点个数.9.(2022·新疆·乌苏市第一中学高二阶段练习(文))给定函数()()1e xf x x =+.(1)判断函数()f x 的单调性,并求出()f x 的极值; (2)求出方程()()f x a a R =∈的解的个数.高频考点二:证明唯一零点(根)问题1.(2022·山西省长治市第二中学校高二阶段练习)已知函数321()(1)3=-++f x x a x x .(1)若1a =,求()f x 的单调区间及相应区间上的单调性; (2)证明:()f x 只有一个零点.2.(2022·陕西渭南·高二期末(文))已知函数()ln x axf x x+=,R a ∈. (1)若0a =,求()f x 的最大值;(2)若01a <<,求证:()f x 有且只有一个零点.3.(2022·广西玉林·模拟预测(文))已知函数217()ln 4,()2ln 22f x x x xg x x x =-=++. (1)求函数()f x 的最小值;(2)证明:函数()()()h x f x g x =+仅有一个零点.高频考点三:根据零点(根)情况求参数①利用最值(极值)研究函数零点(根)问题1.(2022·重庆市万州第二高级中学高二阶段练习)已知函数32()34f x x ax bx =+++在1x =-时有极值0. (1)求函数()f x 的解析式;(2)记()()21g x f x k =-+,若函数()g x 有三个零点,求实数k 的取值范围.2.(2022·山东师范大学附中高二阶段练习)已知函数()21xx x f x e+-=. (1)求函数()f x 的单调区间;(2)若函数()y f x a =-(a 为常数)有3个不同的零点,求实数a 的取值范围.3.(2022·宁夏六盘山高级中学高二阶段练习(理))已知函数3()91f x ax x =-+,0a >. (1)若3a =,求函数()f x 的极值;(2)若函数()f x 恰有三个零点,求实数a 的取值范围.4.(2022·北京丰台·一模)已知函数()f x = (1)当1a =时,求曲线()y f x =的斜率为1的切线方程; (2)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围.5.(2022·广西桂林·二模(理))已知函数()()()211e 2xf x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.②利用数形结合法研究函数的零点(根)问题1.(2022·宁夏·银川二中高二期末(理))已知函数ln ()xf x x= (1)填写函数()f x 的相关性质;2.(2022·四川·阆中中学高二阶段练习(文))设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.3.(2022·全国·信阳高中高三阶段练习(理))已知函数()2e xf x a x =-(R a ∈,e 为自然对数的底数).(1)若()0f x =有两个不相等的实数根,求a 的取值范围;4.(2022·四川·雅安中学高二阶段练习(文))已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.5.(2022·全国·模拟预测(理))已知函数()()2x x f x e ae a =+∈R(1)讨论()f x 的单调性;(2)设()()21x g x a x e x =-+,若方程()()g x f x =有三个不同的解,求a 的取值范围.6.(2022·四川绵阳·二模(文))已知函数()2()ln 1R f x x ax a =+-∈(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 有且只有一个零点,求实数a 的取值范围.③构造函数研究函数零点(根)问题1.(2022·江苏宿迁·高二期末)已知函数()e xf x =(e 为自然对数的底数),()sing x a x =(,22x ππ⎡⎤∈-⎢⎥⎣⎦),a R ∈.(1)若直线:l y kx =与函数()f x ,()g x 的图象都相切,求a 的值; (2)若方程()()f x g x =有两个不同的实数解,求a 的取值范围.2.(2022·重庆南开中学高二期末)已知函数()()2ln ,f x x x g x x ax b ==++.(1)若()f x 与()g x 在1x =处有相同的切线,求实数,a b 的取值;(2)若2b =时,方程()()f x g x =在()1,+∞上有两个不同的根,求实数a 的取值范围.3.(2022·四川·成都七中高三阶段练习(理))已知函数()(1)f x a x =-,()e (1)x g x bx =-,R a ∈. (1)当2b =时,函数()()y f x g x =-有两个零点,求a 的取值范围; (2)当b a =时,不等式()()f x g x >有且仅有两个整数解,求a 的取值范围.4.(2022·全国·高三阶段练习)已知函数()()11ln e f x a x x=+++,()()e x g x x a a =++∈R .(1)试讨论函数()f x 的单调性;(2)若当1≥x 时,关于x 的方程()()f x g x =有且只有一个实数解,求实数a 的取值范围.5.(2022·河南·三模(理))已知函数()()ln 1f x x =+,()e 1xg x =-.(1)判断函数()()()h x f x g x =-的零点个数;6.(2022·江苏南京·高三开学考试)已知函数()(1)x f x e a x =+-,()sin cos g x ax x x =++ (1)求函数()f x 的最值;(2)令()()()h x f x g x =-,求函数()h x 在区间(,)4π-+∞上的零点个数,并说明理由.1.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)a x x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>;②10,22a b a <<≤.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b ex x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)一、单选题1.(2022·江苏·南京师大附中高三开学考试)已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为( )A .1B .2C .3D .与a 有关2.(2022·浙江省浦江中学高二阶段练习)已知函数()22x f x xe x x m =---在()0,∞+上有零点,则m 的取值范围是( )A .)21ln 2,-+∞⎡⎣B .)2ln 21,--+∞⎡⎣C .)2ln 2,-+∞⎡⎣D .21ln 2,2-+∞⎡⎫⎪⎢⎣⎭3.(2022·全国·高二)函数32()2f x x x x =-++-的零点个数及分布情况为( ) A .一个零点,在1,3⎛⎫-∞- ⎪⎝⎭内B .二个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,∞+内C .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,1,03⎛⎫- ⎪⎝⎭,()1,+∞内D .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,1,()1,+∞内4.(2022·全国·高二)直线y a =与函数33y x x =-的图象有三个不同的交点,则实数a 的取值范围为( ) A .(2,2)-B .[2,2]-C .[2,)+∞D .(,2]-∞-5.(2022·全国·高二)已知函数20()210x e x f x x x x -⎧≤=⎨--+>⎩,若函数()()g x f x kx =-有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .e -B .1-C .2D .2e6.(2022·河南·襄城高中高二阶段练习(理))已知函数()2ln f x x =,()322g x x ex ax =-+,其中e 为自然对数的底数,若方程()()f x g x =存在两个不同的实根,则a 的取值范围为( ) A .2,e ⎛⎫-∞ ⎪⎝⎭B .22,e e ⎛⎫-∞+ ⎪⎝⎭C .()2,e -∞D .22,e e ⎛⎫-∞- ⎪⎝⎭7.(2022·江西·高三阶段练习(理))已知函数22()2(2)e (1)e x x f x a a x x =+-++有三个不同的零点123,,x x x ,且1230x x x <<<,则3122312222e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( )A .3B .6C .9D .368.(2022·全国·高三专题练习)已知方程|ln |2x kx =+在区间()50,e 上恰有3个不等实数根,则实数k 的取值范围是( ) A .5331,e e ⎛⎫ ⎪⎝⎭B .5331,e e ⎡⎫⎪⎢⎣⎭C .4221,e e ⎛⎫ ⎪⎝⎭D .4221,e e ⎡⎫⎪⎢⎣⎭二、填空题9.(2022·河南焦作·二模(理))函数1()e ln 1x f x a x -=--在(0,)+∞上有两个零点,则实数a 的取值范围是_______. 10.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.11.(2022·浙江·镇海中学高二期末)已知不等式21e 0x x a +-≥有且只有两个整数解,则实数a 的范围为___________.12.(2022·全国·高二)已知函数3211()(2)1()32xf x ax ax e x a R =---+∈在区间1,22⎛⎫ ⎪⎝⎭上有3个不同的极值点,则实数a的取值范围是__________. 三、解答题13.(2022·河南·栾川县第一高级中学高二阶段练习(理))已知()2()e ()x f x x a a =+∈R .(1)若2是函数()f x 的极值点,求a 的值,并判断2是()f x 的极大值点还是极小值点; (2)若关于x 的方程()2ln e x f x x =在1,22⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.参考数据:ln 20.693≈14.(2022·陕西宝鸡·二模(文))已知函数()1e x f x ax =--,a ∈R . (1)讨论函数()f x 的单调性;(2)若方程()ln f x x x =在(1,e)上有实根,求实数a 的取值范围.15.(2022·河南·沈丘县第一高级中学高二期末(文))已知函数()ln f x x =. (1)当[)1,x ∞∈+时,证明:函数()f x 的图象恒在函数()322132=-g x x x 的图象的下方; (2)讨论方程()0f x kx +=的根的个数.16.(2022·吉林·长春外国语学校高二阶段练习)若函数()32113f x x ax bx =++-,当2x =时,函数()f x 有极值13-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个解,求实数k 的取值范围.17.(2022·浙江浙江·二模)已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.。
利用导数研究函数的零点专题课件-2025届高三数学二轮复习+++

f'(x),f(x)的变化情况如表所示.
x
(-∞,-2)
f'(x)
-
f(x)
单调递减
-2
0
1
− 2
所以f(x)在区间(-∞,-2)上单调递减,在区间(-2,+∞)上单调递增.
1
当x=-2时,f(x)有极小值f(-2)= − 2 .
(-2,+∞)
+
单调递增
(2)令f(x)=0,解得x=-1.
来求解.这类问题求解的通法是:
(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;
(2)求导数,得单调区间和极值点;
(3)数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进
而求解
【考点分类练】
命题点1
根据函数零点个数求参数
已知函数零点个数求参数的方法
(1)数形结合法:先根据函数的性质画出图象,再根据函数零点个数的要求数形结合
象的交点个数.
考点一
探究零点个数
例1(2024·河南郑州三模)已知函数f(x)=eax-x.
(1)若a=2,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)讨论f(x)的零点个数.
解 (1)若a=2,则f(x)=e2x-x,f'(x)=2e2x-1.
又f(1)=e2-1,切点为(1,e2-1),
此 f(x)在 R 上单调递减.当 a>0 时,f'(x)=2a e +
则 f(x)在
1
ln ,
+ ∞ 上单调递增;令 f'(x)<0,得
1
2024年高考数学一轮复习(新高考版)《利用导数研究函数的零点》课件

即x-y-3=0.
(2)若函数f(x)在(0,16]上有两个零点,求a的取值范围.
①当 a≤0 时,f′(x)=ax- 1x<0, 则f(x)在(0,+∞)上单调递减,不符合题意; ②当 a>0 时,由 f(x)=aln x-2 x=0 可得2a=lnxx, 令 g(x)=lnxx,其中 x>0,则直线 y=2a与曲线 y=g(x)的图象在(0,16] 内有两个交点,
即 g(x)在π2,π上单调递减,又 gπ2=1>0,g(π)=-π<0, 则存在 m∈π2,π,使得 g(m)=0, 且当 x∈π2,m时,g(x)>g(m)=0, 即 f′(x)>0,则 f(x)在π2,m上单调递增, 当x∈(m,π]时,有g(x)<g(m)=0,即f′(x)<0, 则f(x)在(m,π]上单调递减,
由图可知,当 ln 2≤2a<2e,
即 e<a≤ln22时, 直线 y=2a与曲线 y=g(x)的图象在(0,16]内有 两个交点,
即f(x)在(0,16]上有两个零点, 因此,实数 a 的取值范围是e,ln22.
题型三 构造函数法研究函数的零点
例3 (12分)(2022·新高考全国Ⅰ)已知函数 f(x)=ex-ax和g(x)=ax-ln x有相同的最小值. (1)求a; [切入点:求f(x),g(x)的最小值] (2)证明:存在直线y=b,其与两条曲线y= f(x)和y=g(x)共有三个不同的交点,并且从 左到右的三个交点的横坐标成等差数列.
又 f π2=π2-1>0,f(π)=-1<0, 所以f(x)在(m,π]上有且只有一个零点, 综上,函数y=f(x)在[0,π]上有2个零点.
思维升华
6 第6讲 利用导数研究函数的零点问题

第6讲 利用导数研究函数的零点问题判断函数零点的个数(师生共研)设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.【解】 (1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2, 由f ′(x )=0,得x =e.所以当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, 所以当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,所以f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. 所以x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. 所以φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图), 可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.函数的零点个数也就是函数图象与x 轴交点的个数,所以可以借助函数图象的特征迅速求解函数的零点个数问题.对于含参函数的零点个数,一般可从两个方面讨论:一是利用导数研究函数的单调性和极值,作出函数的大致图象,根据极大值和极小值的符号确定函数零点的个数;二是分离参数,将问题转化为求y =a 和y =f (x )的图象的交点个数问题求解.由函数零点个数求参数(师生共研)(2019·长春市质量监测(二))已知函数f (x )=e x +bx -1(b ∈R ). (1)讨论f (x )的单调性;(2)若方程f (x )=ln x 有两个实数根,求实数b 的取值范围. 【解】 (1)由题意可得f ′(x )=e x +b ,当b ≥0时,f ′(x )>0,f (x )在(-∞,+∞)上单调递增.当b <0时,若x ≥ln(-b ),则f ′(x )≥0,f (x )在[ln(-b ),+∞)上单调递增; 若x <ln(-b ),则f ′(x )<0,f (x )在(-∞,ln(-b ))上单调递减.(2)令g (x )=e x +bx -1-ln x ,则g ′(x )=e x +b -1x ,易知g ′(x )单调递增且一定有大于0的零点,设g ′(x )大于0的零点为x 0,则g ′(x 0)=0,即e x 0+b -1x 0=0,b =1x 0-e x 0.方程f (x )=ln x 有两个实数根,即g (x )有两个零点,则需满足g (x 0)<0, 即e x 0+bx 0-1-ln x 0=e x 0+⎝⎛⎭⎫1x 0-e x 0x 0-1-ln x 0=e x 0-e x 0x 0-ln x 0<0, 令h (x )=e x -e x x -ln x (x >0),则h ′(x )=-e x x -1x <0,所以h (x )在(0,+∞)上单调递减,又h (1)=0,所以e x 0-e x 0x 0-ln x 0<0的解集为(1,+∞),所以b =1x 0-e x 0<1-e.当b <1-e 时,e x +bx -1-ln x >x +bx -ln x ,有g (e b )>e b +b e b -ln e b =(b +1)e b -b , 令G (x )=(x +1)e x -x =(x +1)(e x -1)+1,x <1-e ,所以x +1<2-e<0,0<e x <1, 故G (x )=(x +1)e x -x >0,所以g (e b )>0,故g (e b )g (x 0)<0,g (x )在(0,x 0)上有唯一零点,另一方面,在(x 0,+∞)上,当x →+∞时,因为e x 的增长速度快,所以g (x )>0,g (x )在(x 0,+∞)上有唯一零点.综上,b 的取值范围是(-∞,1-e).根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数图象与x 轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.以函数零点为背景的双变量不等式问题(师生共研)已知函数f (x )=12x 2+(1-a )x -a ln x ,a ∈R .(1)若f (x )存在极值点为1,求a 的值;(2)若f (x )存在两个不同的零点x 1,x 2,求证:x 1+x 2>2.【解】 (1)由已知得f ′(x )=x +1-a -ax ,因为f (x )存在极值点为1,所以f ′(1)=0,即2-2a =0,a =1,经检验符合题意,所以a =1.(2)证明:f ′(x )=x +1-a -ax=(x +1)⎝⎛⎭⎫1-a x (x >0), ①当a ≤0时,f ′(x )>0恒成立,所以f (x )在(0,+∞)上为增函数,不符合题意; ②当a >0时,由f ′(x )=0得x =a , 当x >a 时,f ′(x )>0,所以f (x )单调递增, 当0<x <a 时,f ′(x )<0,所以f (x )单调递减, 所以当x =a 时,f (x )取得极小值f (a ). 又f (x )存在两个不同的零点x 1,x 2, 所以f (a )<0,即12a 2+(1-a )a -a ln a <0, 整理得ln a >1-12a ,作y =f (x )关于直线x =a 的对称曲线g (x )=f (2a -x ),令h (x )=g (x )-f (x )=f (2a -x )-f (x )=2a -2x -a ln 2a -xx,则h ′(x )=-2+2a 2(2a -x )x =-2+2a 2-(x -a )2+a 2≥0,所以h (x )在(0,2a )上单调递增, 不妨设x 1<a <x 2,则h (x 2)>h (a )=0, 即g (x 2)=f (2a -x 2)>f (x 2)=f (x 1),又2a -x 2∈(0,a ),x 1∈(0,a ),且f (x )在(0,a )上为减函数,所以2a -x 2<x 1,即x 1+x 2>2a ,又ln a >1-12a ,易知a >1成立,故x 1+x 2>2.破解含双参不等式的证明的关键:一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1.(2019·江西赣州模拟)若函数f (x )=a e x -x -2a 有两个零点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B.⎝⎛⎭⎫0,1e C.()-∞,0D.()0,+∞解析:选D.函数f (x )=a e x -x -2a 的导函数f ′(x )=a e x -1.当a ≤0时,f ′(x )≤0恒成立,函数f (x )在R 上单调递减,不可能有两个零点;当a >0时,令f ′(x )=0,得x =ln 1a ,函数f (x )在⎝⎛⎭⎫-∞,ln 1a 上单调递减,在⎝⎛⎭⎫ln 1a ,+∞上单调递增,所以f (x )的最小值为f ⎝⎛⎭⎫ln 1a =1-ln 1a -2a =1+ln a -2a .令g (a )=1+ln a -2a (a >0),则g ′(a )=1a -2.当a ∈⎝⎛⎭⎫0,12时,g (a )单调递增;当a ∈⎝⎛⎭⎫12,+∞时,g (a )单调递减,所以g (a )max=g ⎝⎛⎭⎫12=-ln 2<0,所以f (x )的最小值为f ⎝⎛⎭⎫ln 1a <0,函数f (x )=a e x -x -2a 有两个零点.综上所述,实数a 的取值范围是(0,+∞),故选D.2.已知函数f (x )=3ln x -12x 2+2x -3ln 3-32.则方程f (x )=0的解的个数是________.解析:因为f (x )=3ln x -12x 2+2x -3ln 3-32,所以f ′(x )=3x -x +2=-x 2+2x +3x=(-x +3)(x +1)x,当x ∈(0,3)时,f ′(x )>0,f (x )单调递增, 当x ∈(3,+∞)时,f ′(x )<0,f (x )单调递减, 当x →0时,f (x )→-∞,当x →+∞时,f (x )→-∞, 所以f (x )max =f (3)=3ln 3-92+6-3ln 3-32=0,所以方程f (x )=0只有一个解. 答案:13.(2018·高考全国卷Ⅱ)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .解:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x .当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)只有一个零点当且仅当h (x )在(0,+∞)只有一个零点. (ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时, h ′(x )>0.所以h (x )在(0,2)单调递减,在(2,+∞)单调递增. 故h (2)=1-4ae 2是h (x )在[0,+∞)的最小值.①若h (2)>0,即a <e 24,h (x )在(0,+∞)没有零点;②若h (2)=0,即a =e 24,h (x )在(0,+∞)只有一个零点;③若h (2)<0,即a >e 24,由于h (0)=1,所以h (x )在(0,2)有一个零点.由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0.故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点. 综上,f (x )在(0,+∞)只有一个零点时,a =e 24.4.(2019·南昌市第一次模拟测试)已知函数f (x )=e x ·(ln x -ax +a +b )(e 为自然对数的底数),a ,b ∈R ,直线y =e2x 是曲线y =f (x )在x =1处的切线.(1)求a ,b 的值.(2)是否存在k ∈Z ,使得y =f (x )在(k ,k +1)上有唯一零点?若存在,求出k 的值;若不存在,请说明理由.解:(1)f ′(x )=e x (ln x -ax +1x+b ),f (x )的定义域为(0,+∞).由已知,得⎩⎨⎧f (1)=e 2f ′(1)=e 2,即⎩⎨⎧e b =e2e (b -a +1)=e2,解得a =1,b =12.(2)由(1)知,f (x )=e x ⎝⎛⎭⎫ln x -x +32,则f ′(x )=e x (ln x -x +1x +12), 令g (x )=ln x -x +1x +12,则g ′(x )=-x 2-x +1x 2<0恒成立,所以g (x )在(0,+∞)上单调递减,又g (1)=12>0,g (2)=ln 2-1<0,所以存在唯一的x 0∈(1,2),使得g (x 0)=0,且当x ∈(0,x 0)时,g (x )>0,即f ′(x )>0,当x ∈(x 0,+∞)时,g (x )<0,即f ′(x )<0.所以f (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减.又当x →0时,f (x )<0,f (1)=e 2>0,f (2)=e 2(ln 2-12)>0,f (e)=e e ⎝⎛⎭⎫52-e <0, 所以存在k =0或2,使得y =f (x )在(k ,k +1)上有唯一零点.5.(2019·武汉调研)已知函数f (x )=e x -ax -1(a ∈R )(e =2.718 28…是自然对数的底数). (1)求f (x )的单调区间;(2)讨论g (x )=f (x )⎝⎛⎭⎫x -12在区间[0,1]上零点的个数. 解:(1)因为f (x )=e x -ax -1, 所以f ′(x )=e x -a ,当a ≤0时,f ′(x )>0恒成立,所以f (x )的单调递增区间为(-∞,+∞),无单调递减区间; 当a >0时,令f ′(x )<0, 得x <ln a ,令f ′(x )>0,得x >ln a ,所以f (x )的单调递减区间为(-∞,ln a ),单调递增区间为(ln a ,+∞).(2)令g (x )=0,得f (x )=0或x =12,先考虑f (x )在区间[0,1]上的零点个数,当a ≤1时,f (x )在(0,+∞)上单调递增且f (0)=0,所以f (x )在[0,1]上有一个零点; 当a ≥e 时,f (x )在(-∞,1)上单调递减,所以f (x )在[0,1]上有一个零点; 当1<a <e 时,f (x )在(0,ln a )上单调递减,在(ln a ,1)上单调递增,而f (1)=e -a -1,当e -a -1≥0,即1<a ≤e -1时,f (x )在[0,1]上有两个零点, 当e -a -1<0,即e -1<a <e 时,f (x )在[0,1]上有一个零点. 当x =12时,由f ⎝⎛⎭⎫12=0得a =2(e -1), 所以当a ≤1或a >e -1或a =2(e -1)时,g (x )在[0,1]上有两个零点; 当1<a ≤e -1且a ≠2(e -1)时,g (x )在[0,1]上有三个零点.6.(2019·高考全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数,证明: (1)f ′(x )在区间⎝⎛⎭⎫-1,π2存在唯一极大值点;(2)f (x )有且仅有2个零点.证明:(1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2.当x ∈⎝ ⎛⎭⎪⎫-1,π2时,g ′(x )单调递减,而g ′(0)>0,g ′⎝ ⎛⎭⎪⎫π2<0,可得g ′(x )在⎝ ⎛⎭⎪⎫-1,π2有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫α,π2时,g ′(x )<0.所以g (x )在(-1,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,故g (x )在⎝ ⎛⎭⎪⎫-1 ,π2存在唯一极大值点,即f ′(x )在⎝⎛⎭⎪⎫-1,π2存在唯一极大值点.(2)f (x )的定义域为(-1,+∞).(ⅰ)当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0,故f (x )在(-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.(ⅱ)当x ∈⎝ ⎛⎦⎥⎤0,π2时,由(1)知,f ′(x )在(0,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,而f ′(0)=0,f ′⎝ ⎛⎭⎪⎫π2<0,所以存在β∈⎝ ⎛⎭⎪⎫α,π2,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫β,π2时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎝ ⎛⎭⎪⎫β,π2单调递减.又f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1-ln ⎝ ⎛⎭⎪⎫1+π2>0,所以当x ∈⎝ ⎛⎦⎥⎤0,π2时,f (x )>0.从而,f (x )在⎝ ⎛⎦⎥⎤0,π2没有零点.(ⅲ)当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减.而f ⎝ ⎛⎭⎪⎫π2>0,f (π)<0,所以f (x )在⎝ ⎛⎦⎥⎤π2,π有唯一零点.(ⅳ)当x ∈()π,+∞时,ln(x +1)>1,所以f (x )<0,从而f (x )在(π,+∞)没有零点. 综上,f (x )有且仅有2个零点.。
2024届新高考一轮复习人教B版 主题二 第三章 第6节 利用导数研究函数零点 课件(32张)

x
x
解:(2)由题意,函数 f(x)=(x-2)e -ax+aln x=(x-2)e -a(x-ln x),x>0,
-
设 m(x)=x-ln x,x>0,则 m′(x)=1- =
,
当 x∈(0,1)时,m′(x)<0,m(x)单调递减;
当 x∈(1,+∞)时,m′(x)>0,m(x)单调递增,
第6节
利用导数研究函数零点
判断、证明零点的个数
[例1] (2022·山东日照三模)已知函数f(x)=(x-2)ex-ax+aln x(a∈R).
(1)当a=-1时,求函数f(x)的单调区间;
x
解:(1)当 a=-1 时,f(x)=(x-2)e +x-ln x,
x
则 f′(x)=(x-1)(e + ),
所以 f(x)max=f(1)=a-1<0,所以 f(x)不存在零点;
当 a>0 时,f′(x)=
(- )(-)
,若 a=1,f′(x)≥0,f(x)在(0,+∞)上单调递增,
因为 f(1)=a-1=0,所以函数 f(x)恰有一个零点,所以 a=1 满足条件,
若 a>1,f(x)在(0, ),(1,+∞)上单调递增,
又 H(0)=0,H( )>0,所以存在λ∈(t, ),使得 H(λ)=0,即 0<x<λ时,H(x)<0,
h′(x)<0,h(x)单调递减;λ<x< 时,H(x)>0,h′(x)>0,h(x)单调递增.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为
h
1 2
=
9 10
+
ln 2 5
,
h(1)
=1,
所以 k 的取值范围为
1,
190+
ln 2 5
.
利用函数的极值 (最值 )判断函数零点个数 ,主要是借助导数研究函数的单调性、 极值后 , 通过极值的正负、 函数单调性判断函数图象走势 ,从而判断零点个数或者利用零点个数求参 数范围.
数形结合法研究零点问题 [ 典例引领 ]
当 a=1 时 , f(x) 的单调递减区间为 (0, +∞ );
1 当 a∈ (1,+ ∞ )时 , f(x)的单调递减区间为 (0,a), (1, +∞).
(2)g( x)= x2- xln
x- k(x+ 2)+ 2
在
x∈
[
1, 2
+
∞)
上有两个零点
, 即关于
x 的方程
k=
x2- xln x+ 2 在
第 6 讲 利用导数研究函数零点问题
利用最值 (极值 )判断零点个数 [ 典例引领 ]
已知函数 f(x)=- 12ax2+ (1+ a)x- ln x(a∈ R). (1)当 a> 0 时,求函数 f(x)的单调递减区间; (2)当 a=0 时,设函数 g(x)= xf(x)- k(x+2)+ 2.若函数 g(x)在区间 [12,+∞ )上有两个零 点,求实数 k 的取值范围. 【 解 】 (1) f(x)的定义域为 (0, + ∞ ),
已知 f(x)= ax2(a∈ R ),g(x) =2ln x. (1)讨论函数 F (x) =f(x)- g(x)的单调性; (2)若方程 f(x)= g(x)在区间 [ 2, e]上有两个不相等的解,求 【 解 】 (1) F(x) =ax2- 2ln x, 其定义域为 (0, +∞ ),
a 的取值范围.
x+2
x∈ [ 12, + ∞ )上有两个不相等的实数根.
令函数
h
(x)
=
x2-x ln x+
x+ 2
2 ,
x∈
[
1 2
,
+
∞
)
,
பைடு நூலகம்x2+3x- 2ln x- 4
则 h′x()=
(x+ 2)2
,
令函数 p(x)= x2+3x- 2ln x- 4, x∈ [ 12, + ∞ ).
则
p′x()=
(2x-
1)( x
1 (ax- 1)( x- 1)
f(x)的导数为 f′x()=- ax+1+ a- x=-
x
(a> 0),
①当 a∈ (0, 1)时 , 1a> 1.
1 由 f′x()< 0,得 x> a或 a< 1.
所以 f(x)的单调递减区间为 (0, 1), 1a, + ∞ ;
②当 a= 1 时 ,恒有 f′x()≤ 0,
x+2) 在
[12,
+
∞
)上有
p′x()≥ 0,
故 p(x)在 [12, + ∞) 上单调递增.
因为 p(1)= 0, 所以当
x∈
[
1, 2
1)时
,有
p(x)< 0,
即 h′x()< 0, 所以 h( x)单调递减;
当 x∈ (1,+ ∞ )时 , 有 p(x)>0,
即 h′x()> 0, 所以 h( x)单调递增.
所以 f(x)的单调递减区间为 (0, + ∞ );
1 ③当 a∈ (1, + ∞ )时 ,a< 1. 由 f′x()< 0, 得 x> 1 或 x<1a.
1 所以 f(x)的单调递减区间为 (0, a), (1, + ∞ ).
综上 ,当 a∈ (0, 1)时, f(x)的单调递减区间为 (0, 1), 1a, + ∞ ;