导数研究函数零点问题

合集下载

高考数学利用导数研究函数的零点

高考数学利用导数研究函数的零点
[总结反思]根据参数确定函数的零点个数有两种解决方法:一种是利用单调性与零点存在定理求解,另一种是化原函数为两个函数,利用两个函数图像的交点来求解.
课堂考点探究
变式题 已知函数f(x)=ex-ax+sin x-1.(1)当a=2时,讨论函数f(x)的单调性;
课堂考点探究
解: 当a=2时,f(x)=ex-2x+sin x-1(x∈R),则f'(x)=ex-2+cos x,设h(x)=f'(x)=ex-2+cosx, 则h'(x)=ex-sin x,当x∈(-∞,0]时,ex≤1,所以f'(x)=ex-2+cos x≤-1+cos x≤0,所以f(x)在(-∞,0]上单调递减;当x∈(0,+∞)时,ex>1,所以h'(x)=ex-sin x>1-sin x≥0,所以f'(x)在(0,+∞)上单调递增,所以f'(x)>f'(0)=0,所以f(x)在(0,+∞)上单调递增.综上,f(x)在 (-∞,0]上单调递减;在(0,+∞)上单调递增.
[总结反思]根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数的单调性确定函数图像与x轴的交点个数,或者通过两个相关函数图像的交点个数确定参数需满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.
课堂考点探究
课堂考点探究
变式题 已知f(x)=x2-x+asin x.(1)当a=1时,求证:f(x)>0在(0,+∞)上恒成立;
课堂考点探究
例4 已知函数f(x)=x·cos x.(2)求证:当x∈时,方程2f(x)-1=0有且仅有2个不等的实数根.

利用导数研究函数零点问题

利用导数研究函数零点问题

利用导数研究函数零点问题1、已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:存在唯一0(0,)2x π∈,使0()0f x =;证明:当(0,)2x π∈时,2'()(1sin )(2)2cos 03f x x x x x π=-++--<,函数()f x 在(0,)2π上为减函数,又2816(0)0,()0323f f πππ=->=--<,所以存在唯一0(0,)2x π∈,使0()0f x =.2、设1a >,函数a e x x f x-+=)1()(2.(1) 求)(x f 的单调区间 ; (2) 证明:)(x f 在(),-∞+∞上仅有一个零点;【解析】(1)依题()()()()()222'1'1'10x xx f x x e x e x e =+++=+≥,∴ ()f x 在(),-∞+∞上是单调增函数;(2)∵ 1a >,∴ ()010f a =-<且()()22110a f a a e a a a =+->+->,∴ ()f x 在()0,a 上有零点, 又由(1)知()f x 在(),-∞+∞上是单调增函数,()f x 在(),-∞+∞上仅有一个零点;3、已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.【解析】(I )'()f x =236x x a -+,'(0)f a =.曲线()y f x =在点(0,2)处的切线方程为2y ax =+。

由题设得22a-=-,所以a=1. (Ⅱ)由(I )知,32()32f x x x x =-++,设()g x ()2f x kx =-+323(1)4x x k x =-+-+ 由题设知10k-.当x ≤0时,'()g x 23610x x k=-+-,()g x 单调递增,(1)10,(0)4g k g -=-=,所以()g x =0在(],0-∞有唯一实根。

利用导数研究函数的零点讲义 解析版

利用导数研究函数的零点讲义 解析版

利用导数研究函数的零点题型一 数形结合法研究函数零点1.(2024·南昌模拟节选)已知函数f (x )=(x -a )2+be x (a ,b ∈R ),若a =0时,函数y =f (x )有3个零点,求b 的取值范围.解:函数y =f (x )有3个零点,即关于x 的方程f (x )=0有3个根,也即关于x 的方程b =-x 2ex 有3个根.令g (x )=-x 2e x ,则直线y =b 与g (x )=-x 2ex 的图象有3个交点.g ′(x )=x (x -2)e x,由g ′(x )<0解得0<x <2;由g ′(x )>0解得x <0或x >2,所以g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增.g (0)=0,g (2)=-4e2,当x >0时,g (x )<0;当x →+∞时,g (x )→0;当x →-∞时,g (x )→-∞,作出g (x )的大致图象如图所示,作出直线y =b .由图可知,若直线y =b 与g (x )的图象有3个交点,则-4e 2<b <0,即b 的取值范围为-4e 2,0 .感悟提升 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.2.设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x 3零点的个数.解:由题意知g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,∴x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点3.已知函数f (x )=(2a +1)x 2-2x 2ln x -4,e 是自然对数的底数,∀x >0,e x >x +1.(1)求f (x )的单调区间;(2)记p :f (x )有两个零点;q :a >ln 2.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.(1)解:∵f (x )=(2a +1)x 2-2x 2ln x -4,∴f (x )的定义域为(0,+∞),f ′(x )=4x (a -ln x ).∵当0<x <e a 时,f ′(x )>0,∴f (x )在(0,e a )上单调递增;∵当x >e a 时,f ′(x )<0,∴f (x )在(e a ,+∞)上单调递减.∴f (x )的单调递增区间为(0,e a ),单调递减区间为(e a ,+∞).(2)证明 先证充分性.由(1)知,当x =e a 时,f (x )取得最大值,即f (x )的最大值为f (e a )=e 2a -4.由f (x )有两个零点,得e 2a -4>0,解得a >ln 2.∴a >ln 2.再证必要性.∵a >ln 2,∴e 2a >4.∴f (e a )=e 2a -4>0.∵a>ln2>0,∀x>0,e x>x+1,∴e2a>2a+1>2a.∴f(e-a)=e-2a(4a+1)-4=4a+1e2a -4<4a+12a-4=12a-2<12ln2-2=1ln4-2<0.∴∃x1∈(e-a,e a),使f(x1)=0;∵f(e a+1)=-e2a+2-4<0,∴∃x2∈(e a,e a+1),f(x2)=0.∵f(x)在(0,e a)上单调递增,在(e a,+∞)上单调递减,∴∀x∈(0,+∞),x≠x1且x≠x2,易得f(x)≠0.∴当a>ln2时,f(x)有两个零点.感悟提升 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.4.(2022·全国乙卷节选)已知函数f(x)=ax-1x-(a+1)ln x,若f(x)恰有一个零点,求a的取值范围.解:由f(x)=ax-1x-(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).①当a=0时,f(x)=-1x-ln x,f′(x)=1-xx2,当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0,所以f(x)≤f(1)=-1<0,所以f(x)不存在零点;②当a<0时,f′(x)=a x-1a(x-1)x2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;③当a>0时,f′(x)=a x-1a(x-1)x2,(ⅰ)当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;(ⅱ)当a>1时,0<1a <1,故f(x)在0,1a,(1,+∞)上单调递增,在1a,1上单调递减.因为f(1)=a-1>0,所以f1a>f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在0,1a上必有一个零点,所以a>1满足条件;(ⅲ)当0<a<1时,1a >1,故f(x)在(0,1),1a,+∞上单调递增,在1,1a上单调递减.因为f(1)=a-1<0,所以f1a<f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在1a,+∞上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).题型三 构造函数法研究函数零点5.已知函数f(x)=e x-1+ax(a∈R).(1)当x≥0时,f(x)≥0,求a的取值范围;(2)若关于x的方程f(x)-ax+1e a=ln x+a有两个不同的实数解,求a的取值范围.解:(1)由题意,得f′(x)=e x+a.若a≥-1,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)≥f(0)=0,符合题意;若a<-1,令f′(x)<0,得x<ln(-a),∴f(x)在(0,ln(-a))上单调递减,∴当x∈(0,ln(-a))时,f(x)<f(0)=0,不符合题意.综上,a的取值范围为[-1,+∞).(2)法一 由f(x)-ax+1e a=ln x+a,得e x-a=ln x+a.令e x-a=t,则x-a=ln t,ln x+a=t,∴x+ln x=t+ln t.易知y=x+ln x在(0,+∞)上单调递增,∴t=x,得a=x-ln x.则原问题可转化为方程a=x-ln x有两个不同的实数解.令φ(x)=x-ln x(x>0),则φ′(x)=x-1 x,令φ′(x)<0,得0<x<1;令φ′(x)>0,得x>1,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=1,∴a≥1.当a=1时,易知方程1=x-ln x只有一个实数解x=1,不符合题意.下证当a>1时,a=x-ln x有两个不同的实数解.令g(x)=x-ln x-a(a>1),则g(x)=φ(x)-a,易知g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵g(e-a)=e-a>0,g(1)=1-a<0,∴g(x)在(e-a,1)上有一个零点.易知g(e a)=e a-2a,令h(a)=e a-2a,则当a>1时,h′(a)=e a-2>0,∴h(a)在(1,+∞)上单调递增,∴当a >1时,h (a )>h (1)=e -2>0,即g (e a )=e a -2a >0,∴g (x )在(1,e a )上有一个零点.∴当a >1时,a =x -ln x 有两个不同的实数解.综上,a 的取值范围为(1,+∞).法二 由f (x )-ax +1e a=ln x +a ,得e x =e a (ln x +a ),∴xe x =xe a (ln x +a ),即xe x =e a +ln x (ln x +a ).令u (x )=xe x ,则有u (x )=u (a +ln x ).当x >0时,u ′(x )=(x +1)e x >0,∴u (x )=xe x 在(0,+∞)上单调递增,∴x =a +ln x ,即a =x -ln x .下同法一.感悟提升 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.6.(2021·全国甲卷节选)已知a >0且a ≠1,函数f (x )=x a ax (x >0).若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.解:曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x 2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增;当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e )=1e ,且当x >e 时,g (x )∈0,1e ,又g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e )∪(e ,+∞).【A 级 基础巩固】7.已知函数f (x )=x -ae x ,a ∈R ,讨论函数f (x )的零点个数.解:f (x )=0等价于x -ae x =0,即x ex =a .设h (x )=x e x ,则h ′(x )=1-x ex ,当x <1时,h ′(x )>0,h (x )单调递增;当x >1时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1e.又当x <0时,h (x )<0;当x >0时,h (x )>0,且x →+∞时,h (x )→0,∴可画出h (x )大致图象,如图所示.∴当a ≤0或a =1e时,f (x )在R 上有唯一零点;当a >1e 时,f (x )在R 上无零点;当0<a <1e 时,f (x )在R 上有两个零点.8.(2024·青岛调研)已知函数f (x )=ln x +ax x,a ∈R .(1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解:若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln x x 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e )=1e.(2)证明 f ′(x )=1x +a x -ln x -ax x 2=1-ln x x 2,由(1)知,f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0,故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f 1e =a -e <0,f (e )=a +1e>0,且f (x )在(0,e )上单调递增,∴f (x )在(0,e )上有且只有一个零点,综上,当0<a <1时,f (x )有且只有一个零点.9.(2024·太原模拟节选)已知函数f (x )=xe x -x -1,讨论方程f (x )=ln x +m -2的实根个数.解;由f (x )=ln x +m -2,得xe x -x -ln x +1=m ,x >0,令h (x )=xe x -x -ln x +1,则h ′(x )=e x +xe x-1-1x =(x +1)(xe x -1)x(x >0),令m (x )=xe x -1(x >0),则m ′(x )=(x +1)·e x >0,∴m (x )在(0,+∞)上单调递增,又m 12 =e 2-1<0,m (1)=e -1>0,∴存在x 0∈12,1,使得m (x 0)=0,即e x 0=1x 0,从而ln x 0=-x 0.当x ∈(0,x 0)时,m (x )<0,h ′(x )<0,则h (x )单调递减;当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,则h (x )单调递增;∴h (x )min =h (x 0)=x 0e x 0-x 0-ln x 0+1=x 0·1x 0-x 0+x 0+1=2,又易知,当x →0+时,h (x )→+∞;当x →+∞时,h (x )→+∞.∴当m <2时,方程f (x )=ln x +m -2没有实根;当m =2时,方程f (x )=ln x +m -2有1个实根;当m >2时,方程f (x )=ln x +m -2有2个实根.【B 级 能力提升】10.(2024·郑州模拟节选)已知函数f (x )=ln (x +1)-x +1,g (x )=ae x -x +ln a ,若函数F (x )=f (x )-g (x )有两个零点,求实数a 的取值范围.解:函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根,即ln (x +1)-x +1=ae x -x +ln a 有两个实根,即e x +ln a +x +ln a =ln (x +1)+x +1有两个实根,即e x +ln a +x +ln a =e ln (x +1)+ln (x +1)有两个实根.设函数h (x )=e x +x ,则e x +ln a +x +ln a =e ln (x +1)+ln (x +1)⇔h (x +ln a )=h (ln (x +1)).因为h ′(x )=e x +1>0恒成立,所以h (x )=e x +x 在R 上单调递增,所以x +ln a =ln (x +1),x >-1,所以要使F (x )有两个零点,只需ln a =ln (x +1)-x 有两个实根.设M (x )=ln (x +1)-x ,则M ′(x )=-x x +1.由M ′(x )=-x x +1>0,得-1<x <0;由M ′(x )=-x x +1<0,得x >0,故函数M(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).故函数M(x)在x=0处取得极大值,也是最大值,且M(x)max=M(0)=0.易知当x→-1时,M(x)→-∞;当x→+∞时,M(x)→-∞.故要使ln a=ln(x+1)-x有两个实根,只需ln a<M(x)max=0,解得0<a<1.所以实数a的取值范围是(0,1).。

利用导数解决函数的零点问题

利用导数解决函数的零点问题

第六节 利用导数解决函数的零点问题考点1 判断、证明或讨论函数零点的个数判断函数零点个数的3种方法 直接法令f (x )=0,则方程解的个数即为零点的个数 画图法转化为两个易画出图象的函数,看其交点的个数即可 定理法利用零点存在性定理判定,可结合最值、极值去解决(2019·全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点; (2)f (x )有且仅有2个零点.[证明] (1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2.当x ∈⎝ ⎛⎭⎪⎫-1,π2时,g ′(x )单调递减,而g ′(0)>0,g ′⎝ ⎛⎭⎪⎫π2<0,可得g ′(x )在⎝ ⎛⎭⎪⎫-1,π2有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫α,π2时,g ′(x )<0. 所以g (x )在(-1,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,故g (x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点,即f ′(x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点. (2)f (x )的定义域为(-1,+∞).(ⅰ)当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0,故f (x )在(-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.(ⅱ)当x ∈⎝ ⎛⎦⎥⎤0,π2时,由(1)知,f ′(x )在(0,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,而f ′(0)=0,f ′⎝ ⎛⎭⎪⎫π2<0,所以存在β∈⎝ ⎛⎭⎪⎫α,π2,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫β,π2时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎝ ⎛⎭⎪⎫β,π2单调递减. 又f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1-ln ⎝ ⎛⎭⎪⎫1+π2>0,所以当x ∈⎝ ⎛⎦⎥⎤0,π2时,f (x )>0.从而,f (x )在⎝ ⎛⎦⎥⎤0,π2没有零点. (ⅲ)当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减.而f ⎝ ⎛⎭⎪⎫π2>0,f (π)<0,所以f (x )在⎝ ⎛⎦⎥⎤π2,π有唯一零点. (ⅳ)当x ∈(π,+∞)时,ln(x +1)>1,所以f (x )<0,从而f (x )在(π,+∞)没有零点.综上,f (x )有且仅有2个零点.根据参数确定函数零点的个数,解题的基本思想是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等),作出函数的大致图象,然后通过函数图象得出其与x 轴交点的个数,或者两个相关函数图象交点的个数,基本步骤是“先数后形”.设函数f (x )=ln x +m x ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3零点的个数.[解] (1)由题意知,当m =e 时,f (x )=ln x +e x (x >0),则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增,∴当x=e时,f(x)取得极小值f(e)=ln e+ee=2,∴f(x)的极小值为2.(2)由题意知g(x)=f′(x)-x3=1x-mx2-x3(x>0),令g(x)=0,得m=-13x3+x(x>0).设φ(x)=-13x3+x(x≥0),则φ′(x)=-x2+1=-(x-1)(x+1).当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=23,又∵φ(0)=0.结合y=φ(x)的图象(如图),可知,①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;当0<m<23时,函数g(x)有两个零点.考点2 已知函数零点个数求参数解决此类问题常从以下两个方面考虑(1)根据区间上零点的个数情况,估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足条件.(2)先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解.设函数f (x )=-x 2+ax +ln x (a ∈R ).(1)当a =-1时,求函数f (x )的单调区间;(2)若函数f (x )在[13,3]上有两个零点,求实数a 的取值范围.[解] (1)函数f (x )的定义域为(0,+∞),当a =-1时,f ′(x )=-2x -1+1x =-2x 2-x +1x, 令f ′(x )=0,得x =12(负值舍去),当0<x <12时,f ′(x )>0;当x >12时,f ′(x )<0.∴f (x )的单调递增区间为(0,12),单调递减区间为(12,+∞).(2)令f (x )=-x 2+ax +ln x =0,得a =x -ln x x .令g (x )=x -ln x x ,其中x ∈[13,3],则g ′(x )=1-1-ln x x 2=x 2+ln x -1x 2,令g ′(x )=0,得x =1,当13≤x <1时,g ′(x )<0;当1<x ≤3时,g ′(x )>0,∴g (x )的单调递减区间为[13,1),单调递增区间为(1,3],∴g (x )min =g (1)=1,∴函数f (x )在[13,3]上有两个零点,g (13)=3ln 3+13,g (3)=3-ln 33,3ln 3+13>3-ln 33,∴实数a 的取值范围是(1,3-ln 33].与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.(2018·全国卷Ⅱ)已知函数f (x )=e x -ax 2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .[解] (1)当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x . 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)只有一个零点等价于h (x )在(0,+∞)只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-4ae2是h(x)在(0,+∞)的最小值.①若h(2)>0,即a<e24,h(x)在(0,+∞)没有零点;②若h(2)=0,即a=e24,h(x)在(0,+∞)只有一个零点;③若h(2)<0,即a>e24,由于h(0)=1,所以h(x)在(0,2)有一个零点.由(1)知,当x>0时,e x>x2,所以h(4a)=1-16a3e4a=1-16a3(e2a)2>1-16a3(2a)4=1-1a>0,故h(x)在(2,4a)有一个零点.因此h(x)在(0,+∞)有两个零点.综上,f(x)在(0,+∞)只有一个零点时,a=e24.考点3函数零点性质研究本考点包括两个方向:一是与函数零点性质有关的问题(更多涉及构造函数法);二是可以转化为函数零点的函数问题(更多涉及整体转化、数形结合等方法技巧).能够利用等价转换构造函数法求解的问题常涉及参数的最值、曲线交点、零点的大小关系等.求解时一般先通过等价转换,将已知转化为函数零点问题,再构造函数,然后利用导数研究函数的单调性、极值、最值等,并结合分类讨论,通过确定函数的零点达到解决问题的目的.已知函数f(x)=12x2+(1-a)x-a ln x,a∈R.(1)若f(x)存在极值点为1,求a的值;(2)若f(x)存在两个不同的零点x1,x2,求证:x1+x2>2.[解](1)由已知得f′(x)=x+1-a-ax,因为f(x)存在极值点为1,所以f′(1)=0,即2-2a=0,a=1,经检验符合题意,所以a=1.(2)证明:f′(x)=x+1-a-ax=(x+1)(1-ax)(x>0),①当a≤0时,f′(x)>0恒成立,所以f(x)在(0,+∞)上为增函数,不符合题意;②当a>0时,由f′(x)=0得x=a,当x>a时,f′(x)>0,所以f(x)单调递增,当0<x<a时,f′(x)<0,所以f(x)单调递减,所以当x=a时,f(x)取得极小值f(a).又f(x)存在两个不同的零点x1,x2,所以f(a)<0,即12a2+(1-a)a-a ln a<0,整理得ln a>1-12a,作y=f(x)关于直线x=a的对称曲线g(x)=f(2a-x),令h(x)=g(x)-f(x)=f(2a-x)-f(x)=2a-2x-a ln 2a-x x,则h′(x)=-2+2a2(2a-x)x =-2+2a2-(x-a)2+a2≥0,所以h(x)在(0,2a)上单调递增,不妨设x1<a<x2,则h(x2)>h(a)=0,即g(x2)=f(2a-x2)>f(x2)=f(x1),又2a-x2∈(0,a),x1∈(0,a),且f(x)在(0,a)上为减函数,所以2a-x2<x1,即x1+x2>2a,又ln a>1-12a,易知a>1成立,故x1+x2>2.(1)研究函数零点问题,要通过数的计算(函数性质、特殊点的函数值等)和形的辅助,得出函数零点的可能情况;(2)函数可变零点(函数中含有参数)性质的研究,要抓住函数在不同零点处函数值均为零,建立不同零点之间的关系,把多元问题转化为一元问题,再使用一元函数的方法进行研究.已知函数f(x)=ln x-x.(1)判断函数f(x)的单调性;(2)若函数g(x)=f(x)+x+12x-m有两个零点x1,x2,且x1<x2,求证:x1+x2>1.[解](1)函数f(x)的定义域为(0,+∞),f′(x)=1x-1=1-xx.令f′(x)=1-xx>0,得0<x<1,令f′(x)=1-xx<0,得x>1.所以函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明:根据题意知g(x)=ln x+12x-m(x>0),因为x1,x2是函数g(x)=ln x+12x-m的两个零点,所以ln x1+12x1-m=0,ln x2+12x2-m=0,两式相减,可得ln x1x2=12x2-12x1,即ln x1x2=x1-x22x1x2,故x1x2=x1-x22lnx1x2,则x1=x1x2-12lnx1x2,x2=1-x2x12lnx1x2.令t=x1x2,其中0<t<1,则x1+x2=t-12ln t +1-1t2ln t=t-1t2ln t.构造函数h(t)=t-1t-2ln t(0<t<1),则h′(t)=(t-1)2t2.因为0<t<1,所以h′(t)>0恒成立,故h(t)<h(1),即t-1t -2ln t<0,可知t-1t2ln t>1,故x1+x2>1.课外素养提升④逻辑推理——构造法求f(x)与f′(x)共存问题在导数及其应用的客观题中,有一个热点考查点,即不给出具体的函数解析式,而是给出函数f(x)及其导数满足的条件,需要据此条件构造抽象函数,再根据条件得出构造的函数的单调性,应用单调性解决问题的题目,该类题目具有一定的难度.下面总结其基本类型及其处理方法.f′(x)g(x)±f(x)g′(x)型【例1】(1)定义在R上的函数f(x),满足f(1)=1,且对任意的x∈R都有f′(x)<12,则不等式f(lg x)>lg x+12的解集为________.(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集为________.(1)(0,10)(2)(-∞,-3)∪(0,3)[(1)由题意构造函数g(x)=f(x)-12x,则g′(x)=f′(x)-12<0,所以g(x)在定义域内是减函数.因为f(1)=1,所以g(1)=f(1)-12=1 2,由f(lg x)>lg x+12,得f(lg x)-12lg x>12.即g(lg x)=f(lg x)-12lg x>12=g(1),所以lg x<1,解得0<x<10.所以原不等式的解集为(0,10).(2)借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y =f(x)g(x)在(-∞,0)上单调递增.又由题意知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).][评析](1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0).xf′(x)±nf(x)(n为常数)型【例2】(1)设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)(2)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是()A.f(x)>0 B.f(x)<0C.f(x)>x D.f(x)<x(1)A(2)A[(1)令g(x)=f(x)x,则g′(x)=xf′(x)-f(x)x2.由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵f(x)是奇函数,∴当x∈(-∞,-1)时,f(x)>0;当x∈(-1,0)时,f(x)<0.综上,使f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).(2)令g(x)=x2f(x)-14x4,则g′(x)=2xf(x)+x2f′(x)-x3=x[2f(x)+xf′(x)-x2].当x>0时,g′(x)>0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x<0时,g′(x)<0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x=0时,由题意可得2f(0)>0,∴f(0)>0.综上可知,f(x)>0.][评析](1)对于xf′(x)+nf(x)>0型,构造F(x)=x n f(x),则F′(x)=x n-1[xf′(x)+nf(x)](注意对x n-1的符号进行讨论),特别地,当n=1时,xf′(x)+f(x)>0,构造F(x)=xf(x),则F′(x)=xf′(x)+f(x)>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )x n +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2>0.f ′(x )±λf (x )(λ为常数)型【例3】 (1)已知f (x )在R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0)B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0)C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0)D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e x f (x )-e x2>0的解集为________.(1)D (2)(2,+∞) [(1)构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e -2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D.(2)由f (x )+2f ′(x )>0,得2[12f (x )+f ′(x )]>0,可构造函数h (x )=e x 2f (x ),则h ′(x )=12e x 2[f (x )+2f ′(x )]>0,所以函数h (x )=e x 2f (x )在R 上单调递增,且h (2)=e f (2)=1.不等式ex f (x )-e x 2>0等价于e x 2f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e x f (x )-e x2>0的解集为(2,+∞).][评析](1)对于不等式f′(x)+f(x)>0(或<0),构造函数F(x)=e x f(x).(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x)e x.。

利用导数解决函数的零点问题

利用导数解决函数的零点问题

集 训
返 首 页
(2)证明:f′(x)=x+1-a-ax=(x+1)(1-ax)(x>0),


①当 a≤0 时,f′(x)>0 恒成立,所以 f(x)在(0,+∞)上为增函
素 养


堂 数,不符合题意;


点 探
②当 a>0 时,由 f′(x)=0 得 x=a,当 x>a 时,f′(x)>0,所以 课
课 外

(1)若 f(x)存在极值点为 1,求 a 的值;



堂 考
(2)若 f(x)存在两个不同的零点 x1,x2,求证:x1+x2>2.


探 究
[解]
(1)由已知得 f′(x)=x+1-a-ax,因为
f(x)存在极值点为
1,
课 后 限

所以 f′(1)=0,即 2-2a=0,a=1,经检验符合题意,所以 a=1.
提 升

探 究
0,可得 g′(x)在-1,π2有唯一零点,设为 α.则当 x∈(-1,α)时,g′
课 后 限

(x)>0;当 x∈α,π2时,g′(x)<0.
集 训
返 首 页
所以 g(x)在(-1,α)单调递增,在α,π2单调递减,故 g(x)在-1,π2

(ⅳ)当 x∈(π,+∞)时,ln(x+1)>1,所以 f(x)<0,从而 f(x)在(π,集

+∞)没有零点.
综上,f(x)有且仅有 2 个零点.






根据参数确定函数零点的个数,解题的基本思想是“数 养



2024年高考数学一轮复习(新高考版)《利用导数研究函数的零点》课件

2024年高考数学一轮复习(新高考版)《利用导数研究函数的零点》课件

即x-y-3=0.
(2)若函数f(x)在(0,16]上有两个零点,求a的取值范围.
①当 a≤0 时,f′(x)=ax- 1x<0, 则f(x)在(0,+∞)上单调递减,不符合题意; ②当 a>0 时,由 f(x)=aln x-2 x=0 可得2a=lnxx, 令 g(x)=lnxx,其中 x>0,则直线 y=2a与曲线 y=g(x)的图象在(0,16] 内有两个交点,
即 g(x)在π2,π上单调递减,又 gπ2=1>0,g(π)=-π<0, 则存在 m∈π2,π,使得 g(m)=0, 且当 x∈π2,m时,g(x)>g(m)=0, 即 f′(x)>0,则 f(x)在π2,m上单调递增, 当x∈(m,π]时,有g(x)<g(m)=0,即f′(x)<0, 则f(x)在(m,π]上单调递减,
由图可知,当 ln 2≤2a<2e,
即 e<a≤ln22时, 直线 y=2a与曲线 y=g(x)的图象在(0,16]内有 两个交点,
即f(x)在(0,16]上有两个零点, 因此,实数 a 的取值范围是e,ln22.
题型三 构造函数法研究函数的零点
例3 (12分)(2022·新高考全国Ⅰ)已知函数 f(x)=ex-ax和g(x)=ax-ln x有相同的最小值. (1)求a; [切入点:求f(x),g(x)的最小值] (2)证明:存在直线y=b,其与两条曲线y= f(x)和y=g(x)共有三个不同的交点,并且从 左到右的三个交点的横坐标成等差数列.
又 f π2=π2-1>0,f(π)=-1<0, 所以f(x)在(m,π]上有且只有一个零点, 综上,函数y=f(x)在[0,π]上有2个零点.
思维升华

2023年高考数学总复习第三章 导数及其应用第5节:利用导数研究函数的零点问题(教师版)

2023年高考数学总复习第三章 导数及其应用第5节:利用导数研究函数的零点问题(教师版)

2023年高考数学总复习第三章导数及其应用利用导数研究函数的零点问题题型一判断、证明或讨论函数零点的个数例1已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减.(2)证明由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a -1)=-6a 2+2a -13=-a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.感悟提升利用导数研究方程根(函数零点)的一般方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图像的走势规律,标明函数极(最)值的位置.(3)数形结合法分析问题,可以使问题的求解过程有一个清晰、直观的整体展现.训练1设函数f (x )=ln x +m x ,m 为正数.试讨论函数g (x )=f ′(x )-x 3零点的个数.解由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).转化为函数y =m 与y =-13x 3+x 的图像的交点情况.设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减,∴x =1是φ(x )唯一的极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图像(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;综上所述,当m >23时,函数g (x )无零点;当实数m =23时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二根据零点个数确定参数范围例2(2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x a ax (x >0).(1)当a =2时,求f (x )的单调区间;(2)若函数φ(x )=f (x )-1有且仅有两个零点,求a 的取值范围.解(1)当a =2时,f (x )=x 22x ,定义域为(0,+∞),f ′(x )=x (2-x ln 2)2x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0,则x >2ln 2,此时函数f (x )单调递减,所以函数f (x )(2)函数φ(x )=f (x )-1有且仅有两个零点,则转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增,当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e)=1e,且当x >e 时,g (x )g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e)∪(e ,+∞).感悟提升在解决已知函数y =f (x )有几个零点求f (x )中参数t 的取值范围问题时,经常从f (x )中分离出参数t =g (x ),然后用求导的方法判断g (x )的单调性,再根据题意求出参数t 的值或取值范围.解题时要充分利用导数工具和数形结合思想.训练2已知函数f (x )=ax -2ln x -a x(a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数h (x )=1-a 2x -f (x )2恰有两个不同的零点,求实数a 的取值范围.解(1)函数f(x)=ax-2ln x-ax的定义域是(0,+∞),求导可得f′(x)=a-2x+ax2=ax2-2x+ax2.当a≤0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减.当a≥1时,4(1-a2)≤0,此时f′(x)=ax2-2x+ax2≥0,故函数f(x)在(0,+∞)上单调递增.当0<a<1时,4(1-a2)>0,令f′(x)=0,得x1=1-1-a2a,x2=1+1-a2a,所以函数f(x)在(0,x1),(x2,+∞)上单调递增;在(x1,x2)上单调递减.综上所述,当a≤0时,函数f(x)在(0,+∞)上单调递减;当a≥1时,函数f(x)在(0,+∞)上单调递增;当0<a<1时,函数f(x)(1-1-a2a,1+1-a2a)上单调递减.(2)由题意得函数h(x)=1-a2x-f(x)2=1-a2x+ln x(x>0),则函数h(x)=1-a2xf(x)2恰有两个不同的零点即方程1-a2x+ln x=0恰有两个不同的根.由1-a2x+ln x=0得a=2(1+ln x)x,所以直线y=a与函数g(x)=2(1+ln x)x的图像有两个不同的交点.由g(x)=2(1+ln x)x,得g′(x)=-2ln xx2,当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,所以g(x)max=g(1)=2.又e-2<1,g(e-2)=2(1+ln e-2)e-2=-2e-2<0,x>1时,g(x)>0,所以实数a的取值范围为(0,2).题型三可化为函数零点的个数问题例3已知函数f(x)=ln x(0<x≤1)与函数g(x)=x2+a的图像有两条公切线,求实数a的取值范围.解设公切线与函数f(x)=ln x的图像切于点A(x1,ln x1)(0<x1≤1),因为f(x)=ln x,所以f′(x)=1 x,所以在点A(x1,ln x1)处切线的斜率k1=f′(x1)=1 x1,所以切线方程为y-ln x1=1x1(x-x1),即y=xx1+ln x1-1,设公切线与函数g(x)=x2+a的图像切于点B(x2,x22+a),因为g(x)=x2+a,所以g′(x)=2x,所以在点B(x2,x22+a)处切线的斜率k2=g′(x)=2x2,所以切线方程为y-(x22+a)=2x2(x-x2),即y=2x2x-x22+a,1x1=2x2,ln x1-1=-x22+a.因为0<x1≤1,所以1x1=2x2≥1,x2≥12.又a=-ln2x2+x22-1,令t=x2∈12,+∞,则h(t)=-ln2t+t2-1=-ln2-ln t+t2-1,所以h′(t)=2t2-1 t.令h′(t)>0且t≥12,得t>22;令h ′(t )<0且t ≥1,得12≤t <22.所以h (t )在12,所以函数f (x )=ln x (0<x ≤1)与函数g (x )=x 2+a 有两条公切线,满足h (t )≤ln2-12<h (t )≤-34,所以a ln 2-12,-34.感悟提升解决曲线的切线条数、两曲线的交点个数、方程根的个数等问题的关键是转化为对应函数的零点个数问题,利用数形结合思想,通过研究函数的零点个数解决相关问题.训练3已知函数f (x )=1+ln x x.(1)求函数f (x )的图像在x =1e 2处的切线方程(e 为自然对数的底数);(2)当x >1时,方程f (x )=a (x -1)+1x(a >0)有唯一实数根,求a 的取值范围.解(1)函数f (x )的定义域为(0,+∞),f ′(x )=-ln x x 2,所以f 2e 4,又e 2,所以函数f (x )的图像在x =1e2处的切线方程为y +e 2=2e 即y =2e 4x -3e 2.(2)当x >1时,f (x )=a (x -1)+1x,即ln x -a (x 2-x )=0.令h (x )=ln x -a (x 2-x ),有h (1)=0,h ′(x )=-2ax 2+ax +1x.令r (x )=-2ax 2+ax +1(a >0),则r (0)=1,r (1)=1-a ,①当a≥1时,r(1)≤0,r(x)在(1,+∞)上单调递减,所以x∈(1,+∞)时,r(x)<0,即h′(x)<0,所以h(x)在(1,+∞)上单调递减,故当x>1时,h(x)<h(1)=0,所以方程f(x)=a(x-1)+1x无实根.②当0<a<1时,r(1)=1-a>0,r(x)在(1,+∞)上单调递减,所以存在x0∈(1,+∞),使得x∈(1,x0)时,r(x)>0,即h(x)单调递增;x∈(x0,+∞)时,r(x)<0,即h(x)单调递减.所以h(x)max=h(x0)>h(1)=0.取x=1+1(x>2),则1+1a ln1+1a a1+1a+a1+1a ln1+1a-1+1a.令t=1+1a>0,故m(t)=ln t-t(t>2),则m′(t)=1t-1<0,所以m(t)在(2,+∞)单调递减,所以m(t)<ln2-2<0,即h 1+1a故存在唯一x1x0,1+1a,使得h(x1)=0.综上,a的取值范围为(0,1).隐零点问题在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫作隐零点;若x0容易求出,就叫作显零点,而后解答就可继续进行,实际上,此解法类似于解析几何中“设而不求”的方法.例1设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.解(1)f(x)的定义域为R,f′(x)=e x-a.当a≤0时,f′(x)>0恒成立,所以f(x)单调增区间为(-∞,+∞),无单调减区间.当a>0时,令f′(x)<0,得x<ln a,令f′(x)>0,得x>ln a,所以f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞). (2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+x+1e x-1(x>0)恒成立,令g(x)=x+1e x-1+x(x>0),得g′(x)=e x-1-(x+1)e x(e x-1)2+1=e x(e x-x-2)(e x-1)2(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点).当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=α+1eα-1+α.又h(α)=eα-α-2=0,所以eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.例2已知函数f(x)=(x-1)e x-ax的图像在x=0处的切线方程是x+y+b=0.(1)求a,b的值;(2)求证函数f(x)有唯一的极值点x0,且f(x0)>-32.(1)解因为f′(x)=x e x-a,由f′(0)=-1得a=1,又f(0)=-1,所以切线方程为y-(-1)=-1(x-0),即x+y+1=0,所以b=1.(2)证明令g(x)=f′(x)=x e x-1,则g′(x)=(x+1)e x,所以当x<-1时,g(x)单调递减,且此时g(x)<0,则g(x)在(-∞,-1)内无零点;当x≥-1时,g(x)单调递增,且g(-1)<0,g(1)=e-1>0,所以g(x)=0有唯一解x0,f(x)有唯一的极值点x0.由x0e x0=1⇒e x0=1 x0,f(x0)=x0-1x0-x0=1x又=e2-1<0,g(1)=e-1>0⇒12<x0<1⇒2<1x0+x0<52,所以f(x0)>-3 2 .1.已知函数f(x)=e x+(a-e)x-ax2.(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数a的取值范围.解(1)当a=0时,f(x)=e x-e x,则f′(x)=e x-e,f′(1)=0,当x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=0,无极大值.(2)由题意得f′(x)=e x-2ax+a-e,设g(x)=e x-2ax+a-e,则g′(x)=e x-2a.若a=0,则f(x)的最大值f(1)=0,故由(1)得f(x)在区间(0,1)内没有零点.若a<0,则g′(x)=e x-2a>0,故函数g(x)在区间(0,1)内单调递增.又g(0)=1+a-e<0,g(1)=-a>0,所以存在x0∈(0,1),使g(x0)=0.故当x∈(0,x0)时,f′(x)<0,f(x)单调递减;当x∈(x0,1)时,f′(x)>0,f(x)单调递增.因为f(0)=1,f(1)=0,所以当a<0时,f(x)在区间(0,1)内存在零点.若a>0,由(1)得当x∈(0,1)时,e x>e x.则f(x)=e x+(a-e)x-ax2>e x+(a-e)x-ax2=a(x-x2)>0,此时函数f(x)在区间(0,1)内没有零点.综上,实数a的取值范围为(-∞,0).2.设函数f(x)=12x2-m ln x,g(x)=x2-(m+1)x,m>0.(1)求函数f(x)的单调区间;(2)当m≥1时,讨论f(x)与g(x)图像的交点个数.解(1)函数f(x)的定义域为(0,+∞),f′(x)=(x+m)(x-m)x.当0<x<m时,f′(x)<0,函数f(x)单调递减;当x>m时,f′(x)>0,函数f(x)单调递增.综上,函数f(x)的单调递增区间是(m,+∞),单调递减区间是(0,m).(2)令F(x)=f(x)-g(x)=-12x2+(m+1)x-m ln x,x>0,题中问题等价于求函数F(x)的零点个数.F′(x)=-(x-1)(x-m)x,当m=1时,F′(x)≤0,函数F(x)为减函数,因为F(1)=32>0,F(4)=-ln4<0,所以F(x)有唯一零点;当m>1时,0<x<1或x>m时,F′(x)<0;1<x<m时,F′(x)>0,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增,因为F(1)=m+12>0,F(2m+2)=-m ln(2m+2)<0,所以F(x)有唯一零点.综上,函数F(x)有唯一零点,即函数f(x)与g(x)的图像总有一个交点.3.已知函数f(x)=(x-1)e x-ax2+b+12.(1)若a=1,求函数f(x)的单调区间;(2)当a=12时,f(x)的图像与直线y=bx有3个交点,求b的取值范围.解(1)当a=1时,f(x)=(x-1)e x-x2+b+12(x∈R),则f′(x)=e x+(x-1)e x-2x=x(e x-2).令f′(x)>0,解得x<0或x>ln2;令f′(x)<0,解得0<x<ln2,所以函数f(x)的单调递增区间为(-∞,0)和(ln2,+∞),单调递减区间为(0,ln2).(2)因为a=12,所以f(x)=(x-1)e x-12x2+b+12.由(x-1)e x-12x2+b+12=bx,得(x-1)e x-12(x2-1)=b(x-1).当x=1时,方程成立.当x≠1时,只需要方程e x-12(x+1)=b有2个实根.令g(x)=e x-12(x+1),则g′(x)=e x-12.当x <ln 12时,g ′(x )<0,当x >ln 12且x ≠1时,g ′(x )>0,所以g (x )∞,ln 12,(1,+∞)上单调递增,因为=12-12+=12ln 2,g (1)=e -1≠0,所以b 2,e -(e -1,+∞).4.已知函数f (x )=ax cos x -1在0,π6上的最大值为3π6-1.(1)求a 的值;(2)证明:函数f (x )2个零点.(1)解f ′(x )=a (cos x -x sin x ),因为x ∈0,π6,所以cos x >sin x ≥0,又1>x ≥0,所以1·cos x >x sin x ,即cos x -x sin x >0.当a >0时,f ′(x )>0,所以f (x )在区间0,π6上单调递增,所以f (x )max =a ·π6×32-1=3π6-1,解得a =2.当a <0时,f ′(x )<0,所以f (x )在区间0,π6上单调递减,所以f (x )max =f (0)=-1,不符合题意,当a =0时,f (x )=-1,不符合题意.综上,a =2.(2)证明设g (x )=cos x -x sin x ,则g ′(x )=-2sin x -x cos x x所以g (x )又g (0)=1>0,=-π2<0,所以存在唯一的x0g(x0)=0,当0<x<x0时,g(x)>0,即f′(x)=2g(x)>0,所以f(x)在(0,x0)上单调递增;当x0<x<π2时,g(x)<0,即f′(x)=2g(x)<0,所以f(x)0又f(0)=-1<0,=2π4-1>0,1<0,所以f(x)综上,函数f(x).。

6 第6讲 利用导数研究函数的零点问题

6 第6讲 利用导数研究函数的零点问题

第6讲 利用导数研究函数的零点问题判断函数零点的个数(师生共研)设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.【解】 (1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2, 由f ′(x )=0,得x =e.所以当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, 所以当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,所以f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. 所以x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. 所以φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图), 可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.函数的零点个数也就是函数图象与x 轴交点的个数,所以可以借助函数图象的特征迅速求解函数的零点个数问题.对于含参函数的零点个数,一般可从两个方面讨论:一是利用导数研究函数的单调性和极值,作出函数的大致图象,根据极大值和极小值的符号确定函数零点的个数;二是分离参数,将问题转化为求y =a 和y =f (x )的图象的交点个数问题求解.由函数零点个数求参数(师生共研)(2019·长春市质量监测(二))已知函数f (x )=e x +bx -1(b ∈R ). (1)讨论f (x )的单调性;(2)若方程f (x )=ln x 有两个实数根,求实数b 的取值范围. 【解】 (1)由题意可得f ′(x )=e x +b ,当b ≥0时,f ′(x )>0,f (x )在(-∞,+∞)上单调递增.当b <0时,若x ≥ln(-b ),则f ′(x )≥0,f (x )在[ln(-b ),+∞)上单调递增; 若x <ln(-b ),则f ′(x )<0,f (x )在(-∞,ln(-b ))上单调递减.(2)令g (x )=e x +bx -1-ln x ,则g ′(x )=e x +b -1x ,易知g ′(x )单调递增且一定有大于0的零点,设g ′(x )大于0的零点为x 0,则g ′(x 0)=0,即e x 0+b -1x 0=0,b =1x 0-e x 0.方程f (x )=ln x 有两个实数根,即g (x )有两个零点,则需满足g (x 0)<0, 即e x 0+bx 0-1-ln x 0=e x 0+⎝⎛⎭⎫1x 0-e x 0x 0-1-ln x 0=e x 0-e x 0x 0-ln x 0<0, 令h (x )=e x -e x x -ln x (x >0),则h ′(x )=-e x x -1x <0,所以h (x )在(0,+∞)上单调递减,又h (1)=0,所以e x 0-e x 0x 0-ln x 0<0的解集为(1,+∞),所以b =1x 0-e x 0<1-e.当b <1-e 时,e x +bx -1-ln x >x +bx -ln x ,有g (e b )>e b +b e b -ln e b =(b +1)e b -b , 令G (x )=(x +1)e x -x =(x +1)(e x -1)+1,x <1-e ,所以x +1<2-e<0,0<e x <1, 故G (x )=(x +1)e x -x >0,所以g (e b )>0,故g (e b )g (x 0)<0,g (x )在(0,x 0)上有唯一零点,另一方面,在(x 0,+∞)上,当x →+∞时,因为e x 的增长速度快,所以g (x )>0,g (x )在(x 0,+∞)上有唯一零点.综上,b 的取值范围是(-∞,1-e).根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数图象与x 轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.以函数零点为背景的双变量不等式问题(师生共研)已知函数f (x )=12x 2+(1-a )x -a ln x ,a ∈R .(1)若f (x )存在极值点为1,求a 的值;(2)若f (x )存在两个不同的零点x 1,x 2,求证:x 1+x 2>2.【解】 (1)由已知得f ′(x )=x +1-a -ax ,因为f (x )存在极值点为1,所以f ′(1)=0,即2-2a =0,a =1,经检验符合题意,所以a =1.(2)证明:f ′(x )=x +1-a -ax=(x +1)⎝⎛⎭⎫1-a x (x >0), ①当a ≤0时,f ′(x )>0恒成立,所以f (x )在(0,+∞)上为增函数,不符合题意; ②当a >0时,由f ′(x )=0得x =a , 当x >a 时,f ′(x )>0,所以f (x )单调递增, 当0<x <a 时,f ′(x )<0,所以f (x )单调递减, 所以当x =a 时,f (x )取得极小值f (a ). 又f (x )存在两个不同的零点x 1,x 2, 所以f (a )<0,即12a 2+(1-a )a -a ln a <0, 整理得ln a >1-12a ,作y =f (x )关于直线x =a 的对称曲线g (x )=f (2a -x ),令h (x )=g (x )-f (x )=f (2a -x )-f (x )=2a -2x -a ln 2a -xx,则h ′(x )=-2+2a 2(2a -x )x =-2+2a 2-(x -a )2+a 2≥0,所以h (x )在(0,2a )上单调递增, 不妨设x 1<a <x 2,则h (x 2)>h (a )=0, 即g (x 2)=f (2a -x 2)>f (x 2)=f (x 1),又2a -x 2∈(0,a ),x 1∈(0,a ),且f (x )在(0,a )上为减函数,所以2a -x 2<x 1,即x 1+x 2>2a ,又ln a >1-12a ,易知a >1成立,故x 1+x 2>2.破解含双参不等式的证明的关键:一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1.(2019·江西赣州模拟)若函数f (x )=a e x -x -2a 有两个零点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B.⎝⎛⎭⎫0,1e C.()-∞,0D.()0,+∞解析:选D.函数f (x )=a e x -x -2a 的导函数f ′(x )=a e x -1.当a ≤0时,f ′(x )≤0恒成立,函数f (x )在R 上单调递减,不可能有两个零点;当a >0时,令f ′(x )=0,得x =ln 1a ,函数f (x )在⎝⎛⎭⎫-∞,ln 1a 上单调递减,在⎝⎛⎭⎫ln 1a ,+∞上单调递增,所以f (x )的最小值为f ⎝⎛⎭⎫ln 1a =1-ln 1a -2a =1+ln a -2a .令g (a )=1+ln a -2a (a >0),则g ′(a )=1a -2.当a ∈⎝⎛⎭⎫0,12时,g (a )单调递增;当a ∈⎝⎛⎭⎫12,+∞时,g (a )单调递减,所以g (a )max=g ⎝⎛⎭⎫12=-ln 2<0,所以f (x )的最小值为f ⎝⎛⎭⎫ln 1a <0,函数f (x )=a e x -x -2a 有两个零点.综上所述,实数a 的取值范围是(0,+∞),故选D.2.已知函数f (x )=3ln x -12x 2+2x -3ln 3-32.则方程f (x )=0的解的个数是________.解析:因为f (x )=3ln x -12x 2+2x -3ln 3-32,所以f ′(x )=3x -x +2=-x 2+2x +3x=(-x +3)(x +1)x,当x ∈(0,3)时,f ′(x )>0,f (x )单调递增, 当x ∈(3,+∞)时,f ′(x )<0,f (x )单调递减, 当x →0时,f (x )→-∞,当x →+∞时,f (x )→-∞, 所以f (x )max =f (3)=3ln 3-92+6-3ln 3-32=0,所以方程f (x )=0只有一个解. 答案:13.(2018·高考全国卷Ⅱ)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .解:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x .当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)只有一个零点当且仅当h (x )在(0,+∞)只有一个零点. (ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时, h ′(x )>0.所以h (x )在(0,2)单调递减,在(2,+∞)单调递增. 故h (2)=1-4ae 2是h (x )在[0,+∞)的最小值.①若h (2)>0,即a <e 24,h (x )在(0,+∞)没有零点;②若h (2)=0,即a =e 24,h (x )在(0,+∞)只有一个零点;③若h (2)<0,即a >e 24,由于h (0)=1,所以h (x )在(0,2)有一个零点.由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0.故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点. 综上,f (x )在(0,+∞)只有一个零点时,a =e 24.4.(2019·南昌市第一次模拟测试)已知函数f (x )=e x ·(ln x -ax +a +b )(e 为自然对数的底数),a ,b ∈R ,直线y =e2x 是曲线y =f (x )在x =1处的切线.(1)求a ,b 的值.(2)是否存在k ∈Z ,使得y =f (x )在(k ,k +1)上有唯一零点?若存在,求出k 的值;若不存在,请说明理由.解:(1)f ′(x )=e x (ln x -ax +1x+b ),f (x )的定义域为(0,+∞).由已知,得⎩⎨⎧f (1)=e 2f ′(1)=e 2,即⎩⎨⎧e b =e2e (b -a +1)=e2,解得a =1,b =12.(2)由(1)知,f (x )=e x ⎝⎛⎭⎫ln x -x +32,则f ′(x )=e x (ln x -x +1x +12), 令g (x )=ln x -x +1x +12,则g ′(x )=-x 2-x +1x 2<0恒成立,所以g (x )在(0,+∞)上单调递减,又g (1)=12>0,g (2)=ln 2-1<0,所以存在唯一的x 0∈(1,2),使得g (x 0)=0,且当x ∈(0,x 0)时,g (x )>0,即f ′(x )>0,当x ∈(x 0,+∞)时,g (x )<0,即f ′(x )<0.所以f (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减.又当x →0时,f (x )<0,f (1)=e 2>0,f (2)=e 2(ln 2-12)>0,f (e)=e e ⎝⎛⎭⎫52-e <0, 所以存在k =0或2,使得y =f (x )在(k ,k +1)上有唯一零点.5.(2019·武汉调研)已知函数f (x )=e x -ax -1(a ∈R )(e =2.718 28…是自然对数的底数). (1)求f (x )的单调区间;(2)讨论g (x )=f (x )⎝⎛⎭⎫x -12在区间[0,1]上零点的个数. 解:(1)因为f (x )=e x -ax -1, 所以f ′(x )=e x -a ,当a ≤0时,f ′(x )>0恒成立,所以f (x )的单调递增区间为(-∞,+∞),无单调递减区间; 当a >0时,令f ′(x )<0, 得x <ln a ,令f ′(x )>0,得x >ln a ,所以f (x )的单调递减区间为(-∞,ln a ),单调递增区间为(ln a ,+∞).(2)令g (x )=0,得f (x )=0或x =12,先考虑f (x )在区间[0,1]上的零点个数,当a ≤1时,f (x )在(0,+∞)上单调递增且f (0)=0,所以f (x )在[0,1]上有一个零点; 当a ≥e 时,f (x )在(-∞,1)上单调递减,所以f (x )在[0,1]上有一个零点; 当1<a <e 时,f (x )在(0,ln a )上单调递减,在(ln a ,1)上单调递增,而f (1)=e -a -1,当e -a -1≥0,即1<a ≤e -1时,f (x )在[0,1]上有两个零点, 当e -a -1<0,即e -1<a <e 时,f (x )在[0,1]上有一个零点. 当x =12时,由f ⎝⎛⎭⎫12=0得a =2(e -1), 所以当a ≤1或a >e -1或a =2(e -1)时,g (x )在[0,1]上有两个零点; 当1<a ≤e -1且a ≠2(e -1)时,g (x )在[0,1]上有三个零点.6.(2019·高考全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数,证明: (1)f ′(x )在区间⎝⎛⎭⎫-1,π2存在唯一极大值点;(2)f (x )有且仅有2个零点.证明:(1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2.当x ∈⎝ ⎛⎭⎪⎫-1,π2时,g ′(x )单调递减,而g ′(0)>0,g ′⎝ ⎛⎭⎪⎫π2<0,可得g ′(x )在⎝ ⎛⎭⎪⎫-1,π2有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫α,π2时,g ′(x )<0.所以g (x )在(-1,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,故g (x )在⎝ ⎛⎭⎪⎫-1 ,π2存在唯一极大值点,即f ′(x )在⎝⎛⎭⎪⎫-1,π2存在唯一极大值点.(2)f (x )的定义域为(-1,+∞).(ⅰ)当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0,故f (x )在(-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.(ⅱ)当x ∈⎝ ⎛⎦⎥⎤0,π2时,由(1)知,f ′(x )在(0,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,而f ′(0)=0,f ′⎝ ⎛⎭⎪⎫π2<0,所以存在β∈⎝ ⎛⎭⎪⎫α,π2,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫β,π2时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎝ ⎛⎭⎪⎫β,π2单调递减.又f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1-ln ⎝ ⎛⎭⎪⎫1+π2>0,所以当x ∈⎝ ⎛⎦⎥⎤0,π2时,f (x )>0.从而,f (x )在⎝ ⎛⎦⎥⎤0,π2没有零点.(ⅲ)当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减.而f ⎝ ⎛⎭⎪⎫π2>0,f (π)<0,所以f (x )在⎝ ⎛⎦⎥⎤π2,π有唯一零点.(ⅳ)当x ∈()π,+∞时,ln(x +1)>1,所以f (x )<0,从而f (x )在(π,+∞)没有零点. 综上,f (x )有且仅有2个零点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数研究方程的根函数与x 轴即方程根的个数问题解题步骤 第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可; 1、已知函数()e ,x f x x =∈R .(Ⅰ) 求f (x )的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ) 证明: 曲线y = f (x) 与曲线2112y x x =++有唯一公共点.【答案】解:(Ⅰ) f (x)的反函数x x g ln )(=,则y=g(x)过点(1,0)的切线斜率k=(1)g'.1(1)g'x1(x)g'==⇒=k .过点(1,0)的切线方程为:y = x+ 1 (Ⅱ) 证明曲线y=f(x)与曲线1212++=x x y 有唯一公共点,过程如下.则令,,121121)()(22R x x x e x x x f x h x ∈---=---=0)0('',0)0('0)0(,1)('')(',1)('===-=--=h h h e x h x h x e x h x x ,,且的导数 因此,单调递增时当单调递减时当)('0)(''0;)('0)(''0x h y x h x x h y x h x =⇒>>=⇒<<0)(,0)0(')('===≥=⇒x R x h y h x h y 个零点上单调递增,最多有一在所以所以,曲线y=f(x)与曲线1212++=x x y 只有唯一公共点(0,1).(证毕) 2、已知函数()1x af x x e=-+(a R ∈,e 为自然对数的底数). (1)求函数()f x 的极值;(2)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值. (1)()1x a f x e'=-, ①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值. ②当0a >时,令()0f x '=,得x e a =,ln x a =.(),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>.所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值.综上,当0a ≤时,函数()f x 无极小值;当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值. (2)当1a =时,()11x f x x e=-+. 直线l :1y kx =-与曲线()y f x =没有公共点, 等价于关于x 的方程111xkx x e -=-+在R 上没有实数解,即关于x 的方程: ()11xk x e -=(*)在R 上没有实数解.①当1k =时,方程(*)可化为10x e =,在R 上没有实数解. ②当1k ≠时,方程(*)化为11x xe k =-.令()xg x xe =,则有()()1xg x x e '=+.令()0g x '=,得1x =-,当x 变化时,()g x '的变化情况如下表:x (),1-∞-1-()1,-+∞()g x '-+()g x1e-当1x =-时,()min g x e=-,同时当x 趋于+∞时,()g x 趋于+∞, 从而()g x 的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭.所以当11,1k e ⎛⎫∈-∞- ⎪-⎝⎭时,方程(*)无实数解, 解得k 的取值范围是()1,1e -. 综上,得k 的最大值为1. 3、已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围;(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.解:(1)由题意x k x x f )1()(2+-=' ∵)(x f 在区间),2(+∞上为增函数,∴0)1()(2>+-='x k x x f 在区间),2(+∞上恒成立即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k(2)设312)1(3)()()(23-++-=-=kx x k x x g x f x h , )1)(()1()(2--=++-='x k x k x k x x h 令0)(='x h 得k x =或1=x 由(1)知1≤k ,①当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意… ②当1<k 时,)(x h ,)(x h '随x 的变化情况如下表:x ),(k -∞ k)1,(k 1 ),1(+∞ )(x h ' + 0 — 0 + )(x h ↗ 极大值312623-+-k k ↘ 极小值21-k ↗ 由于02<,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需0312623>-+-k k ,即0)22)(1(2<---k k k ∴⎩⎨⎧>--<02212k k k ,解得31-<k 综上,所求k 的取值范围为31-<k4、 已知函数()()ln ()x f x e a a =+为常数是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[一1,1]上的减函数. (I)求a 的值;(II) 若()21g x t t λ≤++在x ∈[一1,1]上恒成立,求t 的取值范围.(Ⅲ) 讨论关于x 的方程2ln 2()xx ex m f x =-+的根的个数。

解:(I ))ln()(a e x f x+=是奇函数,则(0)0f =恒成立.0ln()0.e a ∴+= 01,0.e a a ∴+=∴=(II )又)(x g 在[-1,1]上单调递减,,1sin )1()(max --=-=∴λg x g ,11sin 2++≤--∴t t λλ只需.)1(011sin )1(2恒成立其中-≤≥++++∴λλt t 令),1(11sin )1()(2-≤++++=λλλt t h则⎩⎨⎧≥+++--≤+,011sin 1012t t t ,01sin 01sin 122恒成立而≥+-⎩⎨⎧≥+--≤∴t t t t t 1-≤∴t . (III )由(I )知,2ln ,)(2m ex x xxx x f +-=∴=方程为令m ex x x f x x x f +-==2)(,ln )(221,21ln 1)(xxx f -=' ,当],0()(,0)(,),0(11e x f x f e x 在时∴≥'∈上为增函数;),0[)(,0)(,),[11e x f x f e x 在时∴≤'+∞∈上为减函数,当e x =时,.1)()(1max 1ee f x f ==而222)()(e m e x x f -+-=, )(1x f 函数∴、)(2x f 在同一坐标系的大致图象如图所示,∴①当e e m e e m 1,122+>>-即时,方程无解. ②当e e m e e m 1,122+==-即时,方程有一个根.③当ee m e e m 1,122+<<-即时,方程有两个根. 5、.已知函数3()sin (),2f x ax x a R =-∈且在,0,2π⎡⎤⎢⎥⎣⎦上的最大值为32π-, (1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

(I )33()sin 22f x ax x π-=-≤在]2,0[π上恒成立,且能取到等号 ()sin 2g x x x aπ⇔=≤在]2,0[π上恒成立,且能取到等号max ()2g x aπ⇔=()sin cos 0()g x x x x y g x '=+>⇒=在]2,0[π上单调递增()1222g a a πππ==⇔=3()sin 2f x x x ⇒=-(II )3()sin ()()sin cos 2f x x x h x f x x x x '=-⇒==+①当x ∈]2,0[π时,()0()f x y f x '≥⇒=在(0,]2π上单调递增 33(0)()0()222f f y f x ππ-=-⨯<⇒=在(0,]2π上有唯一零点②当x ∈[,]2ππ时,()2cos sin 0()h x x x x f x ''=-<⇒当x ∈[,]2ππ上单调递减 2()()022f f πππ'=-<⇒存在唯一0(,)2x ππ∈使0()0f x '=00()0,()02f x x x f x x x ππ''>⇔≤<>⇔<< 得:()f x 在0[,)2x π上单调递增,0(,]x π上单调递减3()0,()022f f ππ>=-< 得:x ∈0[,]2x π时,()0f x >,x ∈0[,]x π时,0()()0f x f π<,()y f x =在0[,]x π上有唯一零点由①②得:函数)(x f 在),0(π内有两个零点。

6、已知函数32()f x ax bx cx =++在点0x 处取得极小值-4,使其导数'()0f x >的x 的取值范围为(1,3),求:(1)()f x 的解析式;(2)若过点(1,)P m -可作曲线()y f x =的三条切线,求实数m 的取值范围.解:(1)由题意得:2'()323(1)(3),(0)f x ax bx c a x x a =++=--<∴在(,1)-∞上'()0f x <;在(1,3)上'()0f x >;在(3,)+∞上'()0f x < 因此()f x 在01x =处取得极小值4-∴4a b c ++=-①,'(1)320f a b c =++=②,'(3)2760f a b c =++=③由①②③联立得:169a b c =-⎧⎪=⎨⎪=-⎩,∴32()69f x x x x =-+-(2)设切点Q (,())t f t ,,()()()y f t f t x t -=-232(3129)()(69)y t t x t t t t =-+--+-+- 222(3129)(3129)(69)t t x t t t t t t =-+-+-+--+ 22(3129)(26)t t x t t t =-+-+-过(1,)m - 232(3129)(1)26m t t t t =-+--+- 32()221290g t t t t m =--+-=令22'()66126(2)0g t t t t t =--=--=, 求得:1,2t t =-=,方程()0g t =有三个根。

相关文档
最新文档