利用导数研究函数零点
高考数学利用导数研究函数的零点

课堂考点探究
变式题 已知函数f(x)=ex-ax+sin x-1.(1)当a=2时,讨论函数f(x)的单调性;
课堂考点探究
解: 当a=2时,f(x)=ex-2x+sin x-1(x∈R),则f'(x)=ex-2+cos x,设h(x)=f'(x)=ex-2+cosx, 则h'(x)=ex-sin x,当x∈(-∞,0]时,ex≤1,所以f'(x)=ex-2+cos x≤-1+cos x≤0,所以f(x)在(-∞,0]上单调递减;当x∈(0,+∞)时,ex>1,所以h'(x)=ex-sin x>1-sin x≥0,所以f'(x)在(0,+∞)上单调递增,所以f'(x)>f'(0)=0,所以f(x)在(0,+∞)上单调递增.综上,f(x)在 (-∞,0]上单调递减;在(0,+∞)上单调递增.
[总结反思]根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数的单调性确定函数图像与x轴的交点个数,或者通过两个相关函数图像的交点个数确定参数需满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.
课堂考点探究
课堂考点探究
变式题 已知f(x)=x2-x+asin x.(1)当a=1时,求证:f(x)>0在(0,+∞)上恒成立;
课堂考点探究
例4 已知函数f(x)=x·cos x.(2)求证:当x∈时,方程2f(x)-1=0有且仅有2个不等的实数根.
利用导数研究函数的零点讲义 解析版

利用导数研究函数的零点题型一 数形结合法研究函数零点1.(2024·南昌模拟节选)已知函数f (x )=(x -a )2+be x (a ,b ∈R ),若a =0时,函数y =f (x )有3个零点,求b 的取值范围.解:函数y =f (x )有3个零点,即关于x 的方程f (x )=0有3个根,也即关于x 的方程b =-x 2ex 有3个根.令g (x )=-x 2e x ,则直线y =b 与g (x )=-x 2ex 的图象有3个交点.g ′(x )=x (x -2)e x,由g ′(x )<0解得0<x <2;由g ′(x )>0解得x <0或x >2,所以g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增.g (0)=0,g (2)=-4e2,当x >0时,g (x )<0;当x →+∞时,g (x )→0;当x →-∞时,g (x )→-∞,作出g (x )的大致图象如图所示,作出直线y =b .由图可知,若直线y =b 与g (x )的图象有3个交点,则-4e 2<b <0,即b 的取值范围为-4e 2,0 .感悟提升 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.2.设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x 3零点的个数.解:由题意知g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,∴x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点3.已知函数f (x )=(2a +1)x 2-2x 2ln x -4,e 是自然对数的底数,∀x >0,e x >x +1.(1)求f (x )的单调区间;(2)记p :f (x )有两个零点;q :a >ln 2.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.(1)解:∵f (x )=(2a +1)x 2-2x 2ln x -4,∴f (x )的定义域为(0,+∞),f ′(x )=4x (a -ln x ).∵当0<x <e a 时,f ′(x )>0,∴f (x )在(0,e a )上单调递增;∵当x >e a 时,f ′(x )<0,∴f (x )在(e a ,+∞)上单调递减.∴f (x )的单调递增区间为(0,e a ),单调递减区间为(e a ,+∞).(2)证明 先证充分性.由(1)知,当x =e a 时,f (x )取得最大值,即f (x )的最大值为f (e a )=e 2a -4.由f (x )有两个零点,得e 2a -4>0,解得a >ln 2.∴a >ln 2.再证必要性.∵a >ln 2,∴e 2a >4.∴f (e a )=e 2a -4>0.∵a>ln2>0,∀x>0,e x>x+1,∴e2a>2a+1>2a.∴f(e-a)=e-2a(4a+1)-4=4a+1e2a -4<4a+12a-4=12a-2<12ln2-2=1ln4-2<0.∴∃x1∈(e-a,e a),使f(x1)=0;∵f(e a+1)=-e2a+2-4<0,∴∃x2∈(e a,e a+1),f(x2)=0.∵f(x)在(0,e a)上单调递增,在(e a,+∞)上单调递减,∴∀x∈(0,+∞),x≠x1且x≠x2,易得f(x)≠0.∴当a>ln2时,f(x)有两个零点.感悟提升 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.4.(2022·全国乙卷节选)已知函数f(x)=ax-1x-(a+1)ln x,若f(x)恰有一个零点,求a的取值范围.解:由f(x)=ax-1x-(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).①当a=0时,f(x)=-1x-ln x,f′(x)=1-xx2,当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0,所以f(x)≤f(1)=-1<0,所以f(x)不存在零点;②当a<0时,f′(x)=a x-1a(x-1)x2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;③当a>0时,f′(x)=a x-1a(x-1)x2,(ⅰ)当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;(ⅱ)当a>1时,0<1a <1,故f(x)在0,1a,(1,+∞)上单调递增,在1a,1上单调递减.因为f(1)=a-1>0,所以f1a>f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在0,1a上必有一个零点,所以a>1满足条件;(ⅲ)当0<a<1时,1a >1,故f(x)在(0,1),1a,+∞上单调递增,在1,1a上单调递减.因为f(1)=a-1<0,所以f1a<f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在1a,+∞上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).题型三 构造函数法研究函数零点5.已知函数f(x)=e x-1+ax(a∈R).(1)当x≥0时,f(x)≥0,求a的取值范围;(2)若关于x的方程f(x)-ax+1e a=ln x+a有两个不同的实数解,求a的取值范围.解:(1)由题意,得f′(x)=e x+a.若a≥-1,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)≥f(0)=0,符合题意;若a<-1,令f′(x)<0,得x<ln(-a),∴f(x)在(0,ln(-a))上单调递减,∴当x∈(0,ln(-a))时,f(x)<f(0)=0,不符合题意.综上,a的取值范围为[-1,+∞).(2)法一 由f(x)-ax+1e a=ln x+a,得e x-a=ln x+a.令e x-a=t,则x-a=ln t,ln x+a=t,∴x+ln x=t+ln t.易知y=x+ln x在(0,+∞)上单调递增,∴t=x,得a=x-ln x.则原问题可转化为方程a=x-ln x有两个不同的实数解.令φ(x)=x-ln x(x>0),则φ′(x)=x-1 x,令φ′(x)<0,得0<x<1;令φ′(x)>0,得x>1,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=1,∴a≥1.当a=1时,易知方程1=x-ln x只有一个实数解x=1,不符合题意.下证当a>1时,a=x-ln x有两个不同的实数解.令g(x)=x-ln x-a(a>1),则g(x)=φ(x)-a,易知g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵g(e-a)=e-a>0,g(1)=1-a<0,∴g(x)在(e-a,1)上有一个零点.易知g(e a)=e a-2a,令h(a)=e a-2a,则当a>1时,h′(a)=e a-2>0,∴h(a)在(1,+∞)上单调递增,∴当a >1时,h (a )>h (1)=e -2>0,即g (e a )=e a -2a >0,∴g (x )在(1,e a )上有一个零点.∴当a >1时,a =x -ln x 有两个不同的实数解.综上,a 的取值范围为(1,+∞).法二 由f (x )-ax +1e a=ln x +a ,得e x =e a (ln x +a ),∴xe x =xe a (ln x +a ),即xe x =e a +ln x (ln x +a ).令u (x )=xe x ,则有u (x )=u (a +ln x ).当x >0时,u ′(x )=(x +1)e x >0,∴u (x )=xe x 在(0,+∞)上单调递增,∴x =a +ln x ,即a =x -ln x .下同法一.感悟提升 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.6.(2021·全国甲卷节选)已知a >0且a ≠1,函数f (x )=x a ax (x >0).若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.解:曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x 2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增;当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e )=1e ,且当x >e 时,g (x )∈0,1e ,又g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e )∪(e ,+∞).【A 级 基础巩固】7.已知函数f (x )=x -ae x ,a ∈R ,讨论函数f (x )的零点个数.解:f (x )=0等价于x -ae x =0,即x ex =a .设h (x )=x e x ,则h ′(x )=1-x ex ,当x <1时,h ′(x )>0,h (x )单调递增;当x >1时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1e.又当x <0时,h (x )<0;当x >0时,h (x )>0,且x →+∞时,h (x )→0,∴可画出h (x )大致图象,如图所示.∴当a ≤0或a =1e时,f (x )在R 上有唯一零点;当a >1e 时,f (x )在R 上无零点;当0<a <1e 时,f (x )在R 上有两个零点.8.(2024·青岛调研)已知函数f (x )=ln x +ax x,a ∈R .(1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解:若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln x x 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e )=1e.(2)证明 f ′(x )=1x +a x -ln x -ax x 2=1-ln x x 2,由(1)知,f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0,故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f 1e =a -e <0,f (e )=a +1e>0,且f (x )在(0,e )上单调递增,∴f (x )在(0,e )上有且只有一个零点,综上,当0<a <1时,f (x )有且只有一个零点.9.(2024·太原模拟节选)已知函数f (x )=xe x -x -1,讨论方程f (x )=ln x +m -2的实根个数.解;由f (x )=ln x +m -2,得xe x -x -ln x +1=m ,x >0,令h (x )=xe x -x -ln x +1,则h ′(x )=e x +xe x-1-1x =(x +1)(xe x -1)x(x >0),令m (x )=xe x -1(x >0),则m ′(x )=(x +1)·e x >0,∴m (x )在(0,+∞)上单调递增,又m 12 =e 2-1<0,m (1)=e -1>0,∴存在x 0∈12,1,使得m (x 0)=0,即e x 0=1x 0,从而ln x 0=-x 0.当x ∈(0,x 0)时,m (x )<0,h ′(x )<0,则h (x )单调递减;当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,则h (x )单调递增;∴h (x )min =h (x 0)=x 0e x 0-x 0-ln x 0+1=x 0·1x 0-x 0+x 0+1=2,又易知,当x →0+时,h (x )→+∞;当x →+∞时,h (x )→+∞.∴当m <2时,方程f (x )=ln x +m -2没有实根;当m =2时,方程f (x )=ln x +m -2有1个实根;当m >2时,方程f (x )=ln x +m -2有2个实根.【B 级 能力提升】10.(2024·郑州模拟节选)已知函数f (x )=ln (x +1)-x +1,g (x )=ae x -x +ln a ,若函数F (x )=f (x )-g (x )有两个零点,求实数a 的取值范围.解:函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根,即ln (x +1)-x +1=ae x -x +ln a 有两个实根,即e x +ln a +x +ln a =ln (x +1)+x +1有两个实根,即e x +ln a +x +ln a =e ln (x +1)+ln (x +1)有两个实根.设函数h (x )=e x +x ,则e x +ln a +x +ln a =e ln (x +1)+ln (x +1)⇔h (x +ln a )=h (ln (x +1)).因为h ′(x )=e x +1>0恒成立,所以h (x )=e x +x 在R 上单调递增,所以x +ln a =ln (x +1),x >-1,所以要使F (x )有两个零点,只需ln a =ln (x +1)-x 有两个实根.设M (x )=ln (x +1)-x ,则M ′(x )=-x x +1.由M ′(x )=-x x +1>0,得-1<x <0;由M ′(x )=-x x +1<0,得x >0,故函数M(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).故函数M(x)在x=0处取得极大值,也是最大值,且M(x)max=M(0)=0.易知当x→-1时,M(x)→-∞;当x→+∞时,M(x)→-∞.故要使ln a=ln(x+1)-x有两个实根,只需ln a<M(x)max=0,解得0<a<1.所以实数a的取值范围是(0,1).。
高考数学复习专题训练—利用导数研究函数的零点(含解析)

高考数学复习专题训练—利用导数研究函数的零点1.(2021·福建厦门月考)已知函数f (x )=x 3-43x 2e x 的定义域为[-1,+∞). (1)求f (x )的单调区间;(2)讨论函数g (x )=f (x )-a 在区间[-1,2]上的零点个数.2.(2021·江苏苏州月考)已知函数f (x )=x 2a -2ln x (a ∈R ,a ≠0). (1)求函数f (x )的极值;(2)若函数f (x )有两个零点x 1,x 2(x 1<x 2),且a=4,证明:x 1+x 2>4. 3.(2021·山东烟台期中)已知函数f (x )=ax+2ex +1(a ∈R ). (1)若函数f (x )在区间(1,+∞)上单调递增,求实数a 的取值范围; (2)当a ≠0时,讨论函数g (x )=f (x )-a-3的零点个数,并给予证明.4.(2021·山西太原三模)已知函数f (x )=a ln x-14x 2+b-ln 2的图象在点(2,f (2))处的切线方程为y=-12x+1. (1)求f (x )的单调区间;(2)设x 1,x 2(x 1<x 2)是函数g (x )=f (x )-m 的两个零点,求证:x 2-x 1<32-4m.5.(2021·广东佛山期末)已知函数f (x )=ln x-mx 有两个零点. (1)求m 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:f'(x 1+x 2)<0.6.(2021·山东实验中学模拟)已知函数f (x )=2e x sin x (e 是自然对数的底数). (1)求f (x )的单调区间;(2)记g (x )=f (x )-ax ,0<a<6,试讨论g (x )在区间(0,π)上的零点个数(参考数据:e π2≈4.8).答案及解析1.解 (1)f'(x )=x 3+53x 2-83x e x =x3(3x+8)(x-1)e x ,因为x ∈[-1,+∞),所以函数f'(x )的零点为0和1. 所以当0<x<1时,f'(x )<0; 当x>1或-1≤x<0时,f'(x )>0.所以f (x )的单调递减区间为(0,1),单调递增区间为[-1,0),(1,+∞).(2)由(1)知,f (x )在区间[-1,2]上的极大值为f (0)=0,极小值为f (1)=-e3.因为f (-1)=-73e ,f (-1)f (1)=7e 2<72.72<1,所以f (1)<f (-1)<0.f (2)=8e 23,由g (x )=0,得f (x )=a.故当a<-e3或a>8e 23时,g (x )的零点个数为0; 当a=-e 3或0<a ≤8e 23时,g (x )的零点个数为1;当-e3<a<-73e 或a=0时,g (x )的零点个数为2; 当-73e ≤a<0时,g (x )的零点个数为3. 2.(1)解 函数f (x )的定义域为(0,+∞),f'(x )=2xa −2x =2x 2-2aax. 当a<0时,f'(x )<0,所以f (x )在区间(0,+∞)上单调递减,所以f (x )在区间(0,+∞)上无极值;当a>0时,若x ∈(0,√a ),f'(x )<0,f (x )在区间(0,√a )上单调递减.若x ∈(√a ,+∞),f'(x )>0,f (x )在区间(√a ,+∞)上单调递增,故f (x )在区间(0,+∞)上的极小值为f (√a )=1-2ln √a =1-ln a ,无极大值. (2)证明 当a=4时,f (x )=x 24-2ln x.由(1)知,f (x )在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,x=2是函数f (x )的极值点.又x 1,x 2为函数f (x )的零点,所以0<x 1<2<x 2,要证x 1+x 2>4,只需证x 2>4-x 1.∵f (4-x 1)=(4-x 1)24-2ln(4-x 1)=x 124-2x 1+4-2ln(4-x 1),又f (x 1)=x 124-2ln x 1=0,∴f (4-x 1)=2ln x 1-2x 1+4-2ln(4-x 1). 令h (x )=2ln x-2x+4-2ln(4-x )(0<x<2),则h'(x )=2x -2+24-x=2(x -2)2x (4-x )>0,∴h (x )在区间(0,2)上单调递增,∴h(x)<h(2)=0,∴f(4-x1)<0=f(x2),又4-x1>2,x2>2,∴4-x1<x2,即x1+x2>4得证.3.解(1)f'(x)=a-2e x.由题意得f'(x)≥0,即a≥2e x在区间(1,+∞)上恒成立.当x∈(1,+∞)时,2e x∈0,2e,所以a≥2e.故实数a的取值范围为2e,+∞.(2)当a<0时,函数g(x)有且只有一个零点; 当a>0时,函数g(x)有两个零点.证明如下:由已知得g(x)=ax+2e x-a-2,则g'(x)=a-2e x=ae x-2e x.当a<0时,g'(x)<0,所以函数g(x)单调递减.又g(0)=-a>0,g(1)=2e-2<0,故函数g(x)有且只有一个零点.当a>0时,令g'(x)<0,得x<ln 2a,令g'(x)>0,得x>ln2a,所以函数g(x)在区间-∞,ln2a上单调递减,在区间ln 2a,+∞上单调递增,而g(ln2a)=a ln2a−2a<0,g(a+2a)=2ea+2a>0.由于x>ln x,所以a+2a>2a>ln2a,所以g(x)在区间ln2a,a+2a上存在一个零点.又g ln2a2+a+2=a a-ln a2+a+22,且ln2a2+a+2<ln2a,设h(a)=a-ln a2+a+22,则h'(a)=1-2a+1 a2+a+2=a2-a+1a2+a+2>0在区间(0,+∞)上恒成立,故h(a)在区间(0,+∞)上单调递增.而h(0)=0,所以h(a)>0在区间(0,+∞)上恒成立,所以g ln2a2+a+2>0,所以g(x)在区间ln2a2+a+2,ln2a上存在一个零点.综上所述,当a<0时,函数g(x)有且只有一个零点; 当a>0时,函数g(x)有两个零点.4.(1)解由题可知,函数f(x)的定义域为(0,+∞),f'(x)=ax −12x,又函数f(x)的图象在点(2,f(2))处的切线方程为y=-12x+1,所以{f(2)=0,f'(2)=-12,即{aln2-1+b-ln2=0,a2-1=-12,解得{a=1,b=1,所以f(x)=ln x-14x2+1-ln 2,f'(x)=1x−12x=2-x22x,当x∈(0,√2)时,f'(x)>0;当x∈(√2,+∞)时,f'(x)<0,所以函数f(x)的单调递增区间为(0,√2),单调递减区间为(√2,+∞).(2)证明由(1)得f(x)=ln x-14x2+1-ln 2(x>0),且f(x)在区间(0,√2)上单调递增,在区间[√2,+∞)上单调递减,由题意得f(x1)=f(x2)=m,且0<x1<√2<x2,∴x2-x1-32+4m=x2-x1-32+2(f(x2)+f(x1))=2ln x2+x2-12x22+2ln x1-x1-12x12+52-4ln 2.令t1(x)=2ln x+x-12x2,x>√2,则t1'(x)=(x+1)(x-2)-x,令t1'(x)>0,得√2<x<2;令t1'(x)<0,得x>2,∴t1(x)在区间(√2,2]上单调递增,在区间(2,+∞)上单调递减,∴t1(x)≤t1(2)=2ln 2.令t2(x)=2ln x-x-12x2,0<x<√2,则t2'(x)=(x+2)(x-1)-x,令t2'(x)>0,得0<x<1;令t2'(x)<0,得1<x<√2,∴t2(x)在区间(0,1)上单调递增,在区间[1,√2)上单调递减,∴t2(x)≤t2(1)=-32,∴x2-x1-32+4m≤t1(2)+t2(1)+52-4ln 2=1-2ln 2<0.∴x2-x1<32-4m.5.(1)解f'(x)=1x -m=1-mxx(x>0),当m≤0时,f'(x)>0,则f(x)在区间(0,+∞)上单调递增,至多有一个零点;当m>0时,若0<x<1m,则f'(x)>0,f(x)在区间0,1m上单调递增;若x>1m,则f'(x)<0,f(x)在区间1m,+∞上单调递减,∴f(x)在x=1m 处取得最大值,由题意得f(1m)=-ln m-1>0得0<m<1e,此时,有1m2>1 m >e>1,而f(1)=-m<0,f(1m2)=-2ln m-1m<0,∴由零点存在定理可知,f (x )在区间1,1m 和1m ,1m 2上各有一个零点.综上所述,m 的取值范围是0,1e .(2)证明 ∵x 1,x 2是f (x )的两个零点,不妨设x 1>x 2>0,∴ln x 1-mx 1=0①,ln x 2-mx 2=0②,①-②得ln x 1-ln x 2=mx 1-mx 2,即有m=ln x 1-ln x2x 1-x 2,由f'(x )=1x -m ,有f'(x 1+x 2)=1x 1+x 2-m=1x 1+x 2−ln x 1-ln x 2x 1-x 2, ∴要证f'(x 1+x 2)<0,即证ln x 1-ln x 2x 1-x 2>1x 1+x 2, 即证ln x 1-ln x 2>x 1-x2x 1+x 2,即证ln x1x 2−x 1x 2-1x 1x 2+1>0,即证ln x 1x 2+2x 1x 2+1-1>0,令x1x 2=t>1,设φ(t )=ln t+2t+1-1(t>1),则φ'(t )=t 2+1t (t+1)2>0,∴φ(t )在区间(1,+∞)上单调递增,则φ(t )>φ(1)=0, ∴f'(x 1+x 2)<0得证.6.解 (1)函数f (x )=2e x sin x 的定义域为R .f'(x )=2e x (sin x+cos x )=2√2e x sin x+π4.由f'(x )>0,得sin x+π4>0,可得2k π<x+π4<2k π+π(k ∈Z ),解得2k π-π4<x<2k π+3π4(k ∈Z ),由f'(x )<0,得sin x+π4<0,可得2k π+π<x+π4<2k π+2π(k ∈Z ),解得2k π+3π4<x<7π4+2k π(k ∈Z ).所以f (x )的单调递增区间为-π4+2k π,3π4+2k π(k ∈Z ),单调递减区间为3π4+2k π,7π4+2k π(k ∈Z ).(2)由已知g (x )=2e x sin x-ax ,所以g'(x )=2e x (sin x+cos x )-a ,令h (x )=g'(x ),则h'(x )=4e x cos x.因为x ∈(0,π),所以当x ∈0,π2时,h'(x )>0;当x∈π2,π时,h'(x)<0,所以h(x)在区间0,π2上单调递增,在区间π2,π上单调递减,即g'(x)在区间0,π2上单调递增,在区间π2,π上单调递减.g'(0)=2-a,g'(π2)=2eπ2-a>0,g'(π)=-2eπ-a<0.①当2-a≥0,即0<a≤2时,g'(0)≥0,所以∃x0∈π2,π,使得g'(x0)=0,所以当x∈(0,x0)时,g'(x)>0;当x∈(x0,π)时,g'(x)<0,所以g(x)在区间(0,x0)上单调递增,在区间(x0,π)上单调递减.因为g(0)=0,所以g(x0)>0.因为g(π)=-aπ<0,所以由零点存在定理可得,此时g(x)在区间(0,π)上仅有一个零点.②当2-a<0,即2<a<6时,g'(0)<0,所以∃x1∈0,π2,x2∈π2,π,使得g'(x1)=0,g'(x2)=0,且当x∈(0,x1),x∈(x2,π)时,g'(x)<0;当x∈(x1,x2)时,g'(x)>0.所以g(x)在区间(0,x1)和(x2,π)上单调递减,在区间(x1,x2)上单调递增.因为g(0)=0,所以g(x1)<0,因为g(π2)=2eπ2−π2a>2eπ2-3π>0,所以g(x2)>0,因为g(π)=-aπ<0,由零点存在定理可得,g(x)在区间(x1,x2)和(x2,π)内各有一个零点,即此时g(x)在区间(0,π)上有两个零点.综上所述,当0<a≤2时,g(x)在区间(0,π)上仅有一个零点;当2<a<6时,g(x)在区间(0,π)上有两个零点.。
《利用导数研究函数的零点问题》教学设计

《利用导数研究函数的零点问题》教学设计授课班级:某高二(文)班1.教学背景 1.1 学生特征分析我所试讲班级是长沟中学高二文班,学生的平均年龄在16-17岁,多数学生对于所识记的材料,在再认和回忆时,没有歪曲、遗漏、增补和臆测,初步具备在知觉某一事物时,能根据自己已有的知识、经验对事物加以解释和判断;具有一定的比较与分类思维,但是抽象概括及分析综合思维欠缺。
学生已经系统的复习了函数、导数的相关知识,学生了解函数零点的定义,会利用导数求函数的单调区间和极值。
对导数有了一定的理解,学习积极性比较高,利用导数这一工具对函数的性质研究比较好。
但是理性思维比较欠缺,对于处理含参问题的能力还有待提高,把新问题转化问已解决问题的能力有待提高,缺乏选择解决问题策略的能力。
由于是借班作课,师生接触少,师生之间的默契程度有待提高。
1.2教师特点分析自己教学中的优势:注重学生自主学习、善于与信息技术的整合、善于鼓励学生,能对学生进行有效指导。
不足:由于是借班作课,与学生有效沟通较少。
1.3 学习内容分析1、内容分析:导数是微积分的核心概念之一。
它是研究函数的单调性、最大(小)值等问题的最一般、最有效的工具,对我们描绘函数图象带来极大方便,高考对导数的考查重在导数的应用,如求函数的单调区间、极值最值、解决实际问题及与不等式的结合。
而利用导数对函数性质的研究有利于我们解决函数的零点问题。
近几年高考也出现了一些函数零点问题或可转化为函数零点问题的题目,今年北京文科就出现了这样的题目,所以本节课从三次函数出发探究函数零点问题,以简单的含参数函数零点问题为载体,引导学生利用导数讨论函数的单调性、极值、最值解决问题,突出数形结合思想、转化思想的应用。
2、例题分析:热身练习:求函数32()f x x x x =+-的单调区间和极值,并试求此函数的零点。
题目比较简单,学生可以独立完成,目的是让学生熟悉利用导数研究函数性质的基本过程; 思考题:函数32()1f x x x x =+-+的图像与x 轴有几个交点。
2023年高考数学总复习第三章 导数及其应用第5节:利用导数研究函数的零点问题(教师版)

2023年高考数学总复习第三章导数及其应用利用导数研究函数的零点问题题型一判断、证明或讨论函数零点的个数例1已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减.(2)证明由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a -1)=-6a 2+2a -13=-a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.感悟提升利用导数研究方程根(函数零点)的一般方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图像的走势规律,标明函数极(最)值的位置.(3)数形结合法分析问题,可以使问题的求解过程有一个清晰、直观的整体展现.训练1设函数f (x )=ln x +m x ,m 为正数.试讨论函数g (x )=f ′(x )-x 3零点的个数.解由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).转化为函数y =m 与y =-13x 3+x 的图像的交点情况.设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减,∴x =1是φ(x )唯一的极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图像(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;综上所述,当m >23时,函数g (x )无零点;当实数m =23时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二根据零点个数确定参数范围例2(2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x a ax (x >0).(1)当a =2时,求f (x )的单调区间;(2)若函数φ(x )=f (x )-1有且仅有两个零点,求a 的取值范围.解(1)当a =2时,f (x )=x 22x ,定义域为(0,+∞),f ′(x )=x (2-x ln 2)2x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0,则x >2ln 2,此时函数f (x )单调递减,所以函数f (x )(2)函数φ(x )=f (x )-1有且仅有两个零点,则转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增,当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e)=1e,且当x >e 时,g (x )g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e)∪(e ,+∞).感悟提升在解决已知函数y =f (x )有几个零点求f (x )中参数t 的取值范围问题时,经常从f (x )中分离出参数t =g (x ),然后用求导的方法判断g (x )的单调性,再根据题意求出参数t 的值或取值范围.解题时要充分利用导数工具和数形结合思想.训练2已知函数f (x )=ax -2ln x -a x(a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数h (x )=1-a 2x -f (x )2恰有两个不同的零点,求实数a 的取值范围.解(1)函数f(x)=ax-2ln x-ax的定义域是(0,+∞),求导可得f′(x)=a-2x+ax2=ax2-2x+ax2.当a≤0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减.当a≥1时,4(1-a2)≤0,此时f′(x)=ax2-2x+ax2≥0,故函数f(x)在(0,+∞)上单调递增.当0<a<1时,4(1-a2)>0,令f′(x)=0,得x1=1-1-a2a,x2=1+1-a2a,所以函数f(x)在(0,x1),(x2,+∞)上单调递增;在(x1,x2)上单调递减.综上所述,当a≤0时,函数f(x)在(0,+∞)上单调递减;当a≥1时,函数f(x)在(0,+∞)上单调递增;当0<a<1时,函数f(x)(1-1-a2a,1+1-a2a)上单调递减.(2)由题意得函数h(x)=1-a2x-f(x)2=1-a2x+ln x(x>0),则函数h(x)=1-a2xf(x)2恰有两个不同的零点即方程1-a2x+ln x=0恰有两个不同的根.由1-a2x+ln x=0得a=2(1+ln x)x,所以直线y=a与函数g(x)=2(1+ln x)x的图像有两个不同的交点.由g(x)=2(1+ln x)x,得g′(x)=-2ln xx2,当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,所以g(x)max=g(1)=2.又e-2<1,g(e-2)=2(1+ln e-2)e-2=-2e-2<0,x>1时,g(x)>0,所以实数a的取值范围为(0,2).题型三可化为函数零点的个数问题例3已知函数f(x)=ln x(0<x≤1)与函数g(x)=x2+a的图像有两条公切线,求实数a的取值范围.解设公切线与函数f(x)=ln x的图像切于点A(x1,ln x1)(0<x1≤1),因为f(x)=ln x,所以f′(x)=1 x,所以在点A(x1,ln x1)处切线的斜率k1=f′(x1)=1 x1,所以切线方程为y-ln x1=1x1(x-x1),即y=xx1+ln x1-1,设公切线与函数g(x)=x2+a的图像切于点B(x2,x22+a),因为g(x)=x2+a,所以g′(x)=2x,所以在点B(x2,x22+a)处切线的斜率k2=g′(x)=2x2,所以切线方程为y-(x22+a)=2x2(x-x2),即y=2x2x-x22+a,1x1=2x2,ln x1-1=-x22+a.因为0<x1≤1,所以1x1=2x2≥1,x2≥12.又a=-ln2x2+x22-1,令t=x2∈12,+∞,则h(t)=-ln2t+t2-1=-ln2-ln t+t2-1,所以h′(t)=2t2-1 t.令h′(t)>0且t≥12,得t>22;令h ′(t )<0且t ≥1,得12≤t <22.所以h (t )在12,所以函数f (x )=ln x (0<x ≤1)与函数g (x )=x 2+a 有两条公切线,满足h (t )≤ln2-12<h (t )≤-34,所以a ln 2-12,-34.感悟提升解决曲线的切线条数、两曲线的交点个数、方程根的个数等问题的关键是转化为对应函数的零点个数问题,利用数形结合思想,通过研究函数的零点个数解决相关问题.训练3已知函数f (x )=1+ln x x.(1)求函数f (x )的图像在x =1e 2处的切线方程(e 为自然对数的底数);(2)当x >1时,方程f (x )=a (x -1)+1x(a >0)有唯一实数根,求a 的取值范围.解(1)函数f (x )的定义域为(0,+∞),f ′(x )=-ln x x 2,所以f 2e 4,又e 2,所以函数f (x )的图像在x =1e2处的切线方程为y +e 2=2e 即y =2e 4x -3e 2.(2)当x >1时,f (x )=a (x -1)+1x,即ln x -a (x 2-x )=0.令h (x )=ln x -a (x 2-x ),有h (1)=0,h ′(x )=-2ax 2+ax +1x.令r (x )=-2ax 2+ax +1(a >0),则r (0)=1,r (1)=1-a ,①当a≥1时,r(1)≤0,r(x)在(1,+∞)上单调递减,所以x∈(1,+∞)时,r(x)<0,即h′(x)<0,所以h(x)在(1,+∞)上单调递减,故当x>1时,h(x)<h(1)=0,所以方程f(x)=a(x-1)+1x无实根.②当0<a<1时,r(1)=1-a>0,r(x)在(1,+∞)上单调递减,所以存在x0∈(1,+∞),使得x∈(1,x0)时,r(x)>0,即h(x)单调递增;x∈(x0,+∞)时,r(x)<0,即h(x)单调递减.所以h(x)max=h(x0)>h(1)=0.取x=1+1(x>2),则1+1a ln1+1a a1+1a+a1+1a ln1+1a-1+1a.令t=1+1a>0,故m(t)=ln t-t(t>2),则m′(t)=1t-1<0,所以m(t)在(2,+∞)单调递减,所以m(t)<ln2-2<0,即h 1+1a故存在唯一x1x0,1+1a,使得h(x1)=0.综上,a的取值范围为(0,1).隐零点问题在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫作隐零点;若x0容易求出,就叫作显零点,而后解答就可继续进行,实际上,此解法类似于解析几何中“设而不求”的方法.例1设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.解(1)f(x)的定义域为R,f′(x)=e x-a.当a≤0时,f′(x)>0恒成立,所以f(x)单调增区间为(-∞,+∞),无单调减区间.当a>0时,令f′(x)<0,得x<ln a,令f′(x)>0,得x>ln a,所以f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞). (2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+x+1e x-1(x>0)恒成立,令g(x)=x+1e x-1+x(x>0),得g′(x)=e x-1-(x+1)e x(e x-1)2+1=e x(e x-x-2)(e x-1)2(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点).当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=α+1eα-1+α.又h(α)=eα-α-2=0,所以eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.例2已知函数f(x)=(x-1)e x-ax的图像在x=0处的切线方程是x+y+b=0.(1)求a,b的值;(2)求证函数f(x)有唯一的极值点x0,且f(x0)>-32.(1)解因为f′(x)=x e x-a,由f′(0)=-1得a=1,又f(0)=-1,所以切线方程为y-(-1)=-1(x-0),即x+y+1=0,所以b=1.(2)证明令g(x)=f′(x)=x e x-1,则g′(x)=(x+1)e x,所以当x<-1时,g(x)单调递减,且此时g(x)<0,则g(x)在(-∞,-1)内无零点;当x≥-1时,g(x)单调递增,且g(-1)<0,g(1)=e-1>0,所以g(x)=0有唯一解x0,f(x)有唯一的极值点x0.由x0e x0=1⇒e x0=1 x0,f(x0)=x0-1x0-x0=1x又=e2-1<0,g(1)=e-1>0⇒12<x0<1⇒2<1x0+x0<52,所以f(x0)>-3 2 .1.已知函数f(x)=e x+(a-e)x-ax2.(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数a的取值范围.解(1)当a=0时,f(x)=e x-e x,则f′(x)=e x-e,f′(1)=0,当x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=0,无极大值.(2)由题意得f′(x)=e x-2ax+a-e,设g(x)=e x-2ax+a-e,则g′(x)=e x-2a.若a=0,则f(x)的最大值f(1)=0,故由(1)得f(x)在区间(0,1)内没有零点.若a<0,则g′(x)=e x-2a>0,故函数g(x)在区间(0,1)内单调递增.又g(0)=1+a-e<0,g(1)=-a>0,所以存在x0∈(0,1),使g(x0)=0.故当x∈(0,x0)时,f′(x)<0,f(x)单调递减;当x∈(x0,1)时,f′(x)>0,f(x)单调递增.因为f(0)=1,f(1)=0,所以当a<0时,f(x)在区间(0,1)内存在零点.若a>0,由(1)得当x∈(0,1)时,e x>e x.则f(x)=e x+(a-e)x-ax2>e x+(a-e)x-ax2=a(x-x2)>0,此时函数f(x)在区间(0,1)内没有零点.综上,实数a的取值范围为(-∞,0).2.设函数f(x)=12x2-m ln x,g(x)=x2-(m+1)x,m>0.(1)求函数f(x)的单调区间;(2)当m≥1时,讨论f(x)与g(x)图像的交点个数.解(1)函数f(x)的定义域为(0,+∞),f′(x)=(x+m)(x-m)x.当0<x<m时,f′(x)<0,函数f(x)单调递减;当x>m时,f′(x)>0,函数f(x)单调递增.综上,函数f(x)的单调递增区间是(m,+∞),单调递减区间是(0,m).(2)令F(x)=f(x)-g(x)=-12x2+(m+1)x-m ln x,x>0,题中问题等价于求函数F(x)的零点个数.F′(x)=-(x-1)(x-m)x,当m=1时,F′(x)≤0,函数F(x)为减函数,因为F(1)=32>0,F(4)=-ln4<0,所以F(x)有唯一零点;当m>1时,0<x<1或x>m时,F′(x)<0;1<x<m时,F′(x)>0,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增,因为F(1)=m+12>0,F(2m+2)=-m ln(2m+2)<0,所以F(x)有唯一零点.综上,函数F(x)有唯一零点,即函数f(x)与g(x)的图像总有一个交点.3.已知函数f(x)=(x-1)e x-ax2+b+12.(1)若a=1,求函数f(x)的单调区间;(2)当a=12时,f(x)的图像与直线y=bx有3个交点,求b的取值范围.解(1)当a=1时,f(x)=(x-1)e x-x2+b+12(x∈R),则f′(x)=e x+(x-1)e x-2x=x(e x-2).令f′(x)>0,解得x<0或x>ln2;令f′(x)<0,解得0<x<ln2,所以函数f(x)的单调递增区间为(-∞,0)和(ln2,+∞),单调递减区间为(0,ln2).(2)因为a=12,所以f(x)=(x-1)e x-12x2+b+12.由(x-1)e x-12x2+b+12=bx,得(x-1)e x-12(x2-1)=b(x-1).当x=1时,方程成立.当x≠1时,只需要方程e x-12(x+1)=b有2个实根.令g(x)=e x-12(x+1),则g′(x)=e x-12.当x <ln 12时,g ′(x )<0,当x >ln 12且x ≠1时,g ′(x )>0,所以g (x )∞,ln 12,(1,+∞)上单调递增,因为=12-12+=12ln 2,g (1)=e -1≠0,所以b 2,e -(e -1,+∞).4.已知函数f (x )=ax cos x -1在0,π6上的最大值为3π6-1.(1)求a 的值;(2)证明:函数f (x )2个零点.(1)解f ′(x )=a (cos x -x sin x ),因为x ∈0,π6,所以cos x >sin x ≥0,又1>x ≥0,所以1·cos x >x sin x ,即cos x -x sin x >0.当a >0时,f ′(x )>0,所以f (x )在区间0,π6上单调递增,所以f (x )max =a ·π6×32-1=3π6-1,解得a =2.当a <0时,f ′(x )<0,所以f (x )在区间0,π6上单调递减,所以f (x )max =f (0)=-1,不符合题意,当a =0时,f (x )=-1,不符合题意.综上,a =2.(2)证明设g (x )=cos x -x sin x ,则g ′(x )=-2sin x -x cos x x所以g (x )又g (0)=1>0,=-π2<0,所以存在唯一的x0g(x0)=0,当0<x<x0时,g(x)>0,即f′(x)=2g(x)>0,所以f(x)在(0,x0)上单调递增;当x0<x<π2时,g(x)<0,即f′(x)=2g(x)<0,所以f(x)0又f(0)=-1<0,=2π4-1>0,1<0,所以f(x)综上,函数f(x).。
高考微专题三 利用导数研究函数的零点

22
规律总结
根据函数零点的情况求参数值或取值范围的基本方法:①利用零点存在定理构建不 等式求解;②分离参数后转化为函数的值域(最值)问题求解;③转化为两个熟悉的函数图 象的位置关系问题,从而构建不等式求解.
返回导航
23
【对点训练 2】 (1)(2020·全国Ⅰ卷节选)已知函数 f (x)=ex-a(x+2).若 f (x)有两个 零点,求 a 的取值范围.
返回导航
20
当 a=1 时,f ′(x)=x-x212≥0,所以 f (x)单调递增,又 f (1)=a-1=0,所以 f (x)有 唯一零点,符合题意;
当 a>1 时,1a<1,在0,1a,(1,+∞)上,f ′(x)>0,f (x)单调递增; 在1a,1上,f ′(x)<0,f (x)单调递减,此时 f (1)=a-1>0, 易证当 0<x<1 时,
2
a2-4a, a2-4a .
2
②由①可知:
a.当 a≤4 时,函数 f (x)单调递增,又由 f (1)=0,可得此时函数只有一个零点为 x
x1x2=1>0,x2>x1,可得 0<x1<1<x2,又由 f (1)=0,由函数的单调 性可知 f (x1)>f (1)=0,f (x2)<f (1)=0,
解:①函数 f (x)的定义域为(0,+∞),f ′(x)=1x-x+a12=x2+x2x-+a1x2+1, 在一元二次方程 x2+(2-a)x+1=0 中,Δ=(2-a)2-4=a2-4a=a(a-4), a.当 a<0 时,f ′(x)>0,此时函数 f (x)单调递增,增区间为(0,+∞),没有减区间;
高考数学专题一 微专题8 利用导数研究函数零点问题

④当x∈(π,+∞)时,ln(x+1)>1, 所以f(x)<0,从而f(x)在(π,+∞)上没有零点. 综上,f(x)有且仅有2个零点.
跟踪训练1 (2023·常德模拟)已知函数f(x)=x2+2-aln x(a∈R). x
(1)若f(x)在x=2处取得极值,求f(x)在点(1,f(1))处的切线方程;
因为 f(x)=x2+2x-aln x,x>0,
2x3-ax-2
所以 f′(x)= x2
(x>0),
令g(x)=2x3-ax-2,则g′(x)=6x2-a,
由 a>0,g′(x)=0,可得 x= a6,
所以 g(x)在0,
a6上单调递减,在
a6,+∞上单调递增,
由于 g(0)=-2<0,故当 x∈0,
a6时,g(x)<0,
又g(1)=-a<0,故g(x)在(1,+∞)上有唯一零点,设为x1,
从而可知f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,
由于f(x)有唯一零点x0,故x1=x0,且x0>1,
所以有 2x30-ax0-2=0,x20+x20-aln x0=0,
联立得 2ln x0-x30-3 1-1=0,
(*)
令 h(x)=2ln x-x3-3 1-1,可知 h(x)在(1,+∞)上单调递增,
由于 h(2)=2ln 2-170<2×0.7-170<0,h(3)=2ln 3-2296>2×1-2296>0, 故方程(*)的唯一解,即f(x)的唯一零点x0∈(2,3),故[x0]=2.
考点二 由零点个数求参数范围
③若a<-1, (ⅰ)当x∈(0,+∞)时, 则g′(x)=ex-2ax>0, 所以g(x)在(0,+∞)上单调递增, 又g(0)=1+a<0,g(1)=e>0, 所以存在m∈(0,1), 使得g(m)=0,即f′(m)=0, 当x∈(0,m)时,f′(x)<0,f(x)单调递减, 当x∈(m,+∞)时,f′(x)>0,f(x)单调递增, 所以当x∈(0,m)时,f(x)<f(0)=0,
专题05 利用导数研究函数零点问题 (解析版)

导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法总结
主线:构造函数—>求导数—>画出函数草图—>数形结合 支线:整体构造、参数分离、拆分函数、简化函数 主线是通法,支线是技巧;技巧可以做为通法的补充。
03 变式探究
变式探究1:讨论关于������的方程������������������ = ������ + ������的根的个数
������
−
2
ln
������
−
������有唯一零点,
求证:������ ∈ (0 , 1)
解:������ ������ 定义域为(0 , +∞),求导得������′ ������
=
1−ln ������−2������ ������2
方程1 − ln ������ − 2������ = 0 实根求不出也看不出
∴ ������ ������ 在������ = 1处取最大值������ 1 = −������ − 1 如果������ 1 > 0,是不是一定有两个零点?
1° ������ > −1时,������ ������ ≤ ������ 1 < 0, ∴ ������(������)无零点,即原方程无根
∴ ������ ∈ (0 , 1)时,1 − ln ������ − ������2 > − ln ������ > 0,即������′ ������ > 0,������(������)单调递增
������ ∈ (1 , +∞)时,1 − ln ������ − ������2 < − ln ������ < 0,即������′ ������ < 0,������(������)单调递减
2° ������ = −1时,������(������)仅在������ = 1处有唯一零点,即原方程有唯一根
3° ������ < −1时,������ 1 = −������ − 1 > 0,且
������ ������������
=
������ ������������
−
������������
又������ ������ 在区间(1 , +∞)内单调递减,∴ ������ ������ 在区间(1 , +∞)内有唯一零点
综上,������ > −1时方程无根,������ = −1时方程有唯一根,������ < −1时方程有两根
变式探究2:若函数������ ������
=
ln������ ������
解:令������ ������
=
ln ������ ������
−
������
−
������,则������
������
定义域为(0 , +∞)
������′ ������
1 − ln ������ − ������2
=
������2
方程1 − ln ������ − ������2 = 0求不出根怎么办
������
3. 转化为������ = ln ������和������ = ������������图像交点问题,围绕相切情况讨论
例1:( 2)若������ < ������,试确定������ ������ = ������ ∙ ������������−������ − ������������的零 点个数
支线:整体构造、参数分离、拆分函数、简化函数 猜根,先猜后证 设而不求,整体代入 零点存在性定理 数形结合找思路
∴ ������ ������ 在������ = ������0处取最大值
又 ln ������0 = 1 − 2������0, ∴ ������ ������0
=
ln ������0 ������0
−
2
ln
������0
−
������
=
1 ������0
+
4������0
−
4
−
������
令������ ������
=
1 ������
+ 4������
− 4,则������′
������
=
4������2 − 4������2
1
,
∴ ������ ∈
1 2 ,1
时������′ ������
> 0,������(������)递增, ∴ ������(������0) ∈ (0 , 1)
∴ 当������ = ������ ������0 时,������ ������0 = 0,此时������ ∈ (0 , 1),且������(������)有唯一零点,符合题意
令������1 = min
������������ , 1
3
,则������ ������1
=
1 −2
������1
∙ ln������1 − ������ ≤ ln ������1 − ������ ≤ 0
∴ ������ ������ 在区间[������1 , ������0)和区间(������0 , ������−������]各有一个零点,不合题意
1° 若������ ≤ 0,则������ ������0
1 = ������0 + 4������0 − 4 − ������ > −������ ≥ 0
又������ ������−������ = −������ ������������ − 2 − ������ ≤ −������ ������0 − 2 − ������ ≤ 0
此时������ ������ > ������ 1 = 0,������(������)无零点
������ ∈ (������0 , +∞)时,������ ������ < 0,即������′ ������ < 0,������(������)单调递减
令ℎ ������ = ln ������ − ������,则������ > 1时,ℎ′ ������ = 1 − 1 < 0, ∴ ℎ ������ < ℎ 1 < 0
−
������
<
������
1 ������������ − 1
<0
又������ ������ 在区间 (0 , 1)内单调递增,∴ ������ ������ 在区间 (0 , 1)内有唯一零点
令������ ������ = ������ − ln ������,则������′ ������ = 1 − 1
������
∴ ������
1+1
������
=
ln(1+���1���) 1+���1���
−
1
=
ℎ 1+���1��� 1+���1���
<0
又������ ������0
> 0, ∴ ������(������)在区间
������0
,1
+
1 ������
存在唯一零点
综上,������ ≤ 0或������ ≥ 1时������(������)无零点,0 < ������ < 1时������(������)存在唯一零点
∴ ������ ∈ (0 , ������0)时,������ ������ > 0,即������′ ������ > 0,������(������)单调递增
∴ ������ ∈ (������0 , +∞)时,������ ������ < 0,即������′ ������ < 0,������(������)单调递减
2° 若������ ≥ 1,则������ ������0 < 1 − ������ ≤ 0,������(������)无零点,不合题意
综上,当������(������)有唯一零点时,������ ∈ (0 , 1)
变式探究3:当������ > ������时,讨论������ ������
令������ ������ = 1 − ln ������ − 2������,则������ ������ 单调递减,且������ 1 = ln 2 > 0,������ 1 = −1 < 0
2
∴ 存在唯一的������0 ∈ (12 , 1),使得������ ������0 = 0,即1 − ln������0 − 2������0 = 0
=
ln ������ ������
−
������(������
−
1)零点个数
思路分析:求导后������′(������)含参数且不可解怎么办?
解:1° 当������ ≥ 1时,������′ ������
=
1−ln ������2
������
−
������
≤
1−ln ������−������2 ������2