物理群论及应用
群论的应用

群论的基础及应用第二章群论的应用2.1图论的结构群应用在所有数学分支以及计算科学中,结构的概念是最基本的,以不正式的角度看,一个结构s 是在点集U 的一个construction r,它由一对点集组成。
图 2.1通常说,U 是结构s 的底图集,图2.1描述了两个结构的例子:一个e有根树,和一个有向圈。
在集合论上,题中的树可以描述为s=(γ,xU ),其中U={a,b,c,d,e,f},γ=({d},{{d,a},{d,c},{c,b},{c,f},{c,e}})出现在γ上第一部分的根点{d}指的是树的根节点。
对于有向圈它可以写成形式为s=(γ, U),其中U={x ,4,y,a,7,8},γ={(4,y)(y,a)(a,x)(x,7)(7,8)(8,4)}U={a ,b, c,d,e,f}图 2.2考虑有根树s=(γ, U)它的底图集是U,通过图2.2 中的σ变换,将U 中每一个元素替换成V 中的元素,这幅图清晰的显示了变换中如何将结构树s 对应到集合V 上相应的树t=(,V),我们说树t 可以由树s通过变换σ得到。
记作t=σ· s.则树s和树t是同构的,σ叫做s到t 的同构。
我们可以将底图的点视为无标记的点,这样就得到同构图的通用形式。
如果σ是U 到U,则它是自同构。
此时树的变换σ· S 等价于树s,即s=σ· s.我们已经知道结构s的定义,那么可以定义它在规则F下的结构群,我们用F[U]表示集合U 上所有满足F的结构F[U]={f|f= (γ, U),γ [U]}其中[U]表示U 中所有未排序的元素对所组成的边。
一个结构群满足规则F:1.对任意一个有限集U,都存在一个有限集F[U]2.对每一个变换:U→V,存在一个作用F[ ]:F[U]到F[V] 进一步F[ ]满足下列函数性质:1.对所有的变换:U→ V 和:V →WF[ · ]=F[ ]· F[ ] ;2.对恒等映射一个元素s数域F[U]叫做U 上的一个F 结构,作用F[ ]称为F 结构在下的变换。
物理学中的群论基础第一章

平面上所有平移的集合 平面上所有平移的集合 √ 平面上以一个定点为中心的所有旋转的集合 平面上以一个定点为中心的所有旋转的集合 平面上所有轴反射的集合 平面上所有轴反射的集合
√
a1 a2
×
1.1.2正方形的对称性群 正方形的对称性群 (1)平面上正方形 )平面上正方形ABCD的对称变换群 的对称变换群
B
A
A
B
6 :
C B D A D D C A
7:
C B D A C B B C
8 :
C D A D
(2)S(K)中的运算举例 ) 中的运算举例
2 1 = 2
B A B A A D
2π π
C D
1
C
2π π
D
2
B
——
π 2
C
2 5 = 7
B A C D D A
5
C D B A
2
C
B
(3)S(K)中的幺元 ) 中的幺元
生成一个群, 例:由元素A生成一个群,只要求 n=E,n是满足此关系式的最 由元素 生成一个群 只要求A , 是满足此关系式的最 小正整数. 小正整数. 由于A是群中的一个元素,所有它的整数幂必定也在这个群中. 由于 是群中的一个元素,所有它的整数幂必定也在这个群中. 是群中的一个元素 故可以生成群的新元素, , 故可以生成群的新元素,A2,A3,…,直到 n=E,更高次幂不能 ,直到A , 给出新元素,因为A 所求得群, 给出新元素,因为 n+k= Ak.所求得群,故所求得群阶为 所求得群 故所求得群阶为n. 生成一个群, 例:由两元素A和B生成一个群,只要求 2=B3=(AB)2=E. 由两元素 和 生成一个群 只要求A 由于A 由于 2=E和B3=E,此群必包含元素 ,A,B,B2. 它一定也包 和 ,此群必包含元素E, , , 含所有A,B和B2的乘积. 因此得到两个新元素AB和BA. A和B不 含所有 , 和 的乘积 因此得到两个新元素 和 和 不 对易,否则由(AB)2=E将得到 对易,否则由 将得到 E=ABAB=A2B2=B2. ABAB= AB 和BA是不同的元素. 由此生成6个元素E, A, B, B2, AB, BA. BA是不同的元素 由此生成6个元素E 是不同的元素. AB, 可以证明,这个集合是一个群,即它对乘法是封闭的. 可以证明,这个集合是一个群,即它对乘法是封闭的.
群论及其在物理学中的应用

群论及其在物理学中的应用1. 群论的定义和基本概念群论是一种研究代数结构的数学分支,其中的群是一个由元素和一个二元操作组成的代数结构。
群的核心理念是封闭性,也就是说,任何两个群的元素的乘积都必须属于该群内。
群还具有唯一的单位元素,让任何元素加上单位元素都等于该元素本身;并且群中任何元素都有一个相应的逆元素,使得该元素和它的逆元素的乘积等于单位元素。
2. 群论在物理学中的应用群论在物理学中有着广泛的应用。
其中最重要的应用之一是研究对称性。
物理学中的许多问题都与对称性有关,例如粒子的自旋,电荷守恒等等。
而这些问题都可以用群论来描述。
在量子场论中,对称性群被广泛用于描述基本粒子之间的相互作用。
另一个群论在物理学中的应用是费米子测度。
费米子是具有半整数自旋的粒子,例如电子,中子等等。
由于费米子有一个独特的量子性质,所以它们的变换规则与量子场论和量子力学中的其他粒子有所不同。
这些规则可以通过对称性群来描述。
3. 群论在宇宙学中的应用群论在宇宙学中也有重要的应用。
宇宙学中的许多问题都与宇宙的结构和演化有关,例如宇宙大尺度结构,星系形成等等。
通过对这些问题的研究,我们可以了解宇宙的形成和演化历程。
群论被广泛用于描述这些宇宙结构的对称性,从而提供了关于宇宙演化的更深入的理解。
4. 群论的未来研究方向未来的群论研究将更加关注代数拓扑的交叉作用。
随着数学的发展和现代物理学和宇宙学的需求,群论的应用和研究将会越来越广泛和深入。
我们可以期待看到更多的新颖应用和创新性方法的发展,让我们更深刻地理解物理学和宇宙学中复杂的现象和问题。
群论及其应用

群论及其应用
群论是一门研究群与群之间关系的数学分支,它包含了群的定义、性质以及群之间的映射等内容。
群论的应用非常广泛,涉及到许多领域,如物理学、化学、计算机科学等。
本文将从几个具体的应用角度来介绍群论的相关内容。
一、物理学中的群论应用
物理学是群论最早应用的领域之一。
在量子力学中,对称性和群论有着密切的联系。
通过研究粒子的对称性,可以得到许多重要的结论。
例如,角动量算符的对易关系可以通过群论的方法导出,从而得到粒子的角动量量子化条件。
此外,群论还可以用来描述粒子的内禀对称性,如同位旋对称性、荷共轭对称性等。
二、化学中的群论应用
在化学中,对称性和群论有着重要的地位。
通过对分子的对称性进行分析,可以预测分子的性质和反应。
群论可以用来描述分子的对称元素、对称操作和对称操作的代数性质。
通过对分子的对称性进行分类,可以预测分子的振动谱和光谱,从而得到关于分子结构和性质的信息。
三、计算机科学中的群论应用
在计算机科学中,群论被广泛应用于密码学和编码理论。
群论可以用来描述密码系统的对称性和置换操作。
通过研究群的性质,可以设计出高效、安全的密码算法。
此外,群论还可以用来研究编码理
论中的纠错码和分组密码等问题。
群论是一门重要的数学分支,具有广泛的应用领域。
无论是在物理学、化学还是计算机科学中,群论都发挥着重要的作用。
通过研究群的性质和对称性,可以得到许多重要的结论和应用。
因此,深入理解和应用群论对于相关领域的研究和发展具有重要意义。
物理学中的对称性与群论

物理学中的对称性与群论近代物理学的发展给我们揭示了许多宇宙的奥秘,其中一个重要的思想就是对称性与群论。
对称性是指物理系统在某种变换下保持不变的性质,而群论则是研究对称性的数学工具。
在物理学中,对称性和群论的研究既为理论模型的构建提供了基础,也为实验结果的解释提供了重要线索。
对称性在物理学中扮演着至关重要的角色。
它不仅仅是美丽和优雅的数学概念,更是揭示了物理规律的基本性质。
物理系统的对称性可以分为几个方面,例如空间对称性、时间对称性和粒子对称性等。
其中最为著名的是空间对称性,即物理系统在空间变换下保持不变。
这包括平移、旋转和反射等变换。
通过研究系统的对称性,我们可以揭示其内在的物理规律和守恒量。
例如,根据空间平移对称性,我们可以推导出动量守恒定律;根据空间旋转对称性,我们可以推导出角动量守恒定律。
这些守恒定律是物理学中最基本的定律之一,无论是描述微观粒子还是宏观物体,都是普适适用的。
对称性的研究需要借助群论这一数学工具。
群论是研究集合上的变换和运算规律的数学分支。
通过将变换和运算抽象化,我们可以根据其性质将它们归类为不同的群。
而对称性的数学表达正是通过群的概念来进行描述的。
一个物理系统的对称性可以表示为它所对应的变换群的性质。
例如,一个物理系统具有旋转对称性,那么它所对应的变换群就是旋转群。
通过研究变换群的性质,我们可以揭示物理系统的对称性,并进一步推导出关于该系统的物理定律。
群论在物理学领域的应用非常广泛。
举例来说,对称性和群论在粒子物理学中扮演着重要角色。
粒子物理学研究的是构成宇宙的基本粒子和相互作用的规律。
通过对粒子物理模型的对称性进行研究,科学家们发现了许多物理规律,例如电荷守恒、弱力相互作用和强力相互作用等。
这些规律的背后都是对称性的数学表达。
通过群论的方法,科学家们建立了众多的粒子物理模型,并通过实验验证了它们的正确性。
这些成果不仅丰富了对物理规律的认识,也为我们解释宇宙的奥秘提供了有力工具。
群论-三维转动群

物理学中的群论——三维转动群主讲翦知渐群论-三维转动群第四章三维转动群三维转动群的表示4.1 维转动群的表示§拓扑群和李群42§4.2轴转动群SO (2)§4.3 三维转动群SO (3)§4.4二维特殊幺正群SU (2)§4.1拓扑群和李群连续群的基本概念1拓扑群无限群分为分立无限群和连续无限群有关有限群的理论对于分立无限群来说几乎全部成立定义4.1 连续群的维数, a2, …, a n所标明连续群G的元素由一组实参数a1其中至少有一个参数在某一区域上连续变化,且该组参数对标明群的所有元素是必需的而且足够的则该组参数中连续参数的个数l 称为连续群的维数。
在具体的群中,参数的取法可能不唯一例子如下的线性变换T(a,b)x'= T(a,b)x = ax +b,a,b∈(-∞,+∞), a≠0构成的集合,定义其上的乘法为:T(a1,b1)T(a2,b2)x = T(a1a2, a1b2+b1)x,b b T封闭律是显然的逆元素为T-1(a,b) = T(1/a, -b/a) ,单位元是T(1,0)结合律也容易证明因此{T(a,b)}构成个连续群。
构成一个连续群。
由于群元素的连续性质,需要在群中引入拓扑由于群元素的连续性质需要在群中引入简单说拓扑是个集子集族简单地说,拓扑是一个集合以及它的子集族拓扑学研究的是某个对象在连续变形下不变的性质为简单起见,我们仅讨论其元素可与l 维实内积空间的某个子有对应关系的群有一一对应关系的群集Sl该子集称为参数空间定义4.2 拓扑群群元的乘法法则和取逆法则在群的所有元素处都连续的群,称为拓扑群定义4.3 简单群和混合群拓扑群G的任意两个元素x1和x2在参数空间中如果能用一条或者多条道路连接(道路连通),则该群的参数空间是连通的,该群称为连通群或简单群。
若群的参数空间形成不相连结的若干片,则该群称为混合群。
前者如三维转动群SO(3),后者如三维实正交群O(3)。
群论及其在粒子物理中的应用

群论,作为数学的一个分支,主要研究的是对称性、不变性和变换等概念。 在物理学中,这些概念同样至关重要。通过群论的方法,我们可以更好地理解和 描述粒子的性质和行为。例如,通过群论,我们可以了解到不同种类的粒子如何 在相互作用中保持其固有的特性。
在书中,作者高崇寿以其独特的视角,将群论与粒子物理学紧密结合,展现 了这一理论在物理学中的广泛应用。从基本粒子的分类,到量子场论中的对称性, 再到强子物理中的许多现象,群论都在其中发挥了核心作用。通过具体的实例和 详细的解释,这本书使读者更好地理解了群论在物理学中的重要性。
内容摘要
这一部分详细介绍了量子场论的基本原理,并解释了如何使用群论方法来研究量子场论中的问题, 如对称性、守恒定律等。本书还讨论了群论方法在量子计算和量子信息中的应用,这些应用展示 了群论在量子领域中的重要性和广泛性。 《群论及其在粒子物理中的应用》这本书是一本关于群论及其在物理学中应用的重要参考书籍。 它不仅提供了深入的理论知识,还通过具体实例展示了群论在解决实际问题中的威力。对于从事 物理学、数学和相关领域的研究人员来说,这本书无疑是一本宝贵的资源。
作者简介
作者简介
这是《群论及其在粒子物理中的应用》的读书笔记,暂无该书作者的介绍。
感谢观看
《群论及其在粒子物理中的应用》这本书的摘录展示了群论在物理学中的广 泛应用和重要性。通过使用群论,我们可以从更高的角度理解自然界的规律,从 而更好地探索未知的物理现象。这本书对于对物理学和数学感兴趣的人来说是一 本必读的经典著作。
阅读感受
阅读《群论及其在粒子物理中的应用》是一次非常独特的学术体验,这本书 以其深入浅出的方式,介绍了群论这一重要的数学工具在粒子物理学中的应用。 作为物理专业的学生,我在阅读过程中收获了许多新的知识和观点,对于物理学 和数学的关系有了更深入的理解。
物理学中的群论_2版(马中骐著)PPT模板

03 附 录 2 1 第七章定理 04 附 录 2 2 半单李代数
一的解释
的卡西米尔算子
05 附 录 2 3 半单李代数 06 附 录 2 4 SU(3) 群 的李
的紧致实形
代数
附录26SU(N)群自身表示 生成元的反对易关系
附录28辛群独立实参数的 数目
附录30克莱布施-戈登系 数的对称性质
覆盖群
05 * 4 . 5 李 氏定理
02 4 . 2 李 群的 基本概
念
04 4 . 4 S U (2 ) 群的不等
价不可约表示
06 4 . 6 克 莱布 施-戈登
系数
第四章三维转动群
4.7张量和旋量 4.8不可约张量算符及其矩阵元 习题
05
第五章晶体的对称性
第五章晶体 的对称性
06
习题
01
物理学中的群论|2版(马中骐著)
演讲人
202X-11-11
01
第一章线性代数复习
A
1.1线性 空间和矢
量基
第一章线性代数复习
B
1.2线性 变换和线
性算符
C
1.3相似 变换
D
1.4本征 矢量和矩 阵对角化
E
1.5矢量 内积
F
1.6矩阵 的直接乘
积
第一章线
性代数复
习题
习
02
第二章群的基本概念
3.6物理应 用
3.4有限群 的不等价不
可约表示
*3.5分导表 示和诱导表
示
3.1群的线 性表示
3.2标量函 数的变换算
符
3.3等价表 示和表示的
幺正性
第三章群的线性表示理论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如:
G1 {E, C3, C32} C3
G2 {E, h} Cs
定义直积
G G1 G2
{E, C3, C32}{E, h} {E, C3, C32 , h , C3 h , C32 h} C3h
直积群有如下性质: 1、各个直因子的共同元素只有单位元素。 2、各个直因子都是G的不变子群
(4)群中二个不同类没有共同元素 (从传递性可以证明)
(5)单位元素自成一类 因为
E AEA1 EAA1 EE E
(6)对易群每个元素自成一类 对易因群为 : AB=BA
A1BA BA1 A BE B
(7)一个类中所有元素都有相同的周期
a 什么是周期? An E
(则n 称为A的周期)
2、AB与BA有相同的特征标 (AB BA)
证明:
xAB cii
aij b ji
i
i
j
Байду номын сангаас
xBA d jj
b ji aij
b ji aij
aij b ji xAB
j
ji
i
j
i
j
3、共轭矩阵特征标相同
B X 1 AX
xB bii
X
a 1
ij
jk
X
ki
i
i jk
G' {E', B1, B2 , , Bn )
若G中任何一个元素都可以在G’中找到一个元素和他对应, 并满足下列性质
Ai Bi Ak Bk 则:
( Bi ,Bk 不一定不同)
Ai Ak Bi Bk
称G与G’同态。
六 特征标(实为矩阵内容,群通过矩阵表示)
1、定义:(矩阵的迹)
x aii
五 同构与同态
1、同构:设有两个同阶的群:
G {E, A1, A2 , , Am )
G' {E', B1, B2 , , Bm )
它们的元素之间一一对应并满足下列性质
则:
Ai Bi
Ai Ak Bi Bk
Ak Bk
称G与G’同构。
2、同态:设有两个不同阶的群:
G {E, A1, A2 , , Am )
3)共轭元素的性质
(1)每个元素自身共轭。A X 1 AX (为什么?)(X=E)
(2)A与B共轭,则B与A共轭(相互)
A X 1BX
B XAX 1 Y 1 AX
(3)A与B共轭,A与C共轭,则B与C共轭。(传递性)
A X 1BX
A Y 1CY ZCZ 1
B XAX 1 XZCZ 1 X 1 ( XZ )C( XZ )1
X
ki
X
a 1
ij
jk
jk i
kj a jk a jj xA
jk
j
七 直积 如果有两个群: G1 {E, A1, A2 ,L Ai ,L Am} G2 {E, B1, B2 ,L Bj ,L Bk } 如果它们的元素彼此相乘的意义明确,并且相互对易: Ai B j B j Ai 则可以定义一个更大的群G,G为G1和G2的直接乘积G1G2 G G1 G2 {E, A1, A2,L Ai ,L Am}{E, B1, B2,L Bj ,L Bk}
$4-1群的定义和基本概念
一 为什么要学群论
1、 物理与化学的许多研究对象与对称性联系。 2、 表象 本质 3、光谱 4、简化计算(如判断积分是否为零)
二 群的定义
一个集合G(A,B,C,…)如果满足条件: 1)封闭性 2)缔合性: 3)单位元素
4)逆元素
三 子群 如果群G中的一部分元素对于群G的乘法也构成群H,
b 证明: B n ( X 1 AX )n X 1 AXX 1 AX X 1 AX X 1 An X X 1EX E (逆定理不成立)
(8)若两元素(对称操作)同类,则两对称元素可经某一操作 使之重合。(化学中用于判断方法)
如NH3中的3个对称面是同类。 而水分子中二个对称面则不同类。 又如苯分子中的二次轴
i'
,
j',
k'
x' y'
e' r'
z'
如果基矢
(i ', j', k在') OXYZ坐标系中的分量用矩阵D(R)表示:
e' eD(R)
OP e'r' eD(R)r' er
rv' [D(R)]1rv
(1)
(2)坐标变换(物体旋转)
若令物体随OX’Y’Z’坐标系一起变换R(物体运动),物体上的 P点移到空间另一点P’上,自然P’点在OX’Y’Z’的坐标系中的坐标 还是(x,y,z),设P’点在OXYZ坐标系的坐标为(x’,y’,z’),则:
(1)基矢变换(坐标系旋转)
坐标系取向改变时,空间固定点的P的坐标如何变化。
设有两个原来相重合的坐标系OXYZ和OX’Y’Z’(右手直角坐标系) ,它们的基矢分别用 (i , j, k )和 (i ', j ', k '来) 表示。
P在OXYZ坐标系中的坐标为(x,y,z)则矢径 OP为:
uuur OP
则群H称作群G的子群。
有二个平凡子群(非真子群) E(单位元素)和 G(G群本身) 其它为真子群
四 共轭元素与类
1)共轭元素:设A,B,X是一个群的任何三个元素,若满足
B X 1 AX
则称A,B相互共轭。(相似变换)
2)类的定义: 相互共轭的元素的集合称为一个共轭类。 一个类中包含的元素数目称作它的阶。
OP' e' r er'
因为
ev' evD(R)
OP' eD(R)r er'
rv' D(R)rv
(2)
比较(1)和(2)式, 将物体固定变换基矢与将基矢固定使物体 作相反方向变动时,物体上各点的坐标变换情况是一样的。
矩阵D(R)完全反应了变换R(对称操作)的作有结果。 所以把D(R)称为变换R的矩阵表示。
v xi
v yj
v zk
i,
j,
k
x y
er
z
e
i , j,k
x
r
y
z
(习惯上指把基矢写成行矩阵,坐标写成列矩阵)
物体不动,坐标系OX’Y’Z’经变换R到新的位置。P在OX’Y’Z’ 坐标系中的坐标为(x’,y’,z’)则矢径
uuur v v v
OP xi ' yj ' zk '
$4-2 分子点群
Cn
Dnh
Cnv
Dnd
Cnh
Sn
Cs
Td
Ci
Oh
Dn
$4-3 群表示理论 一、什么是群表示?
群G(对称群)用同构或同态的矩阵群来表示。
1、基矢变换和坐标变换 进行对称操作,就是把物体各点的位置按一定规律变动。
这样有两种表示方法: 给定坐标系,物体的各点的坐标按一定规律变换。 坐标系变化,物体中各点坐标变化情况。