53 PLC与变频器的通信控制 2

合集下载

PLC与变频器通讯详解

PLC与变频器通讯详解

PLC与变频器通讯详解1.通讯⽅式的设定:PPO 4,这种⽅式为0 PKW/6 PZD,输⼊输出都为6个PZD,(只需要在STEP7⾥设置,变频器不需要设置);PROFIBUS 的通讯频率在变频器⾥也不需要设置,PLC ⽅⾯默认为1.5MB. 在P60=7设置下,设置P53=3,允许CBP(PROFIBUS)操作. P918.1设置变频器的PROFIBUS 地址.2.设置第⼀与第⼆个输⼊的PZD 为PLC 给变频器的控制字,其余四个输⼊PZD 这⾥没有⽤到.设置第⼀与第⼆个输出的PZD 为变频器给PLC 的状态字,设置第三个为变频器反馈给PLC 的实际输出频率的百分⽐值,第四个为变频器反馈给PLC 的实际输出电流的百分⽐值,其余两个输出PZD 这⾥没有⽤到.3.PLC 给变频器的第⼀个PZD 存储在变频器⾥的K3001字⾥.K3001有16位,从⾼到底为3115到3100(不是3001.15到3001.00).变频器的参数P554为1时变频器启动为0时停⽌,P571控制正转,P572控制反转.如果把P554设置等于3100,那么K3001的位3100就控制变频器的启动与停⽌,P571设置等于3101则3101就控制正转,P572设置等于3102则3102就控制反转.(变频器默认P571与P572都为1时正转,都为0时为停⽌).经过这些设置后K3001就是PLC 给变频器的第⼀个控制字.此时K3001的3100到3115共16位除了位3110控制⽤途都不是固定的,所以当设置P554设置等于3101时则3101可以控制启动与停⽌, P571等于3111时则3111控制正转,等等.K3001的位3110固定为“控制请求”,这位必须为1变频器才能接受PLC 的控制讯号,所以变频器⾥没有⽤⼀个参数对应到这个位,必须保证PLC 发过来第⼀个字的BIT 10为1.这⾥设置为:P554=3100,P571=3101,P572=3102,当PLC 发送W#16#0403时(既0000,0100,0000,0011)变频器正转.4.PLC 给变频器的第⼆个PZD 存储在变频器⾥的K3002字⾥. 变频器的参数P443存放给定值.如果把参数P443设置等于K3002,那么整个字K3002就是PLC 给变频器的主给定控制字. PLC 发送过来的第⼆个字的⼤⼩为0到16384(⼗进制),(对应变频器输出的0到100%),当为8192时,变频器输出频率为25Hz.5.变频器的输出给PLC 的第⼀个PZD 字是P734.1,第⼆个PZD 字是P734.2,等等.要想把PLC 接收的第⼀个PZD ⽤作第⼀个状态字,需要在变频器⾥把P734.1=0032(既字K0032),要想把PLC 接收的第⼆个PZD ⽤作第⼆个状态字,需要在变频器⾥把P734.2=0033(既字K0032).(K0032的BIT 1为1时表⽰变频器准备好,BIT 2表⽰变频器运⾏中,等等.) (变频器⾥存贮状态的字为K0032,K0033等字,⽽变频器发送给PLC 的PZD 是P734.1,P734.2等)在变频器⾥把P734.3=0148,在变频器⾥把P734.4=0022,则第三个和第四个变频器PZD 分W WW.PL CW ORL D .CN别包含实际输出频率的百分⽐值和实际输出电流的百分⽐值6.程序:(建⽴DB100,调⽤SFC14,SFC15,6SE7的地址为512既W#16#200) A. 读出数据CALL "DPRD_DAT" LADDR :=W#16#200 RET_VAL:=MW200RECORD :=P#DB100.DBX0.0 BYTE 12(读取12个BYTE) NOP 0B. 发送数据CALL "DPWR_DAT" LADDR :=W#16#200RECORD :=P#DB100.DBX12.0 BYTE 12(写⼊12个BYTE) RET_VAL:=MW210 NOP 0C. L "DB100".DBW0 T "MW20" NOP 0D. L "DB100".DBW2 T "MW22" NOP 0则:DB100.DBX 13.0 控制启动与停⽌; DB100.DBX 13.1 控制正转; DB100.DBX 13.2 控制反转; M21.1 变频器READY; M21.3变频器FAULT.西门⼦控制字和状态字都是32位,实际上⽤的位数不多,控制字⽤到的有合闸、急停、运⾏允许、故障复位、点动、PLC 控制等,状态字⽤到的有开机准备、运⾏准备、运⾏信号、故障、报警等。

PLC与变频器的通讯控制方式

PLC与变频器的通讯控制方式

16位和8位校验指令执行结果参考如下
16位模式 8位模式
【S.】
数据内容 (10进制)
数据内容 (2进制)
【S.】
数据内容 (10进制)
数据内容 (2进制)
D100下
D100上 D101下 D101上 D102下 D102上 D103下 D103上 D104下 D104上
K100
K111 K100 K98 K123 K66 K100 K95 K210 K88
• 3)如下图所示,打开参考程序
• 如下图把程序下载到PLC里面
• 3、PLC和变频器的RS485连线 • 1)选取三菱专用数据线RS422转RS485数据线 一条 • 2)将数据线的两端数据接口分别对应与PLC 和GOT可靠连接 • 4、打开并下载GOT的画面(具体参考相关 实训内容) • 5、连接GOT和PLC(具体参考相关实训) • 6、启动PLC、变频器、GOT,看能否通过 GOT控制变频器运行频率和电机的正反转
四、实训步骤
1、设置以下变频器参数 表10-1 设置变频器参数 PU接口
Pr.117 Pr.118 Pr.119 Pr.120 Pr.121 Pr.122 Pr.123 Pr.124 Pr.79
通信参数
变频器站号 通信速度 停止位长度 是否奇偶校验 通信重试次数 通信检查时间间隔 等待时间设置 CR、LF选择 操作模式
格式A′(数据写入)
*3 ENQ 1 变频器站号 2 3 指令代码 4 5 *5 等待时间 6 数据 7 8 总和校验 9 10 *4 11
格式B(数据读出)
*3 ENQ
1
变频器站号
2 3
指令代码
4 5
*5 等待时间 6

变频器与PLC通讯连接方式图解

变频器与PLC通讯连接方式图解

变频器与PLC通讯连接方式图解变频器与plc连接方式一般有以下几种方式①利用PLC的模拟量输出模块控制变频器PLC的模拟量输出模块输出0~5V电压信号或4~20mA电流信号,作为变频器的模拟量输入信号,控制变频器的输出频率。

这种控制方式接线简单,但需要选择与变频器输入阻抗匹配的PLC输出模块,且PLC的模拟量输出模块价格较为昂贵,此外还需采取分压措施使变频器适应PLC的电压信号范围,在连接时注意将布线分开,保证主电路一侧的噪声不传至控制电路。

②利用PLC的开关量输出控制变频器。

PLC的开关输出量一般可以与变频器的开关量输入端直接相连。

这种控制方式的接线简单,抗干扰能力强。

利用PLC的开关量输出可以控制变频器的启动/停止、正/反转、点动、转速和加减时间等,能实现较为复杂的控制要求,但只能有级调速。

使用继电器触点进行连接时,有时存在因接触不良而误操作现象。

使用晶体管进行连接时,则需要考虑晶体管自身的电压、电流容量等因素,保证系统的可靠性。

另外,在设计变频器的输入信号电路时,还应该注意到输入信号电路连接不当,有时也会造成变频器的误动作。

例如,当输入信号电路采用继电器等感性负载,继电器开闭时,产生的浪涌电流带来的噪声有可能引起变频器的误动作,应尽量避免。

③PLC与RS-485通信接口的连接。

所有的标准西门子变频器都有一个RS-485串行接口(有的也提供RS-232接口),采用双线连接,其设计标准适用于工业环境的应用对象。

单一的RS-485链路最多可以连接30台变频器,而且根据各变频器的地址或采用广播信息,都可以找到需要通信的变频器。

链路中需要有一个主控制器(主站),而各个变频器则是从属的控制对象(从站)西门子RS485连接Plc和变频器通讯方式1、PLC的开关量信号控制变频器PLC可以通过程序控制变频器的启动、停止、复位;也可以控制变频器高速、中速、低速端子的不同组合实现多段速度运行。

但是,因为它是采用开关量来实施控制的,其调速曲线不是一条连续平滑的曲线,也无法实现精细的速度调节。

PLC与变频器通讯在电机控制中的应用

PLC与变频器通讯在电机控制中的应用

PLC与变频器通讯在电机控制中的应用
PLC(可编程逻辑控制器)和变频器是电机控制中常用的两个设备。

PLC主要用于控制和监测各种工业设备和系统,而变频器则用于调节电动机的转速和输出功率。

通过PLC与
变频器的通讯,可以实现对电机的精确控制和监测,提高生产效率和降低能耗。

PLC与变频器通讯的主要应用包括以下几个方面:
1. 启动和停止控制:PLC可以通过与变频器的通讯控制电机的启动和停止操作。

通过PLC编程,可以设置启动和停止的条件和时间,实现精确的控制。

PLC还可以监测电机的运行状态,如电流、转速等参数,以保证安全运行。

2. 转速调节:通过PLC与变频器的通讯,可以实现对电机转速的精确调节。

PLC可以根据生产线的需要,实时调整电机的转速,以达到最佳工作状态。

通过反馈回路和PID控
制算法,PLC可以实现转速的闭环控制,从而提高工作效率和产品质量。

3. 负载均衡:对于多个电机的控制系统,通过PLC与变频器的通讯,可以实现电机负载的均衡。

PLC可以监测各个电机的负载情况,根据实际情况动态调整各个电机的转速和
输出功率,以保证系统的平衡运行。

4. 故障诊断和维护:通过PLC与变频器的通讯,可以实现对电机的故障诊断和维护。

PLC可以监测电机的运行状态和参数,当电机出现故障时,PLC会及时报警并记录相关信息。

通过对故障信息的分析,可以确定故障的原因和位置,从而提供指导维修。

PLC与变频器通信

PLC与变频器通信

变频器站号设定为2号站 波特率设定为9600 数据长度7位,停止位1. 偶校验 通信错误变频器没有报警 通信校验终止 用通信数据设定 有CR
变频器与PLC的通信格式
• 1、从PLC到变频器的通信请求
变频器的数据格式
• 变频器的数据是ASCII码形式存在,所以各 控制代码的ASCII码如下表所示:
K1091 10000101
求和校验采用偶校验 D0 = K1091 总和 D1 = K133 校验码
变频器参数设置
• 变频器参数包含Pr117~Pr124
• 例:
• 通信格式如下:
• 数据位7位,停止位1位,偶校 验,波特率为9600,变频器站号 位2.
变频器参数设置如下
• Pr117 = 2 • Pr118 = 96 • Pr119 = 10 • Pr120 = 2 • Pr121 = 9999 • Pr122 = 9999 • Pr123 = 9999 • Pr124 = 0
• D8120
b1 b1 b1 b1 b1 b1 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 543210 0000000010001110
收发程序举例
• 当M8122置1时数据才发送出去,接受数据时,接 收条件是M8123,接收完毕后要把M8123复位。
ASCII码变换指令
• 1、该指令的助记符、指令代码、操作数、程序 步如下表:
• 套用格式A‘ (数据是2位)
• 因为变频器内部识别的是ASCII码,所以 PLC发出的数据要全部转化成ASCII码才能 发送出去。
PLC的控制程序
PLC的控制程序
PLC的控制程序
• 2)变频器数据处理时间:即变频器的等待时间,根据变频器 参数Pr.123选择Pr.123=9999,由通信数据设定其等待时 间,Pr.123=0-150ms由变频器参数设定其等待时间;

变频器与PLC的通讯控制原理及应用分析

变频器与PLC的通讯控制原理及应用分析

变频器与PLC的通讯控制原理及应用分析经济的快速发展促进了我国工业的进步与发展,交流电机是现今在工业领域中应用较为广泛的电动机,为实现对于交流电机的调控现今在其控制中多采用的是变频器来加以实现的,使用PLC与变频器的组合控制已经成为了主要的控制方式之一。

在以往的变频器控制中PLC的控制方式主要采用的是PLC控制继电器的启停来控制变频器的启停,而无法实现对于交流电机的精确控制。

为更好地使用PLC来对变频器进行控制可以通过使用PLC与变频器的通讯来实现对于变频器的精确控制。

文章就如何做好PLC与变频器之间的通讯来实现对于交流电机的控制进行了分析阐述。

标签:变频器;PLC通讯;交流电机前言交流电机是现今采用较多也是较为广泛的电机形式.通过在交流电机的控制中使用变频器可以实现对于交流电机的变频控制,以更好的对交流电机的转速、扭矩进行精确的控制。

而对于变频器数量较多、电机分布较为广发内的场合由于需要控制的变频器较多而PLC中需要控制的I/O输出点数和DA数模的转换通道将较多将极大的影响PLC对于变频器控制的可靠性和稳定性。

通过在PLC与变频器的控制中采用PLC与变频器的控制中采用PLC以RS-485的通讯方式来实现对于变频器的方便控制。

1 RS-485控制通讯系统的组成及通讯参数的设置RS-485串行通讯采用的是典型的无协议通信,在通讯的过程中无须经过固定协议、无须数据交换而是主要通过通信端口来进行指令的传输。

某型CPIH型PLC中采用的是两个RS-485通信解接口,在使用RS-485通信协议中需要对所使用的串口进行预置。

通过使用RS-485通信方式所能控制的变频器最多可以能够实现对于32台交流变频器的控制,因此在进行通信前首先需要对通讯端口进行正确的硬件连接和相应的参数设置。

在使用PLC对多台变频器进行通讯控制时,需要在最末端的变频器添加阻值为100Ω的阻抗,并将拨码开关引脚为1的拨码拨为ON状态。

显示为变频器的终端有电阻的存在。

PLC与变频器通讯在电机控制中的应用

PLC与变频器通讯在电机控制中的应用

PLC与变频器通讯在电机控制中的应用PLC(可编程逻辑控制器)和变频器是现代工业自动化控制中常用的设备。

它们在电机控制中起着非常重要的作用,特别是在生产线和设备自动化中。

在实际应用中,PLC和变频器的通讯技术被广泛应用于电机控制系统中,以实现对电机运行状态的监测、控制和调节。

下面将详细介绍PLC与变频器通讯在电机控制中的应用。

一、PLC与变频器简介1. PLC(可编程逻辑控制器)PLC是一种可编程的数字电子计算机,用于工业自动化领域。

它使用可编程存储器保存指令,执行特定的逻辑、序列控制、定时、计数和算术运算等功能,控制各种类型的机器或生产流程。

PLC的工作原理是通过接收输入信号(传感器、按钮、开关等),根据预设的程序进行逻辑判断和运算,最终输出控制信号(执行器、驱动器、报警信号等)来控制设备或生产过程。

2. 变频器变频器是一种用于控制交流电机转速的设备,通过改变供电频率和电压,实现对电机转速的调节。

它能够根据系统需求调整电机的运行速度和输出扭矩,从而适应不同的工作负载和运行条件。

变频器还可以对电机进行软启动、停止、过载保护等功能,以提高电机的运行效率和可靠性。

在电机控制系统中,PLC与变频器的通讯技术是非常重要的。

它实现了PLC与变频器之间的数据交换和指令传递,使得电机控制系统能够实现更加高效和灵活的控制。

1. 通讯接口现在的PLC和变频器通常都提供了多种通讯接口,如RS-232、RS-485、以太网等。

这些接口能够实现PLC与变频器之间的数据通讯和控制指令传递。

PLC通过通讯接口与变频器建立连接,并发送控制指令、运行参数、故障诊断信息等数据到变频器,同时接收变频器的运行状态、反馈信息等数据,从而实现对电机的实时监测和控制。

2. 通讯协议为了实现PLC与变频器之间的数据通讯,需要使用一种通讯协议来规范数据的格式、传输方式和通讯规程,常用的通讯协议有Modbus、Profibus、Ethernet/IP等。

plc与变频器一般有三种连接方法

plc与变频器一般有三种连接方法

plc与变频器一般有三种连接方法①利用PLC的模拟量输出模块控制变频器PLC的模拟量输出模块输出0~5V电压信号或4~20mA电流信号,作为变频器的模拟量输入信号,控制变频器的输出频率。

这种控制方式接线简单,但需要选择与变频器输入阻抗匹配的PLC 输出模块,且PLC的模拟量输出模块价格较为昂贵,此外还需采取分压措施使变频器适应PLC的电压信号范围,在连接时注意将布线分开,保证主电路一侧的噪声不传至控制电路。

②利用PLC的开关量输出控制变频器。

PLC的开关输出量一般可以与变频器的开关量输入端直接相连。

这种控制方式的接线简单,抗力强。

利用PLC的开关量输出可以控制变频器的启动/停止、正/反转、点动、转速和加减时间等,能实现较为复杂的控制要求,但只能有级调速。

使用继电器触点进行连接时,有时存在因接触不良而误操作现象。

使用晶体管进行连接时,则需要考虑晶体管自身的电压、电流容量等因素,保证系统的可靠性。

另外,在设计变频器的输入信号电路时,还应该注意到输入信号电路连接不当,有时也会造成变频器的误动作。

例如,当输入信号电路采用继电器等感性负载,继电器开闭时,产生的浪涌电流带来的噪声有可能引起变频器的误动作,应尽量避免。

③PLC与RS-485通信接口的连接。

所有的标准西门子变频器都有一个RS-485串行接口(有的也提供RS-232接口),采用双线连接,其设计标准适用于工业环境的应用对象。

单一的RS-485链路***多可以连接30台变频器,而且根据各变频器的地址或采用广播信息,都可以找到需要通信的变频器。

链路中需要有一个主控制器(主站),而各个变频器则是从属的控制对象(从站)。

PLC的变频器控制电机正反转接线图1.按接线图将线连好后,启动电源,准备设置变频器各参数。

2.按“MODE”键进入参数设置模式,将Pr.79设置为“2”:外部操作模式,启动信号由外部端子(STF、STR)输入,转速调节由外部端子(2、5之间、4、5之间、多端速)输入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档