薄膜材料介绍

合集下载

13种薄膜材料概述

13种薄膜材料概述

13种薄膜材料介绍薄膜具有良好的韧性、防潮性和热封性能,应用非常广泛;PVDC薄膜适合包装食品,并能长时间保鲜;而水溶性PVA薄膜不必开封直接投入水中即可使用;PC薄膜无味、无毒,有类似玻璃纸的透明度和光泽,可在高温高压下蒸煮杀菌。

本文将主要介绍几种塑料薄膜的性能及其使用。

从商品生产到销售,再到使用,包装件要经过储存、装卸、运输、货架陈列以及在消费者手中存放,这个过程中即可能遇到严寒、酷暑、干燥、潮湿等恶劣的自然气候条件,也要遭受振动、冲击和挤压等各种机械破坏,甚至还有微生物和虫类的侵害。

要保证商品的质量,主要依靠包装材料来保护,所以包装材料非常重要。

塑料薄膜是最主要的软包装材料之一,塑料薄膜的种类繁多,特性各异,根据薄膜的不同特性,其用处也不同,下面介绍几种常见的塑料薄膜:聚乙烯薄膜PE薄膜使用大量最大的塑料包装薄膜,约占塑料薄膜总耗用量的40%以上。

PE薄膜虽然在外观、强度等方面并不十分理想,但它具有良好的韧性、防潮性和热封性能,且加工成型方便,价格便宜,所以应用非常广泛。

1、低密度聚乙烯薄膜。

LDPE薄膜主要采用挤出吹塑法和T模法生产的LDPE 薄膜是一种柔韧而透明的薄膜,无毒、无嗅,厚度一般在0.02~0.1㎜之间。

具有良好的耐水性、防潮性、耐旱性和化学稳定性。

大量用于食品、药品、日用品及金属制品的一般防潮包装和冷冻食品的包装。

但对于吸湿性大,防潮性要求较高的物品,则需要采用防潮性更好的薄膜和复合薄膜包装。

LDPE薄膜的透气率大、无保香性且耐油性差,不能用于易氧化食品、风味食品和含油食品的包装。

但透气性好使它能用于水果、蔬菜等新鲜物品的保鲜包装。

LDPE薄膜的热粘合性和低温热封性好,因此常用作复合薄膜的粘合层和热封层等,但由于其耐热性差,故不能用作蒸煮袋的热封层。

2、高密度聚乙烯薄膜。

HDPE薄膜是一种韧性的半透明薄膜,其外观为乳白色,表面光泽度较差。

HDPE薄膜的抗张强度、防潮性、耐热性、耐油性和化学稳定性均优于LDPE薄膜,也可以热封合,但透明性不如LDPE。

第一讲_薄膜材料简介

第一讲_薄膜材料简介

薄膜材料的应用领域
光学应用:薄膜材料可用于制造各种光学器件,如眼镜、相机镜头等。
电子应用:薄膜材料可用于制造电子器件,如薄膜晶体管、太阳能电池等。
生物医学应用:薄膜材料可用于制造医疗器械,如人工心脏瓣膜、人工关 节等。 包装应用:薄膜材料可用于食品、药品等的包装,具有阻隔性能好、轻便 美观等优点。
环保需求:随着 环保意识的提高, 对环保型薄膜材 料的需求越来越 大,这也将成为 未来市场发展的 重要趋势。
06
薄膜材料的安全和环保问题及应对 措施
薄膜材料的安全问题及应对措施
添加标题 添加标题
薄膜材料的安全问题:主要包括生产过程中的安全问题、使用过程中的安全问题以及废弃处理 时的安全问题。
应对措施:加强生产和使用环节的安全管理,提高员工的安全意识;采用环保型材料,减少对 环境的污染;加强废弃处理的管理,避免对环境造成二次污染。
薄膜材料的工艺流程
制备方法:物 理气相沉积、 化学气相沉积、 溶胶-凝胶法等
工艺流程:原 料选择、表面 处理、薄膜生 长、后处理等
影响因素:温 度、压力、气
氛、基底等
工艺特点:成 本低、可控制 性强、适用于 大规模生产等
不同制备方法的比较和选择
物理气相沉积法:利用物理过程将材料气化,再在一定条件下沉积成薄膜
的市场需求
汽车行业:汽 车轻量化趋势, 使得对高强度、 耐腐蚀的薄膜 材料需求增加
薄膜材料的发展趋势
环保化:随着环保意识的提高,对环保型薄膜材料的需求将不断增加。 高性能化:对薄膜材料的性能要求越来越高,需要不断研发高性能的薄膜材料。 智能化:随着物联网、智能家居等领域的快速发展,对智能型薄膜材料的需求也将不断增加。 多功能化:为了满足不同领域的需求,需要开发具有多种功能的薄膜材料。

薄膜材料有哪些

薄膜材料有哪些

薄膜材料有哪些
薄膜材料是通过一种或多种工艺将原材料制成厚度很薄的膜状材料,它具有重量轻、柔韧性好、透明度高等特点,广泛应用于电子产品、太阳能电池、医药包装、食品包装、建筑材料等领域。

下面将介绍几种常见的薄膜材料。

1. 聚乙烯薄膜:聚乙烯薄膜是一种由聚乙烯制成的薄膜材料,它具有防潮、防水、绝缘等特性,广泛应用于食品包装、日常用品包装等领域。

2. 聚酯薄膜:聚酯薄膜是一种由聚酯制成的薄膜材料,它具有耐高温、耐化学品腐蚀等特点,广泛应用于电子产品、太阳能电池、医药包装等领域。

3. 聚氯乙烯薄膜:聚氯乙烯薄膜是一种由聚氯乙烯制成的薄膜材料,它具有耐候性好、耐高温等特点,广泛应用于建筑材料、广告牌等领域。

4. 尼龙薄膜:尼龙薄膜是一种由尼龙制成的薄膜材料,它具有耐磨损、耐腐蚀等特点,广泛应用于电子产品、医药包装等领域。

5. 聚丙烯薄膜:聚丙烯薄膜是一种由聚丙烯制成的薄膜材料,它具有热封性好、透明度高等特点,广泛应用于食品包装、医药包装等领域。

6. 聚甲基丙烯酸甲酯薄膜:聚甲基丙烯酸甲酯薄膜是一种由聚
甲基丙烯酸甲酯制成的薄膜材料,它具有耐高温、耐化学品腐蚀等特点,广泛应用于电子产品、太阳能电池等领域。

7. 铝箔薄膜:铝箔薄膜是一种以铝箔为基材制成的薄膜材料,它具有良好的阻隔性能和导热性能,广泛应用于食品包装、冷藏设备等领域。

除了以上几种常见的薄膜材料外,还有其他各种材质的薄膜材料,如聚酰亚胺薄膜、聚氨酯薄膜、聚苯乙烯薄膜等,它们在不同的领域具有不同的特性和应用。

薄膜材料在现代社会中扮演着重要的角色,它们的不断发展和创新将为各行各业带来更多的应用机会和发展空间。

薄膜材料有哪些

薄膜材料有哪些

薄膜材料有哪些
薄膜材料是一种在工业和科技领域中应用广泛的材料,它具有轻薄、柔韧、透明、耐腐蚀等特点,在电子、光学、医疗、包装等领域有着重要的应用。

薄膜材料的种类繁多,下面将介绍一些常见的薄膜材料及其应用。

首先,聚酯薄膜是一种常见的薄膜材料,它具有优异的机械性能和化学稳定性,适用于印刷、包装、电子等领域。

在包装领域,聚酯薄膜常用于食品包装、药品包装等,其优异的透明性和耐热性能使得产品更加吸引人。

在电子领域,聚酯薄膜常用于制备电子元件、电池等,其优异的绝缘性能和耐高温性能使得电子产品更加稳定可靠。

其次,聚乙烯薄膜是另一种常见的薄膜材料,它具有良好的柔韧性和耐磨性,
适用于包装、农业覆盖、建筑防水等领域。

在包装领域,聚乙烯薄膜常用于塑料袋、保鲜膜等,其良好的密封性和抗拉伸性能使得产品更加实用。

在农业领域,聚乙烯薄膜常用于大棚覆盖、地膜覆盖等,其良好的透光性和抗老化性能使得作物更加茁壮生长。

此外,聚丙烯薄膜也是一种常见的薄膜材料,它具有良好的耐高温性和耐化学
腐蚀性,适用于医疗、包装、建筑等领域。

在医疗领域,聚丙烯薄膜常用于制备医用器械、医用包装等,其良好的无菌性和透明性能使得医疗产品更加安全可靠。

在包装领域,聚丙烯薄膜常用于制备各种包装袋、包装盒等,其良好的耐磨性和耐高温性能使得产品更加耐用。

总的来说,薄膜材料在现代社会中有着广泛的应用,不仅提高了产品的质量和
性能,也为人们的生活带来了便利。

随着科技的不断进步,薄膜材料的种类和应用领域还会不断扩展,相信在未来会有更多新型薄膜材料的涌现,为人类社会的发展做出更大的贡献。

薄膜材料的定义

薄膜材料的定义

薄膜材料的定义薄膜材料是一种具有薄、平整、柔韧性的材料,常用于包装、电子、光学、能源和生物医学等领域。

它通常由聚合物、金属、玻璃、陶瓷等材料制成,具有独特的物理、化学和机械性能。

薄膜材料的特点是其厚度相对较薄,一般在纳米到几十微米之间,这使得其具有较高的表面积与体积比。

由于薄膜材料的特殊性质,使得它在许多领域都有广泛的应用。

薄膜材料在包装行业中扮演着重要角色。

薄膜包装材料具有轻便、耐磨、保鲜等特点,能有效延长食品、药品等产品的保质期,并保持其质量和新鲜度。

同时,薄膜包装材料还可以提供一定的防水、防氧化和防污染的功能,保护产品免受外界环境的影响。

薄膜材料在电子领域有着广泛的应用。

电子器件中的薄膜材料可以用于制造电子元件的绝缘层、导电层、封装层等,具有优异的导电性、绝缘性和机械性能。

薄膜材料还可以制备柔性电子器件,如柔性显示屏、柔性太阳能电池等,为电子产品的轻薄化、柔性化提供了可能。

光学领域也是薄膜材料的重要应用领域之一。

光学薄膜是一种能够调控光的传输和反射的材料,广泛应用于光学透镜、滤光片、反射镜等光学器件中。

薄膜材料在光学领域中的应用不仅可以提高光学器件的性能,还可以实现光的波长选择性和光的相位控制,为光学信息处理和光通信提供了重要的基础。

薄膜材料还在能源和生物医学领域具有重要的应用价值。

在能源领域,薄膜材料可以作为太阳能电池、燃料电池、锂离子电池等能源装置的关键组成部分,具有优异的电化学性能和光学性能。

在生物医学领域,薄膜材料可以用于制备生物传感器、人工器官、药物缓释系统等,具有良好的生物相容性和可控性。

总结起来,薄膜材料是一种具有薄、平整、柔韧性的材料,广泛应用于包装、电子、光学、能源和生物医学等领域。

薄膜材料的特殊性质使其具有许多优异的性能,如导电性、绝缘性、光学性能和生物相容性等,为各个行业提供了创新的解决方案。

随着科学技术的不断进步,薄膜材料的应用前景将更加广阔。

薄膜材料的结构和性质

薄膜材料的结构和性质

薄膜材料的结构和性质薄膜材料是一种在现代工程和科技领域广泛应用的材料。

薄膜材料的结构和性质是决定其应用领域和性能的关键因素。

本文将介绍薄膜材料的结构和性质,并且阐述其在现代应用中的作用。

一、薄膜材料的结构薄膜材料是用溶液、气相、物理气相沉积或其他特殊方法制备的具有厚度在纳米到微米级之间的材料。

薄膜材料的结构可以分为单层膜和复合膜两种。

单层膜材料的结构简单,是由一个单一的材料组成的。

而复合膜材料由两种或两种以上的材料组成。

单层膜材料中,有机薄膜和无机薄膜是两种主要的类型。

有机薄膜可以是单一的高分子化合物,如聚合物和蛋白质,也可以是多种有机化合物的混合物。

然而,无机薄膜主要是由金属化合物和非金属化合物组成的,如氮化硅、氧化锌和氧化铝。

复合膜材料的结构复杂多样,包括两种材料的层状复合膜、不同材料的交替堆层膜和多元复合膜等。

其中,层状复合膜又可以分为层流复合、分子间作用层间复合以及互分布层间复合。

二、薄膜材料的性质薄膜材料的性质是其应用的关键,因为它们直接影响着材料的功能和性能。

薄膜材料的性质包括物理性质、化学性质和光学性质。

物理性质:薄膜材料的物理性质如密度、熔点、固化温度、硬度、弹性模量等往往与相应材料的体积相比有所变化。

例如,聚合物在形成薄膜后通常比原来的体积密度更低。

在这些性质方面,薄膜材料的行为往往是不同于体积材料的。

化学性质:薄膜材料的化学性质通常是由材料本身和加工方法共同决定的。

由于其表面积大、颗粒小,在化学反应和承受环境变化时,它们的响应也不同于体积材料。

面向化学特性的研究是用来检测这些特性并表征所使用薄膜材料的作用和性能的关键。

光学性质:薄膜材料的光学性质是其应用于光学晶体管等领域的原理依据。

光电材料必须具有较强的吸收、发射、调制和切换光学信号的能力。

因此,它们的光学性质应符合基本的光学特性,如透明度、折射率、色散、发射率和吸收率等。

三、薄膜材料在现代应用中的作用薄膜材料的结构和性质是使其在现代应用中具有广泛适用性的原因。

薄膜材料

薄膜材料

薄膜材料:1、金属薄膜金属薄膜具有反射率高,截止带宽、中性好,偏振效应小的特点。

复折射率n-ik n折射率,k消光系数。

垂直入射时,R=((1-(n-ik))/(1+(n-ik))2=((1-n)2+k2)/((1+n)2+k2)倾斜入射时,下面介绍几种最常用的金属膜特性。

(1)Al唯一从紫外(0.2mm)到红外(30mm)具有很高反射率的材料,在大约波长0.85mm处反射率出现一极小值,其反射率为86%。

铝膜对基板的附着力比较强,机械强度和化学稳定性也比较好,广泛用作反射膜。

新淀积的Al膜暴露在大气中后,薄膜立即形成一层非晶的高透明Al2O3膜,短时间内氧化物迅速生长到15~20A0。

在紫外区一般采用MgF2膜作为保护膜,可见区采用SiO作为初始材料,蒸发得到以Si2O3为主的SiOx 膜作为Al保护膜。

制备条件:高纯镀的Al(99.99%);在高真空中快速蒸发(50~100nm/s);基板温度低于50℃。

(2)Ag银适用于可见区和红外区波段,具有很高的反射率。

可见区的反射率可以达到95%,红外区反射率99%,紫外区反射率很低。

Ag层需加保护膜,Al2O3与Ag有很高的附着力,SiOx具有极强的保护性能,所以常用结构为G|Al2O3-Ag-Al2O3-SiOx|A Al2O3膜层厚度为20~40nm,SiOx膜补足设计波长的二分之一。

制备条件:高真空、快速蒸发和低的基板温度。

(3)金Au在红外波段内具有几乎和银差不多的反射率,用作红外反射镜,金膜新蒸发时,薄层较软,大约一周后,金膜硬度趋于稳定,膜层牢固度也趋于稳定。

制备条件:高真空,蒸发速率30~50A/s,基板温度100~150℃。

需要在基板先打底,以Cr或Ti膜作底层。

常用Bi2O3,ThF4等作保护膜,以提高强度。

(4)铬CrCr膜在可见区具有很好的中性,膜层非常牢固,常用作中性衰减膜。

制备条件:真空度在1×10-2~2×10-4Pa,淀积速率95~300A/s。

薄膜材料的定义

薄膜材料的定义

薄膜材料的定义薄膜材料是一种具有特殊结构和性质的材料,广泛应用于各个领域。

它的定义可以从多个角度来解释,包括材料的厚度、结构和功能等方面。

从厚度角度来看,薄膜材料是指在纳米尺度下的材料,其厚度通常在几纳米到几微米之间。

相比之下,传统的材料通常具有更大的尺寸。

由于薄膜材料的特殊厚度,它们具有许多独特的性质和应用。

从结构角度来看,薄膜材料通常由一层或多层原子、分子或离子组成。

这些层状结构使得薄膜材料具有特殊的物理、化学和光学性质。

例如,由于薄膜材料的结构紧密,它们通常具有较高的表面积和较低的体积,从而表现出更高的反应活性和更好的传输性能。

从功能角度来看,薄膜材料具有广泛的应用。

它们可以用作表面涂层,以增强材料的硬度、耐腐蚀性和耐磨性。

薄膜材料还可以用于光学器件,例如太阳能电池板和液晶显示屏,以改善光的传输和控制。

此外,薄膜材料还可以应用于电子器件、传感器、生物医学和环境保护等领域。

薄膜材料的制备方法多种多样,可以通过物理蒸发、化学气相沉积、溶液法和电化学方法等来实现。

每种制备方法都有其优点和局限性,需根据具体应用需求来选择合适的方法。

薄膜材料的研究和应用正在不断发展。

随着纳米技术的发展,人们对薄膜材料的理解和掌握将更加深入。

通过对薄膜材料的研究,可以进一步改善材料的性能,拓宽其应用领域。

预计薄膜材料将在未来的科技发展中发挥重要作用。

薄膜材料是一种具有特殊结构和性质的材料,其定义可以从厚度、结构和功能等方面来解释。

薄膜材料具有广泛的应用前景,并且其研究和应用正在不断发展。

通过对薄膜材料的深入研究,可以进一步拓展其应用领域,推动科技的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发或升华,由固态或液态变成气态。
2) 输运到衬底。气态原子或分子在真空状态及一定蒸气 压条件下由蒸发源输运到衬底。
3) 吸附、成核与生长。通过粒子对衬底表面的碰撞,衬 底表面对粒子的吸附以及在表面的迁移完成成核与生 长过程。是一个以能量转换为主的过程。
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
薄膜学
薄膜的历史,要追溯到三千多年以前。 近30年来,真正作为一门新型的薄膜科学与技术。
目前,薄膜材料已是材料学领域中的一个重要分支, 它涉及物理、化学、电子学、冶金学等学科,在国防、 通讯、航空、航天、电子工业、光学工业等方面有着 特殊的应用,逐步形成了一门独特的学科“薄膜学”。
专注 激情 严谨 勤勉
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
化学气相沉积
原 理 气相沉积的基本过程包括三个步骤:即提供气相镀料;镀 料向镀制的工件或基片输送;镀料沉积在基片上构成膜层。
气相沉积过程中沉积粒子来源于化合物的气相分解反应,
长出具有共格或半共格
联系的异类单晶体(异 质外延)。
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
真空蒸镀
原 理: 在超高真空条件下, 将各组成元素的分子束流 以一个个分子的形式喷射 到衬底表面,在适当的温 度下外延沉积成膜。 应 用 目前MBE的膜厚控制水平达到单原子层,可用于制备超 晶格、量子点,及3-5族化合物的半导体器件。
真空蒸镀
对于化合物和合成材料,常用各种蒸发法和热壁法。 1)闪蒸蒸发(瞬间蒸发): 呈细小颗粒或粉末的薄膜材料,以极小流量逐渐进入高温 蒸发源,使每个颗粒在瞬间全蒸发,成膜,以保证膜的组 分比例与合金相同。 2)多源蒸发: 组成合金薄膜的各元素,各自在单独的蒸发源中加热,蒸 发,并按薄膜材料组分比例成膜。 3)反应蒸发: 真空室通入活性气体后,其原子、分子与来自蒸发源的原子, 分子,在衬底表面反应生成所需化合物。一般用金属或低价 化合物反应生成高价化合物。
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
真空蒸镀
工艺原理
真空室内加热的固体材料被蒸发汽化或升华后,凝结 沉积到一定温度的衬底材料表面。形成薄膜经历三个过程: 1) 蒸发或升华。通过一定加热方式使被蒸发材料受热蒸
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
真空蒸镀
5) 脉冲激光沉积(PLD) 利用脉冲聚焦激光烧蚀靶材,使靶的局部在瞬间受高温 汽化,在真空室内的惰性气体羽辉等离子体作用下活化,并 沉积到衬底的一种制膜方法。
Leading Physical Property Analysis of Thin-Film Materials
薄膜材料分类
材料保护涂层
涂层或厚膜 (>1um) 薄膜材料 薄膜(<1um)
材料装饰涂层 光电子学薄膜 微电子学薄膜
其它功能薄膜 (力、热、磁、生物等)
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
3) 衬底表面气体间的化学反应, 生成固态和气态产物,固态 生成物粒子经表面扩散成膜; TiCl4 +CH4 TiC +4HCl 4) 气态生成物由内向外扩散和 表面解吸; 5) 气态生成物向表面区外的扩 散和排放。
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
离子成膜
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
物理成膜
target
原子 层的 晶体 生长 “世 界” 与自 然世 界的 比拟
Cloud
substrate
Cloud Earth surface -- ground Natural rain Snow Hail Thunder storm Dust, Pollution Environmental protection Target/evaporated source Substrate surface Atomic rain Clusters Particles Discharge Impurity, Contamination Vacuum
Leading Physical Property Analysis of Thin-Film Materials
化学液相沉积
化学镀 利用还原剂在镀层物质的溶液中进行化学还原反应,并在衬底表
面得到镀层的方法。
电化学沉积 利用在特定的电解液中的电解反应,在底板的衬底上进行镀膜的
方法。
溶胶-凝胶法 无机材料或高分子聚合物溶解,制成均匀溶液,将干净的玻片或 其它基片插入溶液,或滴数滴溶液在基片上,用离心甩胶等方法敷于
Leading Physical Property Analysis of Thin-Film Materials
生活中的薄膜
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
生活中的薄膜
专注 激情 严谨 勤勉
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
化学成膜
有化学反应的使用与参与,利用物质间的化学反应实现 薄膜生长的方法。
• •
化学气相沉积(CVD – Chemical Vapor Deposition ) 液相反应沉积(液相外延)
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
典型制备方法
物理气相沉积 (PVD)——原子分子的物理迁移 PLD,Megnetron Sputtering,ALD,MBE 化学气相沉积——原子分子的化学反应 CVD,AMO-CVD,溶胶凝胶法…
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
薄膜材料历史
可能最早的纳米薄膜: 古代铜镜表面的防锈 层(纳米氧化锡薄膜) 其年代可以追溯到商 代,甚至更早。
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
薄膜材料优点
薄膜材料是相对块体材料而言,但不是简单 地将块体材料压薄而成的,而是采用特殊的方法 在体材料表面制备一层与体材料性质完全不同的 物质层,它一般具有特殊的材料性能或性能组合。 在真空薄膜沉积过程中,可以看成是原子级 的铸造工艺,它是将单个原子一个一个地凝结在 衬底表面形成薄膜。
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
薄膜材料定义
当固体或液体的一维线性尺度远远小于其他二 维时,我们将这样的固体或液体称为膜。 薄膜材料的厚度为1nm~1um之间,它无法单 独存在,只能依附在基底上。
专注 激情 严谨 勤勉
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
薄膜的形成机理
(2) 层生长型(Frank-Vanber Merwe型) 特点:沉积原子在衬底的表面以单原子层的形式均匀地覆盖 一层,然后再在三维方向上生长第二层、第三层……。 一般在衬底原子与沉积原子之间的键能接近于沉积原子相互 之间键能的情况下(共格)发生这种生长方式的生长。
化学液相沉积
概念:利用液相中进行的反应而沉积薄膜的方法。
主要方法: 液相外延技术 化学镀 电化学沉积 溶胶-凝胶法
LB膜技术
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
化学液相沉积
专注 激情 严谨 勤勉
Leading Physical Property Analysis of Thin-Film Materials
物理成膜
1. 定义 利用蒸发、溅射沉积或复合的技术,不涉及到化学反应,
成膜过程基本是一个物理过程而完成薄膜生长过程的技术,
以PVD为代表。 2. 成膜方法与工艺 真空蒸发镀膜(包括脉冲激光沉积、分子束外延) 溅射镀膜
Leading Physical Property Analysis of Thin-Film Materials
目 录
1
2
薄膜材料定义 薄膜材料制备 薄膜材料应用3薄膜制备方法电镀
湿式成膜 制备技术 干式成膜
化学镀 阳极氧化 涂覆法(喷涂、甩胶、浸涂) 溶胶-凝胶膜
物理气相沉积技术 (真空蒸镀、溅射镀膜……) 化学气相沉积技术 (热CVD、光CVD……)
以这种方式形成的薄膜,一般是单晶膜,并且和衬底有确定 的取向关系。例如在Au衬底上生长Pb单晶膜、在PbS衬底上生长 PbSe单晶膜等。
相关文档
最新文档