储能系统用锂离子电池及其管理系统..
储能系统电池ppt课件

锂离子电池简介
• 锂离子电池的性能
–充电上限电压与电池充电容量及循环寿命的关系
18
• 锂离子电池的性能
–高温对电池寿命的影响
锂离子电池简介
19
锂离子电池简介
• 锂离子电池的性能
–充电电流对充电时间及电池性能的影响
0.3C充电/0.3C放电 1C充电/1C放电
充电时间(分钟)
192
65
300次循环后容量下降(%)
6
• 压缩空气储能
储能系统
• 优点 • 储能量大 • 且储存高压空气的时间长可 达一年
• 难点 • 找到合适的能储存压缩空气 的场所难
• 应用领域: • 调峰填谷 • 平稳大规模可再生发电
7
• 铅酸电池储能
储能系统
• 优点 • 响应速度快:ms级; • 可以根据应用需要,实现kW~ 50MW规模;
范
围
发电侧
围
大 ,
输电侧
系统稳定 无功支撑
频率控制 旋转备用 负荷均衡 出力优化
广 ,
从
负荷均衡 可靠供电
贯
几
电能质量
穿
十
配电侧
发
千
削峰填谷 无功支撑 电能质量 可靠供电
输
瓦
用户侧
变
到
电能质量 可靠供电
配
几
电压支撑
用
百
电
兆
系
瓦
统
4
• 储能的手段有哪些?
–电化学储能
• 铅酸电池 • 液流电池 • 钠硫电池 • 镍氢电池 • 镍镉电池 • 锂离子电池
• 安全性
–钴酸锂<三元<锰酸锂<磷酸铁锂<钛酸锂
锂电池储能技术及其在电力系统中的应用

电力系统的稳定性
电力系统需要保持稳定运行,而锂 电池储能技术可以提供稳定、可靠 的电力支持,确保电力系统的安全 、经济运行。
提升电力质量
锂电池储能技术可以用于改善电力 质量,如调节电压波动、滤除谐波 等,提高电力系统的供电可靠性。
研究现状与发展趋势
国内外研究现状
介绍国内外在锂电池储能技术方面的研究进展情况,包括电池材 料、电池管理系统、电池回收与再利用等方面的研究现状。
能效性
提高储能系统的能效,降低运行成本。
经济性
控制储能系统的成本,提高性价比。
储能系统的优化目标与策略
提高电池寿命
通过优化充放电策略、控制电池温度 等手段,延长电池使用寿命。
提高能量利用率
通过优化能量调度和管理策略,提高 储能系统的能量利用率。
提高系统可靠性
通过冗余设计和故障预测与处理等手 段,提高储能系统的可靠性。
性。
锂电池储能技术可以解决可再生 能源发电的间歇性问题,提高电
力系统的可再生能源利用率。
锂电池储能技术可以优化电力系 统的调度和运行,提高电力系统
的运行效率。
存在的问题与不足
锂电池储能技术的成本仍然较 高,需要进一步降低成本以扩 大应用范围。
锂电池储能技术的安全性和可 靠性需要进一步提高,以确保 电力系统的稳定运行。
锂电池的充电与放电过程
锂电池充电
在充电过程中,锂离子从正极迁移到负极,储存电能;充电电压和电流需控制在 一定范围内,避免过充或欠充。
锂电池放电
在放电过程中,锂离子从负极迁移到正极,释放电能;放电速率和放电终止电压 应根据实际应用场景进行控制。
03
CATALOGUE
锂电池储能系统设计与优化
电化学储能电站结构功能

电化学储能电站结构功能概述电化学储能电站是一种能将电能转化为化学能并进行储存的设备,其结构和功能对于电力系统的稳定运行和可持续发展至关重要。
本文将详细介绍电化学储能电站的结构和功能,包括储能系统的组成部分、各部分的功能以及其对电力系统的影响。
电化学储能电站的结构电化学储能电站主要由以下几个组成部分构成:1. 储能单元储能单元是电化学储能电站的核心部分,用于将电能转化为化学能进行储存。
常见的储能单元包括锂离子电池、钠硫电池、铅酸电池等。
储能单元的选择取决于储能电站的需求和应用场景,不同的电池类型具有不同的特点和适用范围。
2. 电池管理系统(BMS)电池管理系统是电化学储能电站的关键部分,用于监测和管理储能单元的状态。
BMS能够实时监测电池的电压、电流、温度等参数,并根据需要进行充放电控制,以确保电池的安全运行和最佳性能。
BMS还能够提供故障诊断和预测功能,提高储能电站的可靠性和效率。
3. 逆变器逆变器是将储能单元输出的直流电转换为交流电的设备,用于将储能电站的电能输出接入电力系统。
逆变器还能够实现电能的功率调节和电压调节,以满足电力系统的需求。
逆变器的性能和效率对于储能电站的运行和接入电力系统的稳定性具有重要影响。
4. 控制系统控制系统是电化学储能电站的大脑,用于监控和控制整个储能系统的运行。
控制系统能够实现对储能单元、BMS和逆变器等设备的集中控制和管理,以实现储能电站的最佳运行状态。
控制系统还能够根据电力系统的负荷和需求进行智能调度,提高储能电站的经济性和灵活性。
电化学储能电站的功能电化学储能电站具有以下几个重要功能:1. 能量储存电化学储能电站能够将电能转化为化学能进行储存,提供可靠的能量储备。
在电力系统需求高峰期或电力供应不稳定时,储能电站能够释放储存的能量,为电力系统提供稳定的电能供应。
2. 调峰削谷储能电站能够根据电力系统的负荷需求进行智能调度,实现电能的削峰填谷。
在电力系统负荷较低时,储能电站能够将电力系统多余的电能进行储存;在负荷较高时,储能电站能够释放储存的能量,满足电力系统的需求。
2MWh储能系统方案

2MWh储能系统方案1.项目概述2.技术方案3.系统设计4.系统实施5.风险评估6.成本分析7.结束语1.项目概述本项目旨在为客户提供一套2MWh集装箱储能系统,以实现对电力系统的储能和调峰。
该系统采用锂离子电池作为储能介质,并通过控制系统实现对储能系统的管理和优化。
2.技术方案本项目的技术方案主要包括储能系统的设计、控制系统的开发和集成、以及系统的测试和调试。
储能系统采用集装箱式设计,方便运输和安装。
控制系统采用先进的软件和硬件技术,实现对储能系统的监控、控制和优化。
系统测试和调试将在安装完成后进行,以确保系统的稳定性和可靠性。
3.系统设计储能系统的设计采用了先进的锂离子电池技术,并通过模块化设计实现对系统的扩展和维护。
系统采用了高效的充放电控制算法,以实现对储能系统的优化和管理。
同时,系统还具备自动故障检测和报警功能,以确保系统的安全性和可靠性。
4.系统实施系统实施包括集装箱储能系统的制造、控制系统的开发和集成、系统测试和调试、以及安装和调试。
系统的制造和开发将在工厂内进行,而系统测试和调试、安装和调试将在客户现场进行。
在安装和调试过程中,我们将与客户紧密合作,以确保系统的稳定性和可靠性。
5.风险评估本项目存在一定的技术和市场风险。
技术风险主要包括储能系统的设计和控制系统的开发,需要我们具备先进的技术和经验。
市场风险主要包括市场需求和竞争状况,需要我们具备敏锐的市场洞察力和竞争优势。
6.成本分析本项目的成本主要包括材料成本、人工成本、设备成本、运输成本和维护成本等。
我们将通过优化设计和管理,以实现对成本的控制和降低。
7.结束语本项目是我们公司的一项重要技术创新和市场拓展,我们将以高度的责任心和专业水平,为客户提供优质的产品和服务,以实现共赢和可持续发展。
一、2WMh项目简介2WMh项目是一项针对储能系统的开发项目,旨在提供高效、稳定、安全的储能解决方案。
该项目将采用先进的技术和设备,为客户提供优质的服务。
集装箱仓式储能系统的架构

集装箱仓式储能系统的架构随着可再生能源的快速发展和应用,储能技术成为能源产业的热门话题之一。
集装箱仓式储能系统作为一种高效、灵活且可移动的储能解决方案,受到了广泛关注。
本文将探讨集装箱仓式储能系统的架构,以及其在可再生能源发电和电力系统稳定性方面的应用。
一、集装箱仓式储能系统的基本架构集装箱仓式储能系统通常由能源管理单元、储能单元、电力逆变器和控制系统等部分组成。
1. 能源管理单元(EMS):能源管理单元具有监测和管理能源输入和输出的功能。
它通过实时监测电池组的状态和电网的电压、功率等参数,控制能量的流动和储存。
能源管理单元可以根据外界环境和电网情况,自动调整能源的使用和储存策略,以实现最佳的能源利用效率。
2. 储能单元:储能单元是集装箱仓式储能系统的核心组件,主要由电池组成。
电池的选择通常基于其能量密度、循环寿命、安全性以及经济性等因素。
锂离子电池是目前最常用的储能单元,它具有高能量密度、长循环寿命和低自放电率等优点。
3. 电力逆变器:电力逆变器主要负责将储能单元储存的直流能量转换为交流能量输出到电网或用户侧。
逆变器可以根据需要进行功率调整,并且具备反馈控制功能,优化能量传输的效率和稳定性。
4. 控制系统:控制系统是整个集装箱仓式储能系统的大脑,通过各种传感器实时监测系统参数和外部环境状况,控制系统能够根据需求自动调节能量的储存和输出,以实现电网的平衡和稳定。
二、集装箱仓式储能系统的应用1. 可再生能源发电支撑:集装箱仓式储能系统可以与可再生能源发电设备(例如风力发电机组、光伏发电系统等)相结合,解决可再生能源波动性带来的电力波动问题。
通过储存多余的电能,可以在可再生能源供电不足或不稳定的情况下,提供稳定的电力输出。
同时,集装箱设计使得储能系统可以在多个场地间灵活移动,适用于分散式可再生能源发电系统。
2. 电力系统稳定性提升:集装箱仓式储能系统还可以用作电力系统的备用电源和调峰储备。
在电网负荷高峰期或突发情况下,储能系统可以迅速输出电能,提供额外的电力供应,保障电网的稳定运行。
储能系统电池包标准

储能系统电池包的标准可以包括多个方面,如电池类型、电池数量、电池管理系统(BMS)、电池包的结构和尺寸等。
以下是一个可能的标准:电池类型:电池包通常使用锂离子电池,因为它们具有高能量密度、高功率输出、环保和可重复充电等特点。
此外,电池包也可以使用铅酸电池、镍氢电池等其他类型的电池,具体取决于应用场景和要求。
电池数量:电池包中的电池数量因应用场景而异,但通常至少包含几十个电池单元。
为了确保电池包的稳定性和安全性,需要合理配置电池的数量和布局。
电池管理系统(BMS):BMS是电池包的核心组成部分,负责监控和管理电池的状态,包括电池的电压、电流、温度等参数。
BMS确保电池的安全和高效使用,同时提供报警和保护功能,如过充、过放、过温等保护。
结构:电池包的结构应该能够保护电池不受外部环境和内部因素的影响,同时方便安装和维修。
电池包的结构应该能够承受一定的冲击和振动,以确保其长期稳定运行。
尺寸:电池包的尺寸应该能够适应应用场景的要求,并考虑到运输、安装和维护的便利性。
电池包的尺寸应该与储能系统的其他组件相匹配,以确保整个系统的协调性和效率。
以下是一些具体的标准细节:1. 电池类型和数量:电池包应该使用锂离子电池,至少包含几十个电池单元。
根据应用场景的不同,电池数量可能会有所不同。
2. 电池管理系统(BMS):BMS应该能够实时监控电池的状态,包括电压、电流和温度。
BMS 应该能够防止过充、过放、过温等危险情况的发生,并提供报警和保护功能。
3. 结构:电池包的结构应该能够承受一定的冲击和振动,同时保护电池不受外部环境和内部因素的影响。
电池包的外部应该采用防腐蚀材料,内部应该采用防火材料。
4. 尺寸:电池包的尺寸应该能够适应应用场景的要求,并考虑到运输、安装和维护的便利性。
如果储能系统需要与其他组件配合使用,电池包的尺寸也应该与其他组件相匹配。
5. 安全性:电池包应该符合相关安全标准,如UL认证等。
此外,电池包应该提供安全警示标志和操作说明,以确保用户的安全。
电力储能用锂离子电池(欧姆内阻)检测技术标准

电力储能用锂离子电池(欧姆内阻)监测技术1范围本文件规定了储能用锂电池欧姆内阻参数测试的术语及定义、测试条件和要求、测试方法等。
本标准适用于对储能用锂电池欧姆内阻的在线监测的测试。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T8897.4-2008原电池第4部分:锂电池的安全提示;GB/T34131-2017电化学储能电站用锂离子电池管理系统技术规范;GB/T36549-2018电化学储能电站运行指标及评价。
QB/T2502-2000锂离子蓄电池总规范;T/CNESA1002-2019电化学储能系统用电池管理系统技术规范。
3术语和定义GB/T36549-2018界定的术语和定义适用于本文件。
为了便于使用,以下重复列出了GB/T36549-2018中的某些术语和定义。
3.1电化学储能系统Electrochemical energy storage system储能系统由电池、电器元件、机械支撑、加热和冷却系统(热管理系统)、双向储能变流器(PCS)、能源管理系统(EMS)以及电池管理系统(BMS)共同组成。
3.2电池管理系统Battery management system为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
3.3能量管理系统Energy management system对电池充放电进行控制,提升电池组的使用寿命、充放电效率等,主要防止电池的过充过放及电池之间的电压均衡保护。
3.4电池欧姆内阻Battery ohm resistance电池在工作时,由电极材料、电解液、隔膜电阻及各部分零件的接触电阻组成。
3.5电池单体The battery monomer组成电池组(Batteries)和电池包(pack)的最基本的元素,一般能提供的电压是3V-4V之间。
储能系统用锂离子电池技术条件—鉴衡中心

3.4 额定容量 rated capacity 企业提供的技术文件规定的室温下电池的 C2Ah 数值。
注:室温条件指25±2℃。
3.5 初始容量 Initial capacity 即室温放电容量。 3.6 额定能量 rated energy
企业提供的技术条件下放电能量或标准试验环境(25±2℃)下锂离子电池以I2(A)电流放电,达 到终止电压时所放出的能量(Wh)。
锂离子电池单元组/单体按 5.2.3 检验时,锂离子电池外形尺寸应符合企业提供的产品技术条件。 4.1.4 室温放电容量
锂离子电池单元组/单体按5.2.5试验时,其放电容量应不低于额定容量,并且不超过额定容量的 110%,同时所有测试样品初始容量极差不大于初始容量平均值的5%。
注:极差是所有样本的的最大值和最小值之差。
同时所有测试样品初始容量极差不大于初始容量平均值的7%。 4.2.5 室温倍率放电容量
3.7 能量效率 energy efficiency 锂离子电池的放电能量与充电能量之比。 3.8 充电终止电流 end of charge current 在指定恒压充电时,锂离子电池终止充电时的电流。 3.9 爆炸 explosion 锂离子电池外壳猛烈破裂,且有主要成份(固体物质)抛射出来。 3.10 起火 fire 锂离子电池任何部位发出明火(持续时间长于 1s),火花及拉弧不属于明火。 3.11 漏液 leakage 电池内部液体泄露到电池壳体外部。 3.12 扫频循环 sweep cycle 在规定的频率范围内往返扫描一次,例如:10Hz~55Hz~10 Hz。 3.13 壳体 enclosure 指将内部部件封装并为其提供防止直接接触的保护部件。 3.14 符号 mark C2——2 小时率额定容量(Ah)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电 池 系 统
电流检测
BCU CAN总线 BMU1 BMU2
…… ……
BMU N
总电压检测
电 温风 压 度机 线 线线
电温风 压度机 线线线
电温风 压度机 线线线 手持设备(RS232)
电 流 +
电 流 -
分流器
电池组电池组1 电池组2
……
电池组N
电池组+
锂离子电池管理系统
• 电池管理系统接口
– 从板接口
• 电池管理系统可提供的参数
– – – – – – – – – – – 电池管理系统自检信息 单体电池电压 电池温度 电池组端电压 电池组工作电流 电池组绝缘状态 最高/低单体电池电压及位置 最高/低温度及位置 电池SOC 电池组容量 电池的最大允许充放电电流
– 电池故障报警 – 电池过压1/2级报警 – 电池欠压1/2级报警 – 电池过温1/2级报警 – 电池低温1/2级报警 – 电池SOC过高1/2级报警 – 电池SOC过低1/2级报警 – 电池绝缘电阻低1/2级报 警 – 电池一致性差1/2级报警 – 维护请求 – 电池编组号码
• 安全性
–钴酸锂<三元<锰酸锂<磷酸铁锂<钛酸锂
• 三元<磷酸铁锂<钛酸锂
锂离子电池简介
• 锂离子电池的工作原理
–充放电原理 –过充电原理 –过放电原理 –高温运行原理 –低温运行原理 –过电流原理 –长期搁置原理
锂离子电池简介
• 锂离子电池的特性表征参数
–电压 –容量 –内阻 – SOC –倍率 –寿命 –工作温度
锂离子电池简介
• 锂离子电池的性能
–充电上限电压与电池充电容量及循环寿命的关系
锂离子电池简介
• 锂离子电池的性能
–高温对电池寿命的影响
锂离子电池简介
• 锂离子电池的性能
–充电电流对充电时间及电池性能的影响
0.3C充电/0.3C放电 1C充电/1C放电
充电时间(分钟)
192
65
300次循环后容量下降(%)
• 应用领域 • 备用电源 • 调频控制 • UPS • 电能质量
储能系统
• NAS电池储能
• 优点 • 储能密度高:1000Wh/L • 可高功率放电:10C • 循环寿命高,4500次(90%DOD) • 转换效率:80-90%; • 缺点 • 需工作温度在300-350℃ • 电池工作时需要一定的加热保温 • 需要设置防爆和防腐安全保护 • 应用领域 • 负荷调峰 • UPS • 可再生储能 • 电能质量
储能系统用锂离子电池 及其管理系统
报告内容
• 储能技术
• 锂离子电池简介 • 锂离子电池管理系统
储能系统
• 为什么要储能?
–削峰填谷 –改善电能质量 –辅助可再生能源并网
储能系统
• 为什么要储能?
容 量 范 围 大 , 从 几 十 千 瓦 到 几 百
发电侧 输电侧
系统稳定 无功支撑 负荷均衡 可靠供电 频率控制 旋转备用 负荷均衡 出力优化
DC/DC1-7 (25kW)
DC/DC1-8 (25kW)
DC/DC1-9 (25kW) 故障报 警触发 干节点
DC/DC1-10 (25kW) 故障报 警触发 干节点
故障报 警触发 干节点
故障报 警触发 干节点
故障报 警触发 干节点
故障报 警触发 干节点
故障报 警触发 干节点
故障报 警触发 干节点
• 锂离子电池储能
• 优点 • 锂是自然界里最轻的金属元
• • • •
素,比重仅及水的一半,同 时它又具有最低的电负性, 电极电位是-3.045V。所以选 择适当的正极与其相匹配, 可以获得较高的电动势和高 的比能量。 。 其储能密度:100-300Wh/L; 循环寿命:2000~5000次 (80%DOD); 转换效率:90-98%; 响应速度:ms级;
锂离子电池简介
锂离子电池管理系统
• 锂离子电池的安全性管理
滥用项目
过充电
基本机理
表现形式
解决方案
(1)电池电压超高导致电解液氧化;(2)正 过充电单只电池电压 基于电池组端电压的控制模式失 极锂离子大量拖出导致电池内部结构损坏 高 效,需要严格控制单只电池电压 过高
过放电
(1)电压超低,负极铜基板溶解,嵌入电池 过放电单只电池电压 基于电池组端电压的控制模式失
3.44
5.09
锂离子电池简介
• 锂离子电池的性能
–电池容量利用率对电池循环次数的影响
• 锂离子电池的成组问题
–串联电池组的一致性问题
自放电等增加
锂离子电池简介
P+
上限电压
可用容量
Reduced Restored Runtime Runtime
下限电压
P-
• 锂离子电池的成组问题
–并联电池组的一致性问题——均流
锂离子电池管理系统
• 储能系统
配电系统
CAN总线
PCS-1(250kW)
CAN总线
监控调度PC机
以太网
2MW监控 主机服务器
故障报警触发干节点
DC/DC1-1 (25kW)
DC/DC1-2 (25kW)
DC/DC1-3 (25kW)
DC/DC1-4 (25kW)
DC/DC1-5 (25kW)
DC/DC1-6 (25kW)
储能系统
• 性能对比
储能类型 典型额定功率 100 ~ 2000MW 10 ~ 300MW 5kW ~ 10 MW 10kW~50MW 1~10MW 10kW~1MW 额定能量 4~10小时 1~ 20小时 1秒~30分 2秒~5分 1~10秒 1~30秒 特点 适于大规模,技术成熟。响应慢 ,需要地理资源 适于大规模。响应慢,需要地理 资源 比功率较大。成本高、噪音大 响应快,比功率高 成本高、维护困难 响应快,比功率高 比能量太低 响应快,比功率高。成本高、储 能量低 技术成熟,成本低 寿命短,环保问题 寿命长,可深放,适于组合,效 率高,环保性好。但储能密度稍 低 比能量与比功率较高。高温条件 、运行安全问题有待改进 比能量高。成组寿命、安全问题 有待改进 应用场合 日负荷调节,频率控制和系 统备用 调峰、调频,系统备用,风 电储备 调峰、频率控制、UPS和电 能质量 输配电稳定、抑制振荡 输电系统稳定、电能质量控 制 可应用于定制电力以及 FACTS 电能质量、电站备用、黑启 动 电能质量、备用电源、调峰 填谷、能量管理、可再生储 能、EPS 抽水储能 压缩空气 飞轮储能 超导储能 高能电容 超级电容
– 电磁储能
• 超导储能 • 超级电容储能
储能系统
• 抽水储能
• 优点 • 技术上成熟可靠 • 其容量可以做得很大,仅受
到水库库容的限制。 • 缺点 • 建造受到地理条件的限制 • 在抽水和发电两个过程中都 有能量损失。
• 应用领域 • 调峰填谷 • 系统调频 • 大规模风场电存储和调度。
储能系统
故障报 警触发 干节点
故障报 警触发 干节点
电池及管理系统
电池及管理系统
电池及管理系统
电池及管理系统
电池及管理系统
电池及管理系统
电池及管理系统
电池及管理系统
电池及管理系统
360Ah*135S
360Ah*135S
360Ah*135S
电池及管理系统
360Ah*135S
360Ah*135S
360Ah*135S
电安全
为了达到一定的电压等级,电池大量串联, 电池与地或机壳之间 检测动力电池与地或机壳之间的 对操作人员的人身安全构成威胁 出现绝缘下降 绝缘电阻是否达标
锂离子电池管理系统
• 锂离子电池高性能管理——3S管理
– 荷电状态:SOC – 健康状态:SOH – 功能状态:SOF
锂离子电池管理系统
• SOC估算
• SOH估算方法
– 在线估算 – 在线测试 – 离线测试
锂离子电池管理系统
• SOF估算——最大允许充放电电流
– – – – 低温运行 高温运行 高SOC运行 低SOC运行
锂离子电池管理系统
• 储能系统用电池管理系统架构
输出接口 监控调度系统 CAN1 CAN2 严重报警信号(触点) PCS
严重报警信号(触点)
Unit Delay SOC(k) + + Qmax / UOCV =f(SOC)|SOC=0 + UO(k) Qavi SOC =f(UOCV) UOCV =f(SOC) + +
x
i(k)
∫i(k)dt
锂离子电池管理系统
• SOH表征参数
– 内阻增加 – 容量下降——对储能系统而言很关键 – 倍率下降
机 械 储 能 电 磁 储 能
铅酸电池
kW~50MW
5kW~100MW
分钟~小时
1~20小时 数小时 分钟~小时
电 化 学 储 能
液流电池
钠硫电池 锂电池
100kW-100MW kW-MW
电能质量、备用电源、调峰 填谷、能量管理、可再生储 能、EPS
电能质量、备用电源、UPS
储能系统
锂离子电池储能是目前转换效率最高的储能方式;
锂离子电池管理系统
• 电池管理系统接口
– 主板接口