中颖电子智能电池管理系统简介

合集下载

BMS电池管理系统使用说明书user's guide of BMS

BMS电池管理系统使用说明书user's guide of BMS

BMS电池管理系统Battery Management System使用说明书User’s Guide上海妙益电子科技发展有限公司Shanghai Mewyeah Technology Development Co.,Ltd.目录1 概述Introductio (4)2 特点Features (4)3 系统构成Composition of System (5)4产品命名规则Package Information (5)4.1终端模块Terminal Modules (5)4.2中控模块Central Module (6)4.3集成模块Integral Module (6)4.4显示模块Display Module (6)4.4.1组合仪表Dashboard (6)4.4.2液晶显示器LCD Display (7)5 技术参数Parameters (7)5.1终端模块 (7)5.1中控模块 (7)5.3集成模块 (8)5.4显示模块Display Module (8)5.4.1组合仪表Dashboard (8)5.4.2液晶显示器LCD Display (8)6 安装Installing (9)6.1终端模块Terminal Module (9)6.1.1 DX201, DX101 (9)6.1.2 DX202,DX102 (9)6.2中控模块Central Module (10)6.3集成模块Integral Module (10)6.4显示模块 (10)6.4.1仪表 (10)6.4.2 液晶显示器 (11)6.4.2.1 XS201-70,XS101-70 (11)6.4.2.2 XSQ201-35,XSQ101-35 (12)7配线(Wiring) (12)7.1终端模块Terminal Module (13)7.1.1 DX201-12, DX101-12 (13)7.1.2 DX202-8, DX102-8 (14)7.1.3 DX203-20, DX103-20 (15)7.2中控模块Central Module (15)7.3集成模块Integral Module (17)7.3.1 DKX201-8, DKX101-8 (17)7.3.2 DKX201-16, DKX101-16 (18)7.3.3 DKX201-20, DKX101-20 (19)7.4显示模块Display Module (19)7.4.1仪表Dashboard (19)7.4.2 液晶显示器LCD Display (20)7.4.2.1 XS201-70,XS101-70 (20)7.4.2.2 XSQ201-35,XSQ101-35 (21)8 显示模块操作说明Operation of Display Module (21)8.1 仪表DashBoard (21)8.1.1表盘说明Layout of the face (21)8.1.2表背说明Layout of the back (21)8.1.3按键说明Key Description (22)8.1.4液晶显示Display On LCD (23)8.1.5设置时间Steps of Set Time (23)8.1.6视频显示Video Display (31)8.2 液晶显示器LCD Display Module (32)8.2.1 XS201-70,XS101-70 (32)8.2.2 XSQ201-35,XSQ101-35 (32)9 参数设置Set Parameter (36)9.1 参数设置需求Requirement for Set Parameter (36)9.2 参数设置步骤Step of Set Parameter (36)10 通信Communication (38)10.1通讯硬件要求Hardware Requirement (38)10.2地址分配Allocation of Module Address (38)10.3数据帧Communication Frame (38)10.3.1 BMS终端模块Terminal Module (38)10.3.2 BMS中控模块Central Module (39)1 概述Introductio妙益电池管理系统用于监测并指示电池状况(电压、温度、电流、剩余能量)、在异常情况下向用户发出报警信号(声光)、严重时根据制定的控制策略切断电力传送链路以保护电池从而延长电池使用寿命,另外电池管理系统还有能量均衡作用,使得系统中电池剩余能量趋于一致,延长系统的整体放电时间。

基于中颖SH367003 和SH79F329 的动力锂电池BMS 介绍

基于中颖SH367003 和SH79F329 的动力锂电池BMS 介绍

基于中颖SH367003和SH79F329的动力锂电池BMS介绍中颖电子股份有限公司 高级工程师 张圣(引言)近年来,随着动力锂电池在电动自行车,电动摩托车,电动汽车以及后备电源等领域被广泛应用,动力锂电池管理系统(Battery Management System,简称BMS)得到了长足的发展。

结合中颖电子股份有限公司的相关产品,本文对主流的动力锂电池管理系统进行了介绍和总结。

(正文)锂电池是20世纪开发成功的新型高能电池,广泛应用于各种消费类电子产品中中,PDA,DSC,Cellular Phone,Camcorder,Portable Audio,Advanced Game,Electric Scooter,Bluetooth Device…越来越多的产品采用锂电池作为其主要电源。

在电动工具、电动自行车、电动摩托车、电动汽车以及后备电源等领域,锂电池凭借其体积小、能量密度高、无记忆效应、循环寿命高、高电压电池、自放电率低、无污染等特点成为动力电池的最佳选择。

1.锂电池及BMS目前市场中常见的动力电池有:铅酸电池,镍镉电池以及镍氢电池等,表一为锂电池与上述电池间性能和优缺点对比。

表一:电池性能和特点对比表铅酸电池 镍镉电池 镍氢电池 锂电池 比能量(wh/kg) <30 50 60~80 100~150体积比能量(wh/L) 100 150 250 350~400 标称电压(V) 2 1.2 1.2 3.7工作温度(℃) -20~60 20~60 20~60 0~60自放电率(%) 4~5 20~30 30~35 <5循环寿命 800次 500次 1000次 >1000次记忆效应 无 有 有 无优点技术成熟原材料便宜 安全性能好 安全性能好单体电压高比能量高缺点 污染自放电率高原材料稀缺污染原材料稀缺成本高安全性稍差相对其它动力电池,锂电池拥有较大的性能,环保以及潜在的成本优势。

中颖电子:受益智能可穿戴设备100亿美元盛宴__

中颖电子:受益智能可穿戴设备100亿美元盛宴__

中颖电子:受益智能可穿戴设备100亿美元盛宴本刊研究员张鹏飞Industry·Company随着谷歌眼镜、三星智能手表的面世,智能可穿戴设备已成为时下最热门的科技话题之一,有望成为继智能手机之后未来移动智能产品发展的主流趋势。

2012年,著名调研公司Forrester表示,可穿戴计算技术将引发“新的平台大战”。

市场研究公司Juniper Research预计,2013年可穿戴计算设备的市场规模将达到8亿美元,2014年将达到15亿美元,到2017年,可穿戴计算设备出货量将从今年的约1500万部增加到7000万部,市场规模可能接近100亿美元。

在A股市场,也有一批与智能可空戴设备产业链相关的公司,早在今年初即被资金所热棒。

其中,中颖电子(300327)就是其中的一员。

该公司所生产柔性芯片已应用于部分智能可穿戴设备,未来有望在行业盛宴开启时充分受益。

目前,公司市值不到20亿,成长空间十分广阔。

智能可穿戴设备有望接力智能手机智能穿戴是指应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备,如眼镜、手套、手表、服饰及鞋等。

2012年,搜索引擎巨头谷歌公司宣称将发布智能眼镜,在科技界引起了巨大反响。

此后,苹果、微软、三星、台湾宏达,以及国内的百度、盛大都传有意介入该领域。

今年4月份,该眼镜面世,尽管售价高昂,但依然获得市场的青睐;9月份,三星公司在柏林国际电子消费展上正式发布了智能手表。

可以预计,以后将会有越来越多的科技巨头会推出智能可穿戴设备。

智能可穿戴设备之所以会激发众多科技巨人的热情,是因为其市场潜力大,为未来移动智能终端的发展方向。

被称为“互联网女皇”的美国KPCB分析师玛丽·米克尔在今年的互联网趋势报告中,尤其强调了智能可穿戴设备的增长潜力,认为这是下一个热门领域。

美国青蛙设计公司首席创意总监Mark Rolston表示,当今流行的移动设备必将告一段落,可穿戴式计算设备如智能手表等将越来越受欢迎。

电动车电池管理系统功能介绍

电动车电池管理系统功能介绍

电动车电池管理系统功能介绍随着环保意识的逐步加强,电动车逐渐成为了人们出行的重要选择。

然而,电动车的电池管理始终是一个关键问题。

电池管理系统(BMS)作为电动车的重要组件,对电池的性能和使用寿命起着至关重要的作用。

本文将详细介绍电动车电池管理系统的各项功能。

一、电量管理电池管理系统首先需要管理电池的电量。

这包括对电池的剩余电量进行准确预测,以及在电池充电和放电过程中对电量的有效利用。

BMS 通过监测电池的电压、电流和温度等参数,结合先进的算法,可以实现对电池剩余电量的准确预测,有效避免电池过度放电或充电,从而延长电池的使用寿命。

二、充电管理电池管理系统的另一个重要功能是充电管理。

在充电过程中,BMS需要控制充电电流的大小,防止电池过充,同时还要确保电池能够快速、充分地充电。

BMS还可以根据电池的充电状态和环境温度来调整充电电流,以防止电池在充电过程中过热。

三、健康状态管理电池管理系统的健康状态管理功能主要是通过监测电池的性能参数来实现的。

这些参数包括电池的电压、电流、温度等。

通过实时监测这些参数,电池管理系统能够及时发现电池的健康状况变化,预测电池的寿命,并在必要时提醒用户更换电池。

四、安全防护电动车的电池管理系统还需要具备安全防护功能。

这包括防止电池短路、过充、过放等安全问题。

一旦出现这些问题,BMS需要立即切断电池的电源,以防止电池损坏或发生危险。

BMS还需要具备防水、防尘等功能,以应对各种复杂的使用环境。

五、能量回收电动车的电池管理系统还应当具备能量回收功能。

在刹车或下坡时,电动车的电机不再提供动力,但此时电池管理系统应当能够将这部分能量回收并存储在电池中,以提高能源利用效率。

能量回收功能不仅有助于提高电动车的续航里程,还能在一定程度上延长电池的使用寿命。

六、人机交互与通讯现代的电动车电池管理系统还需要具备人机交互与通讯功能。

这包括通过仪表盘、手机APP等方式向用户展示电池的电量、充电状态等信息,以及接收用户的指令来控制电动车的运行状态。

基于SH366000的智能电池管理系统

基于SH366000的智能电池管理系统

基于SH366000的智能电池管理系统中颖电子股份有限公司高级工程师张朋翔摘要:本文结合中颖电子的智能电池管理芯片SH366000,围绕着锂离子电池安全和有效利用的目标,对信息采集、充电方式、SOC估算、安全保护、电芯均衡、人机接口、低功耗设计等方面的实现策略进行了比较与分析,总结了现有智能电池管理系统的不足,对未来的发展方向进行了展望。

关键词:锂离子电池、智能电池管理系统、SH366000、充电管理、电池平衡、电池保护中图分类号:TM912.6 文献标识码:ASmart Battery System Based on SH366000Abstract:On the basis of the Li-ion battery of safety and effective use, We analyzed t he existing solution of Signal sample、Charge mode、SOC estimate、Safety protection、Cell balance、Man-machine interface、Low power design etc,summarized its disadvant age, and predicted the develop direction of the future.Key Word:Li-ion Battery、Smart Battery System、SH366000、Charge Management、Ce ll Balance、 Battery Protection概述锂离子电池研究始于20世纪80年代,1991年由索尼公司首先推出了民用产品。

由于具备能量密度高、体积小、无记忆效应、循环寿命高、自放电率低等诸多优点,锂离子电池目前广泛应用于手机、MP3、笔记本电脑、相机等各种便携式设备。

尤其在笔记本供电方面,其优异的高能量优势更是发挥得淋漓尽致。

动力锂电池管理系统

动力锂电池管理系统
动力锂电池管理系统
中颖电子股份有限公司 高级工程师 张圣 (引言)
近年来,锂电池以其高能量密度、循环寿命长、轻便无污染等优点在电动工具、电动自行 车、电动摩托车以及 UPS 等领域得到广泛应用,锂电池混合动力车以及纯锂电池动力车也在逐 年增加,但是安全性能仍是动力锂电池行业最为关注的问题。本文结合中颖电子股份有限公司相 关产品介绍动力锂电池管理系统。
锂电池 BMS 的保护功能包括:过充电保护、过放电保护、过电流保护以及高低温保护等功 能,其中过充电保护、过放电保护以及过电流保护功能时锂电池 BMS 必备的功能,图二是基于 SH367003 系列芯片设计的 4 串锂电池保护系统,该系统为最简锂电池 BMS。
PACK+
CHG- 2. 过放电保护 锂电池放电过程中,电芯电压低于下限电压时,电芯负极的金属集流体将被溶解,会大大缩
短电芯的使用寿命,且给电芯造成的损害往往是不可逆的。在极限情况下,给过度放电的电芯充 电时,金属集流体会在负极附近沉积,当沉积达到电芯正极时将造成电芯内部短路或者漏液。 BMS 进行过放电保护的动作类似于过充电保护,但很多 BMS 在电芯过放电保护后,为了防止锂 电池进一步过度放电,均会进入自身功耗降低模式。常见的过放电保护阈值精度为:±50mV。
3. 过流保护 电池都存在一定的内阻,当电池工作电流过大时,电池内部的发热明显增加,电池温度会升
高,从而导致电池的热稳定性下降,并形成正反馈。而且,锂离子电池的正负极的脱嵌锂离子的 能力是有限的,当电池的充放电电流大于电池的脱嵌能力时,将导致电池的极化电压增加,导致 电池的实际容量减小,严重时还会导致锂离子的淀积影响电池的安全性。锂离子电池保护系统会 根据电池组放电电流大小,选择不同的过流保护延时。较为常见的过流保护延时在 20mS 左右, 而短路保护延时则大多在 200~500uS 之间。

中颖电子动力锂电池BMS简介

中颖电子动力锂电池BMS简介
锂电池放电过程中,电芯电压低于下限电压时,电芯负极的金属集流体将被溶解,会大大缩 短电芯的使用寿命,且给电芯造成的损害往往是不可逆的。在极限情况下,给过度放电的电芯充 电时,金属集流体会在负极附近沉积,当沉积达到电芯正极时将造成电芯内部短路或者漏液。 BMS 进行过放电保护的动作类似于过充电保护,但很多 BMS 在电芯过放电保护后,为了防止锂 电池进一步过度放电,均会进入自身功耗降低模式。常见的过放电保护阈值精度为:±50mV。 3. 过流保护
(本文小结) 动力锂电池的市场空间巨大,对 BMS 需求与日俱增,选择合适的 BMS 能够保证锂电池的
安全并延长其使用寿命。本文简单介绍了当前动力锂电池管理系统的主要功能和特点,叙述了一 些个人的拙见,希望与大家共同探讨动力锂电池 BMS 这个领域。
中颖电子锂电池保护芯片简介:
SH367003/SH367004/SH79F329 等是中颖电子股份有限公司生产的专用锂电池保护 IC。
8
12
VC4
11
CTL
10
SEL
9
NC
SH367004 特点及管脚图 1) 单节过充电保护 2) 单节过放电保护 3) 充放电过流保护 4) 充放电短路保护 5) 高低温保护 6) 电芯平衡功能 7) 断线保护功能 8) 低功耗
SH79F329 特点及管脚图: 1) 基于 8051 的 MCU 2) Σ-Δ16 Bit ADC 进行电压/温度监控 3) Σ-Δ16 Bit ADC 进行电流监控 4) 硬件过载/短路保护 5) 3 个高压 MOS 控制端 6) 兼容 SMBus 通讯模块 7) 32K Flash
VCC NC
VPACK OD
CHG DSG BAT
NC NC NC

BMS知识讲座--rev

BMS知识讲座--rev
电池管理系统知识讲座
中航锂电技术研究院 汇报人: 吕少锋
BMS室
什么是电池管理系统 为什么需要BMS BMS功能、组成及拓扑结构
第一篇
BMS BMS 室 室 201Байду номын сангаас-3-25
什么是电池管理系统?
电池管理系统(Battery Management System)
来自Wikipedia的定义:
功能需求:
锂电池在使用过程中需要知道电池的SOC参数,通过SOC预测电池的剩余电量。 BMS能够实时测算锂电池的SOC,满足客户应用需要。
大容量锂电池存在比较明显的不一致性,不一致性会影响电池的充放电 能力及循环寿命。BMS能够通过均衡改善不一致性,提升锂电池整体性能。 电池在不同的温度下会有不同的工作性能,锂离子电池的最佳工作温度为 25~40℃。温度的变化会使电池的SOC、开路电压、内阻和可用电量发生变化, 甚至会影响到电池的使用寿命。通过BMS可以控制电池工作的环境温度,改善 电池特性。
电 温风 压 度机 线 线线
电温风 压度机 线线线
电温风 压度机 线线线
……
电池箱1 电池箱2 电池箱N
电 池 组 +
电流传感器
BMS BMS 室 室 2015-3-25
BMS拓扑结构---Distributed
定义:电压、温度采集以
及均衡等功能等分布到每 支电池,通过总线与主控 通信。
优点:设计、构造简单,

Cn: nominal capacity Qb: net discharge
Remaining Capacity ≠ Usable Capacity Usable capacity depends on the cutoff voltage Usable capacity depends on the age of the battery Capacity of fully charged battery ≠ Total amount of usable
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能电池管理系统简介
中颖电子股份有限公司高级工程师张朋翔
概述
锂离子电池研究始于20世纪80年代,1991年由索尼公司首先推出了民用产品。

由于具备能量密度高、体积小、无记忆效应、循环寿命高、自放电率低等诸多优点,锂离子电池目前广泛应用于手机、MP3、笔记本电脑、相机等各种便携式设备。

尤其在笔记本供电方面,其优异的高能量优势更是发挥得淋漓尽致。

但是由于能量密度高及特有的化学特性,锂离子电池的安全性和稳定性方面亦存在隐患,如过高温和过充可能会燃烧甚至导致爆炸,过放电可能造成电池本身的损坏。

近年来,连续出现的笔记本电脑电池爆炸燃烧事故,导致了全球性的大批量电池召回现象,给生产厂家带来了巨大的经济损失。

为保证电池使用的安全性,在提高电池本身材料性能及加强工艺控制的同时,智能电池管理系统也成为锂离子电池应用研究的重中之重。

智能电池管理系统简介
锂离子电池发展初期,电池管理系统一般只具有检测电池组电压、温度、电流及简单保护等功能。

随着锂离子电池应用范围越来越广,应用方式越来越多,对锂离子电池管理系统的要求也越来越高。

智能电池管理系统一般具有如下几个功能:电池组参数采集、剩余电量计算、电池组故障保护、电芯均衡、通信等。

● 电池组参数采集
电池组参数采集主要包括电池组中单体电池电压、系统电流、系统温度的采集,该参数可用于判定电池的剩余电量、故障保护等。

锂离子电池的电压最能体现电池的性能状态,既可以用于过充、过放等故障保护,也可以用于初步估计锂离子电池的剩余电量。

系统电流可用于判断是否出现过放或过流,还可以通过对电流与时间的积分,估计电池的剩余电量等。

系统温度主要用于防止电池组温度过高,发生安全事故,并对剩余容量计算进行补偿。

电池管理系统的所有算法及保护都是以采集到的电池参数为基础的,因此必须保证数据的精确度。

● 剩余电量预测
剩余电量是反映电池性能的重要参数,也是主机进行充电、放电的判断依据。

剩余电量的准确估算可以保护电池,防止过充、过放的发生,便于客户做出合理的时间安排。

当前,剩余电量的检测方式主要有开路电压法、库仑积分法、内阻法、卡尔曼滤波法、混合法等。

开路电压法是目前最简单的方法,根据电池的特性得知,在电池容量与开路电压之间存在一定的函数关系,当得知开路电压时,可以初步估算电池的剩余电量。

该方法精度不高,且只适用于静态检测,无法直接用于真实应用。

内阻法利用电池内阻和剩余电量的对应关系,来判定系统的剩余电量。

由于锂离子电池组的内阻随工作状态变化明显,不同特性的电芯之间也有差异,该方法的重点是如何能够快速得到当前应用条件下电芯的内阻。

如果可以快速进行内阻的自我测量,则可以得到相对准确的剩余容量。

库仑积分法是通过计算电池组电流与时间的积分,计算锂离子电池组充入和放出的电量,再与电池的额定电量比较,从而得出当前的剩余电量。

该方法简单、稳定,但必须对电流测量非常准确,否则会出现积累误差。

另外,锂离子电池的自放电以及在低温和大电流下其放电效率会变低,都会进一步降低了剩余电量的检测精度。

库仑积分法必须定期进行校正。

卡尔曼滤波法是指采用卡尔曼滤波算法,综合考虑电池组循环变化、电池老化、温度等影响,进而得到精准的剩余电量。

该算法相对而言最精准,但是算法复杂,又需要足够的实验数据,暂未得到具体的应用。

混合法是指通过内阻法/开路电压法与库仑积分法相结合的方式,通过开路电压法/内阻法的定期校正,使用库仑积分法得到精准的剩余电量。

该方法是目前使用最广泛的方式。

● 电池组故障保护
在使用锂离子电池时,必须提供电池组故障保护,过热或过充均可能引起火灾或爆炸。

智能电池管理系统可分为一级保护和二级保护。

一级保护检测电池组的电流、电压和温度及剩余电量,判断电池组是否发生了过充、过放、过温、过流和短路等不安全状态,并适时关闭电池组,以避免对电池组造成损坏。

二级保护可以在一级保护失效的情况下提供后备保护,熔断保险丝,永久关闭电池组,防止电池在不安全状况下继续充放电。

● 电芯均衡
由于锂离子电池的制作工艺限制,以及使用过程中温度、放电率等对电池的影响,电池组中各个单体电池之间存在电压、内阻和容量等差异,而且电池组经过多次循环之后差异会变得更加明显,导致电池组的使用寿命比单体平均寿命短很多。

同时对锂离子电池而言,由于其对充放电要求很高,当过充、过放、过流及短路等情况发生时,锂离子电池内热量大量增加,容易发生火花、燃烧甚至爆炸。

为确保安全性和稳定性,必须采取均衡措施。

目前锂离子电池均衡管理的方法可以分为耗能式和非耗能式。

耗能式是将电池组中电压较高的电池释放一部分能量,使其与其他电池保持一致;非耗能式是在单体电池之间或单体电池与整个电池组之间进行能量转移。

耗能式是通过给单体电池并联一个功率电阻和一个开关进行分流,将电池组中电压高的单体电池多余的能量释放,达到电池组电压均衡。

该方法简单、稳定,缺点是存在能量浪费、均衡时间长和散热等问题,一般只用于充电状态下的均衡。

非耗能式一般是使用储能元件转移能量使电池组电压保持一致,该方法均衡电流大、均衡效率高,但是电路复杂、控制复杂。

一般可分为能量转换式均衡和能量转移式均衡。

能量转换式均衡是通过反激转换器由锂离子电池组整体向单体电池进行补充或由单体电池向电池组进行补充,该转换可以在某电池电压高于阈值时将其能量转换到电池组,也可以在某电池电压低于阈值时从电池组转换到该电池。

能量转移式是通过电容或电感把能量从电压高的电池转移到电压低的电池,从而达到均衡。

该方法的缺点是控制复杂,无法用于数量多的电池组,均衡时间比较长。

● 通信
智能管理系统需对外提供SMBus通信功能,以方便主机读取转换数据和状态信息,并可以根据主机需要对智能电池管理系统进行控制。

智能电池管理发展技术趋势
目前,智能电池管理技术仍然存在着一定方面的不足,未来的改进可能主要表现在如下几个方面:
1)均衡方式待改进,均衡方式向非耗能式变化,提高均衡效率
2)电池容量监控不够准确,无法针对不同电池组做差异化的充放电管理
3)减少管理系统能耗,提高能量利用率
4)系统集成度待进一步提高,降低系统复杂度
随着锂离子电池应用的不断扩大,对其管理技术的要求也愈加提高,相信不断会有新的竞争者加入,智能电池管理技术也会得到更大发展。

中颖电子智能电池管理系统简介
基于以上对智能电池管理系统的认识,中颖电子股份有限公司推出了专为笔记本电脑电池设计的智能电池管理芯片SH366000和为智能电池管理系统设计的专用MCU SH79F329。

SH366000是中颖电子专为笔记本电池推出的一颗智能电池管理芯片,其通讯协议兼容SMBus1.1,符合智能电池指令集SBData1.1规范;适用于2~4节锂离子及锂聚合物电池组;能够准确计算出电池组的满充容量、剩余容量,以及电池的可运行时间和充电完成所需时间;提供电压、电流、温度监控功能,提供软硬件保护;提供电池平衡功能,延长电池寿命;其BOM 基本兼容当前主流方案。

欲了解详细的IC信息,请访问.
SH79F329是中颖电子推出的一颗采用40V高压制程的智能电池管理专用MCU,已成功开发出2~5节电动工具方案和6~16节电动自行车方案,其能够准确计算电池组剩余电量和剩余工作时间;提供电池平衡功能及电压、电流、温度保护功能;提供超低功耗待机模式。

欲了解详细的IC信息,请访问.。

相关文档
最新文档