激光器的简介以及发展历程 PPT
合集下载
激光器的发展历史及现状ppt课件

①远红外激光器 ②中红外激光器 ③近红外激光器 ④可见激光器 ⑤近紫外激光器 ⑥真空紫外激光器 ⑦X射线激光器,
远红外激光器
X射线激光器
近紫外激光器
4.主要用途
由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密
测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域 引起了革命性的突破。激光在军事上除用于通信、夜视、预警、测距 等方面外,多种激光武器和激光制导武器也已经投入实用。
子,并同时放出巨大辐射能量。由于激光能量可控制,所以该过程称
为受控核聚变。
5.世界激光器市场发展现状
世界激光器市场可划分为三大区域:美国(包括北美)占 55%,欧州占 22%,日本及太平洋地区占 23%。在世界激光市场上日本在光电子技 术方面占首位,美国占第二位;在激光医疗及激光检测方面则美国占 首位;
良好效果。
2、激光测距。激光作为测距光源,由于方向性好、功率大,可
测很远的距离,且精度很高。
பைடு நூலகம்
3、激光通信。在通信领域,一条用激光柱传送信号的光导电缆
,可以携带相当于2万根电话铜线所携带的信息量。
4、受控核聚空中的应用。将激光射到氘与氚混合体中,激光所
带给它们巨大能量,产生高压与高温,促使两种原子核聚合为氦和中
然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于 激光器到底能否研制成功,在当时还是很渺茫的。
2.3成熟阶段
1954年,美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成 功地开创了利用分子和原子体系作为微波辐射相干放大器的先例,但所 研制的微波激射器只产生了1.25厘米波长的微波,功率很小。
2.激光器的发明
2.1历史由来
激光器的诞生史大致可以分为几 个阶段,其中1916年爱因斯坦 提出的受激辐射概念是其重要 的理论基础。这一理论指出, 处于高能态的物质粒子受到一 个能量等于两个能级之间能量 差的光子的作用,将转变到低 能态,并产生第二个光子,同 第一个光子同时发射出来,这 就是受激辐射。
远红外激光器
X射线激光器
近紫外激光器
4.主要用途
由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密
测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域 引起了革命性的突破。激光在军事上除用于通信、夜视、预警、测距 等方面外,多种激光武器和激光制导武器也已经投入实用。
子,并同时放出巨大辐射能量。由于激光能量可控制,所以该过程称
为受控核聚变。
5.世界激光器市场发展现状
世界激光器市场可划分为三大区域:美国(包括北美)占 55%,欧州占 22%,日本及太平洋地区占 23%。在世界激光市场上日本在光电子技 术方面占首位,美国占第二位;在激光医疗及激光检测方面则美国占 首位;
良好效果。
2、激光测距。激光作为测距光源,由于方向性好、功率大,可
测很远的距离,且精度很高。
பைடு நூலகம்
3、激光通信。在通信领域,一条用激光柱传送信号的光导电缆
,可以携带相当于2万根电话铜线所携带的信息量。
4、受控核聚空中的应用。将激光射到氘与氚混合体中,激光所
带给它们巨大能量,产生高压与高温,促使两种原子核聚合为氦和中
然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于 激光器到底能否研制成功,在当时还是很渺茫的。
2.3成熟阶段
1954年,美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成 功地开创了利用分子和原子体系作为微波辐射相干放大器的先例,但所 研制的微波激射器只产生了1.25厘米波长的微波,功率很小。
2.激光器的发明
2.1历史由来
激光器的诞生史大致可以分为几 个阶段,其中1916年爱因斯坦 提出的受激辐射概念是其重要 的理论基础。这一理论指出, 处于高能态的物质粒子受到一 个能量等于两个能级之间能量 差的光子的作用,将转变到低 能态,并产生第二个光子,同 第一个光子同时发射出来,这 就是受激辐射。
《激光的基本原理》课件

利用光子学技术,可以实现高灵敏度、高分辨率的医学成 像和诊断。同时,光子学技术还可以用于生物科学研究, 如荧光共振能量转移等技术可以用于研究生物分子间的相 互作用和动力学过程。此外,光子学技术还可以用于光热 治疗、光动力治疗等领域,为癌症治疗等提供新的手段。
THANKS
感谢观看
详细描述
超快激光技术可以用于超快光谱学、 超快成像等领域,为物质科学研究提 供新的工具。同时,超快激光技术还 可以用于微纳加工、光刻等领域,提 高加工精度和效率。
光子晶体激光器的研究与应用
总结词
光子晶体激光器是一种新型的激光器件,具 有高效率、高稳定性等优点,在光通信、光 计算等领域具有广阔的应用前景。
随着技术的进步和应用需求的不断增长,激光技术逐渐拓展 到工业、医疗、通信、军事等领域,成为现代科技的重要组 成部分。
激光的重要性和应用领域
激光具有高亮度、高方向性、高单色 性和高相干性等优点,因此在科学研 究、工业生产、医疗卫生、军事等领 域有广泛的应用。
此外,激光还在通信、测量、军事等 领域中发挥着重要的作用,有力地推 动了科学技术的发展和社会进步。
1960年,美国物理学家梅曼发明了第一台红宝石激光器,标志着激光技 术的诞生。
激光的英文名称是“Laser”,是“Light Amplification by Stimulated Emission of Radiation”的缩写,意为“受激发射光放大”。
激光的发展历程
激光技术经历了从初步实现到逐步成熟的发展过程,各种不 同类型的激光器也不断涌现,如气体激光器、固体激光器、 液体激光器和半导体激光器等。
例如,在工业领域中,激光可以用于 打标、切割、焊接、热处理等;在医 疗领域中,激光可以用于治疗眼科疾 病、皮肤病、口腔疾病等。
半导体激光器ppt课件

Ⅱ、与同质结激光器相比,异质结激光器具有以下优点: 1)阈值电流低,同时阈值电流随温度的变化小; 2)由于界面处的折射率差异,光子被限制在作用区内; 3)能实现室温下的连续振荡。
应用:
半导体激光器应用十分广泛,主要分布在军事、生产和医疗方面:
军事:Ⅰ)激光引信。半导体激光器是唯一能够用于弹上引信的激光器。 Ⅱ)激光制导。它使导弹在激光射束中飞行直至摧毁目标。 Ⅲ)激光测距。主要用于反坦克武器以及航空、航天等领域。 Ⅳ)激光雷达。高功率半导体激光器已用于激光雷达系统
目录
CONTENTS
1 基本介绍及发展 2 基本原理及构成
3 主要特性
4 分类、应用及发展前景
基本介绍及发展
高能态电子束>低能态电子束
高能态
低能
态
同频同相
的光发射
同频同相光 谐振腔内多次往返
放大
激光
激光:通过一定的激励方 式,实现非平衡载流子的 粒子数反转,使得高能态 电子束大于低能态电子束, 当处于粒子数反转状态的 大量电子与空穴复合时, 便产生激光。
激光具有很好的方向性和 单色性。用途十分广泛
高功率半导体激光器
① 、1962年9月16日,通用电气公司的罗伯特·霍尔 (Robert Hall) 带领的研究小组展示了砷化镓(GaAs)半导体的红外发射, 首个半 导体激光器的诞生。 ②、70年代,美国贝尔实验室研制出异质结半导体激光器,通过对光 场和载流限制,从而研制出可在室温下连续运转且寿命较长的激光器。 ③、80年代,随着技术提升,出现了量子陷和超晶格等新型半导体激 光器结构; 1983年,波长800nm的单个输出功率已超过100mW,到 了1989年,0.1mm条宽的则达到3.7W的连续输出,转换效率达39%。 ④、90年代在泵浦固体激光器技术推动下,高功率半导体激光器出现 突破进展。。1992年,美国人又把指标提高到一个新水平:1cm线阵 连续波输出功率达121W,转换效率为45%。
应用:
半导体激光器应用十分广泛,主要分布在军事、生产和医疗方面:
军事:Ⅰ)激光引信。半导体激光器是唯一能够用于弹上引信的激光器。 Ⅱ)激光制导。它使导弹在激光射束中飞行直至摧毁目标。 Ⅲ)激光测距。主要用于反坦克武器以及航空、航天等领域。 Ⅳ)激光雷达。高功率半导体激光器已用于激光雷达系统
目录
CONTENTS
1 基本介绍及发展 2 基本原理及构成
3 主要特性
4 分类、应用及发展前景
基本介绍及发展
高能态电子束>低能态电子束
高能态
低能
态
同频同相
的光发射
同频同相光 谐振腔内多次往返
放大
激光
激光:通过一定的激励方 式,实现非平衡载流子的 粒子数反转,使得高能态 电子束大于低能态电子束, 当处于粒子数反转状态的 大量电子与空穴复合时, 便产生激光。
激光具有很好的方向性和 单色性。用途十分广泛
高功率半导体激光器
① 、1962年9月16日,通用电气公司的罗伯特·霍尔 (Robert Hall) 带领的研究小组展示了砷化镓(GaAs)半导体的红外发射, 首个半 导体激光器的诞生。 ②、70年代,美国贝尔实验室研制出异质结半导体激光器,通过对光 场和载流限制,从而研制出可在室温下连续运转且寿命较长的激光器。 ③、80年代,随着技术提升,出现了量子陷和超晶格等新型半导体激 光器结构; 1983年,波长800nm的单个输出功率已超过100mW,到 了1989年,0.1mm条宽的则达到3.7W的连续输出,转换效率达39%。 ④、90年代在泵浦固体激光器技术推动下,高功率半导体激光器出现 突破进展。。1992年,美国人又把指标提高到一个新水平:1cm线阵 连续波输出功率达121W,转换效率为45%。
光纤激光器.ppt

这种“任意形状”的光纤激光器有望实现更高的激 光功率输出。
3.光纤激光器的泵浦结构
4.光纤激光器和其它激光器比较
和二氧化碳激光器比较 • 有更高峰值功率的脉冲激光,可以加工的材料种类更多; • 使用方便,采用光纤传输可以有更大的扫描范围; • 能量转换效率高,光纤激光器的电光转换效率为25%,而二氧化碳
光纤激光器
• 光纤激光器的发展历程 • 光纤激光器的基本原理 • 光纤激光器与其它激光器比较 • 几种实用的光纤激光器及其应用
1.光纤激光器的发展历程
2.光纤激光器的基本原理
• 工作物质:掺杂光纤; • 谐振腔:光纤环与两个反射镜组成; • 泵浦源:一般采用半导体激光器泵浦。
2.1 双包层稀土掺杂光纤
• redPOWERTM 紧凑激 光模块 (2W-10W)
• 最大输出可达10W, 波长1μm
5.2 大功率双掺杂光纤激光器 2
• IPG公司的大功率光纤 激光器YLR-SM Series
• 100W to 1.5kW output Optical Power
• 1060 to 1080nm Wavelength Range
5.8 高速短脉冲光纤激光器
美国Calmar公司10G皮 秒光纤激光器 PSL-10XX
• 波 长 范 围 : 1530-1565 nm可调或范围内固定
• 重复频率:5-11G可调或 10G固定,脉宽:1-10ps 可调或范围内固定,平 均输出功率:>20mW
• 高速短脉冲光源对于光 时分复用系统,光学取 样技术等有重要的意义,
DBR型窄线宽光纤激光器
5.6 窄线宽光纤激光器 1
• NP Photonics 公司的窄 线宽光纤激光器
• Very narrow linewidth (long coherent length) <3 kHz
3.光纤激光器的泵浦结构
4.光纤激光器和其它激光器比较
和二氧化碳激光器比较 • 有更高峰值功率的脉冲激光,可以加工的材料种类更多; • 使用方便,采用光纤传输可以有更大的扫描范围; • 能量转换效率高,光纤激光器的电光转换效率为25%,而二氧化碳
光纤激光器
• 光纤激光器的发展历程 • 光纤激光器的基本原理 • 光纤激光器与其它激光器比较 • 几种实用的光纤激光器及其应用
1.光纤激光器的发展历程
2.光纤激光器的基本原理
• 工作物质:掺杂光纤; • 谐振腔:光纤环与两个反射镜组成; • 泵浦源:一般采用半导体激光器泵浦。
2.1 双包层稀土掺杂光纤
• redPOWERTM 紧凑激 光模块 (2W-10W)
• 最大输出可达10W, 波长1μm
5.2 大功率双掺杂光纤激光器 2
• IPG公司的大功率光纤 激光器YLR-SM Series
• 100W to 1.5kW output Optical Power
• 1060 to 1080nm Wavelength Range
5.8 高速短脉冲光纤激光器
美国Calmar公司10G皮 秒光纤激光器 PSL-10XX
• 波 长 范 围 : 1530-1565 nm可调或范围内固定
• 重复频率:5-11G可调或 10G固定,脉宽:1-10ps 可调或范围内固定,平 均输出功率:>20mW
• 高速短脉冲光源对于光 时分复用系统,光学取 样技术等有重要的意义,
DBR型窄线宽光纤激光器
5.6 窄线宽光纤激光器 1
• NP Photonics 公司的窄 线宽光纤激光器
• Very narrow linewidth (long coherent length) <3 kHz
激光器介绍PPT课件

S
iT
AmpA. /V
Sig. Lock-in Amp. Ref.
D Vds
检测 信号
场
太
效
➢ I-V
赫
应
基
➢ 电导
本 特
➢ 跨导
性
测
试
兹 检 测 特 性 测 试
➢ ITHz-Vg ➢ 响应度 ➢ 等效噪声功率 ➢ 响应频谱 ➢ 响应速度 ➢ 偏振特性
第8页/共74页
测试及优化_无特意设计天线结
构
circuits integrated)
5.3 mA/W or 150 V/W @ 650 GHz
NEP ~ 0.5 nW/Hz0.5
Self-mixing
Panasonic Corp. ( Tohoku University,
Japan (2010))
68th Device Research Conference
2nd step: :三极子蝶形共振天线器件对比
Photocurrent (nA) Photocurrent (nA)
三极子蝶形共电振学天特线性 +纳米栅
三极子蝶形共光振学天特线性+纳米栅+滤波器
1.8
s1o.6urce
drain
1.8
so1u.6rce
drain
1.4
1.4
1.2
Ohmic
1.0
dG/dV (a.u.) g
0.6
1.2
0.5
G (300 K)
0.4
G (77 K) 0.8
dG/dV (300 K)
0.3
g
dG/dV (77 K)
g
0.2
激光器的种类讲解课件

THANK YOU
感谢观看
详细描述
随着科技的不断进步,新型激光材料与器件不断涌现,如硅基激光器、量子点激光器等。这些新型激光器具有更 高的性能和更广泛的应用前景,将为激光技术的发展带来新的突破。
激光器的稳定性与可靠性
总结词
激光器的稳定性与可靠性是指激光器 在长时间运行过程中保持稳定和可靠 的性能。
详细描述
随着激光技术的不断发展,对激光器 的稳定性与可靠性的要求也越来越高 。提高激光器的稳定性与可靠性是当 前研究的重点之一,也是未来激光技 术发展的关键之一。
按工作方式分类
连续激光器
连续输出激光,功率稳定,适用于连 续加工和测量。
脉冲激光器
按需输出激光,峰值功率高,适用于 脉冲加工和测量。
按波长分类
可调谐激光器
输出波长可调谐的激光,适用于光谱分析和测量。
单波长激光器
输出单一波长的激光,功率高、光束质量好,适用于高精度测量和加工。
03
各类激光器的应用领域
固体激光器在工业领域的应用
激光切割
固体激光器的高能量密度和良好 的光束质量使其成为激光切割的 理想选择,广泛应用于金属、玻
璃等材料的切割。
激光打标
固体激光器在非金属材料表面打标 方面表现出色,如塑料、陶瓷等, 广泛应用于产品标识和防伪。
激光焊接
固体激光器能够实现精密焊接,适 用于各种金属材料,提高焊接质量 和效率。
气体激光器在科研领域的应用
Hale Waihona Puke 010203激光光谱学
气体激光器可产生特定波 长的光,用于研究物质的 结构和性质,在光谱学领 域具有重要应用。
激光雷达
气体激光器可用于激光雷 达系统,进行远程探测、 定位和测量。
《激光器介绍》课件

激光器与人工智能、3D打印等技术结合,创造更多智能化和多样化的应用。
结论和总结
激光器是一项伟大的科技创新,它在多个领域的应用不断拓展。我们必须充 分了解其原理和注意事项,推动激光技术的发展和应用。
《激光器介绍》PPT课件
欢迎来到《激光器介绍》的PPT课件! 本课程将带您深入了解激光器的定义和 原理,以及其在不同领域的应用。让我们一起探索激光技术的无限潜力!
激光器的定义和原理
激光器是通过受激辐射产生的一种具有高度相干性、高照射强度和直行性的 光源。它的工作原理基于光子的双能态能级跃迁。
不同类型的激光器
戴眼镜
在使用激光器时,务必佩戴适当的激光安全眼镜以保护视力。
避免直射
避免将激光束直接照射到人体和易燃物上,以免引发安全事故。
操作规范
按照使用说明进行操作,确保激光器使用安全可靠。
激光器的发展趋势
1
更小更强
激光器体积将进一步缩小,但功率将持续增强,提供更多应用领域。
2
更高效更环保
激光器的效率将提高,能源消耗将减少,以促进可持续发展。
1 气体激光器
使用气体作为激发介质, 例如二氧化碳激光器和氩 离子激光器。
2 固体激光器
使用固态材料作为激发介 质,例如Nd:YAG激光器和 钛宝石激光器。
3 半导体激光器
使用半导体材料作为激发 介质,例如激光二极管和 垂直腔面发射激光器。
激光器的应用领域
医疗行业
激光器在手术、皮肤治疗和眼 科手术等领域有广泛应用。
通信领域
激光信号传输在光纤通信和激 光雷达等领域发挥重要作用。
制造业
激光切割、激光焊接和激光打 印等技术在制造业中得到广泛 应用。
激光器的优点与限制
激光简介PPT课件

激光的颜色非常单纯,而且只向着一个方向发光,亮度极高
激光在屏上形成的小光斑,有极大的照度 太阳表面的亮度比白炽灯大几百
倍。普通的激光器的输出亮度,比太阳 表面的亮度大10亿倍。激光是当今世界 上高亮度的光源。
激光打孔、切割、焊接和激光外科手术
第17页/共50页
激光的能量在空间上、在时间上高度集中
光能量不仅在空间上高度 集中,同时在时间上也可 高度集中,因而可以在一 瞬间产生出巨大的光热。
激光化学:传统的化学过程,一般是把反应物混合在一起,
然后往往需要加热 (或者还要加压)。加热的缺点,在于分子 因增加能量而产生不规则运动,这种运动破坏原有的化学键, 结合成新的键,而这些不规则运动破坏或产生的键,有时会 阻碍预期的化学反应的进行。
但是如果用激光来指挥化学反应,不仅能克服上述不规 则运动,而且还能获得更大的好处。这是因为激光携带着高 度集中而均匀的能量,可精确地打在分子的键上,比如利用 不同波长的紫外激光,打在硫化氢等分子上,改变两激光束 的相位差,则控制了该分子的断裂过程。也可利用改变激光 脉冲波形的方法,十分精确和有效地把能量打在分子身上, 触发某种预期的反应。
全息照相
信息技术
第19页/共50页
激光的基本原理
一.粒子的能级与辐射跃迁
1.粒子的能级 组成物质的原子、分子等粒子总是处于一定的能 态或能级,能量最低的能态称为基态,其它能量较 高的状态称为激发态。基态是最稳定的状态,通常 多数粒子处在基态上,当一粒子获得一定的能量跃 迁到某一激发态时,它在激发态上停留的时间一般 很短,其平均寿命大约在10-9~10-7秒。有些粒子的 某些激发态寿命较长,平均寿命大约可达10-3~10-2 秒,这样的激发态称为亚稳态。
激光已经成为信息时代的心脏! 激光已经成为社会进步的推动力! 激光已经成为人类现代生活的重要组成部分!
激光在屏上形成的小光斑,有极大的照度 太阳表面的亮度比白炽灯大几百
倍。普通的激光器的输出亮度,比太阳 表面的亮度大10亿倍。激光是当今世界 上高亮度的光源。
激光打孔、切割、焊接和激光外科手术
第17页/共50页
激光的能量在空间上、在时间上高度集中
光能量不仅在空间上高度 集中,同时在时间上也可 高度集中,因而可以在一 瞬间产生出巨大的光热。
激光化学:传统的化学过程,一般是把反应物混合在一起,
然后往往需要加热 (或者还要加压)。加热的缺点,在于分子 因增加能量而产生不规则运动,这种运动破坏原有的化学键, 结合成新的键,而这些不规则运动破坏或产生的键,有时会 阻碍预期的化学反应的进行。
但是如果用激光来指挥化学反应,不仅能克服上述不规 则运动,而且还能获得更大的好处。这是因为激光携带着高 度集中而均匀的能量,可精确地打在分子的键上,比如利用 不同波长的紫外激光,打在硫化氢等分子上,改变两激光束 的相位差,则控制了该分子的断裂过程。也可利用改变激光 脉冲波形的方法,十分精确和有效地把能量打在分子身上, 触发某种预期的反应。
全息照相
信息技术
第19页/共50页
激光的基本原理
一.粒子的能级与辐射跃迁
1.粒子的能级 组成物质的原子、分子等粒子总是处于一定的能 态或能级,能量最低的能态称为基态,其它能量较 高的状态称为激发态。基态是最稳定的状态,通常 多数粒子处在基态上,当一粒子获得一定的能量跃 迁到某一激发态时,它在激发态上停留的时间一般 很短,其平均寿命大约在10-9~10-7秒。有些粒子的 某些激发态寿命较长,平均寿命大约可达10-3~10-2 秒,这样的激发态称为亚稳态。
激光已经成为信息时代的心脏! 激光已经成为社会进步的推动力! 激光已经成为人类现代生活的重要组成部分!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这类激光器所采用的固体工作物质,是把具有能产生受激发射作用的金属 离子掺入晶体而制成的。在固体中能产生受激发射作用的金属离子主要有 三类:
⑴过渡 固体激光器金属离子(如Cr3+);
⑵大多数镧系金属离子(如Nd3+、Sm2+、Dy2+等);
⑶锕系金属离子(如U3+)。这些掺杂到固体基质中的金属离子的主要特点 是:具有比较宽的有效吸收光谱带,比较高的荧光效率,比较长的荧光寿 命和比较窄的荧光谱线,因而易于产生粒子数反转和受激发射
r1
r2 谐振腔内光强的放大过程
L
(1)由于自发辐射,在z=0处有一束强度为I1的入射
光沿腔轴传播,此时由于腔内光强很弱,此时介质
的增益系数就是小讯号增益系数 G, 0 有:
I I 1 ex G 0 p a 内 )z ( I 1 ' r 2 I 1 ex G 0 p a 内 )L (
图中曲线 I1 表I1示' 了这个过程。
发光过程,需要使发光物质处于激发态的高能上的粒子多于低能
级上的粒子,同时还要使这样的介质中受激辐射占绝对优势。20
世纪上半叶的科学技术发展提供了这样的可能。电子技术的发展
提供了激励能源,精密加工技术制造出谐振腔,材料科学的研究
提供了各种激光工作介质,在近代高科技的发展支持下,各种激
光器陆续诞生。
激光形成过程:
激光器的简介以及发展历程
激光是20世纪人类的重大科技发明之一,它对人类 的社会生活产生了广泛而深刻影响。作为高技术的 研究成果,它不仅广泛应用于科学技术研究的各个 前沿领域,而且已经在人类生产和生活的许多方面 得到了大量的应用,与激光有关的产业已在全球形 成了超过千亿美元的年产值。
激光的发展史应该追溯到1917年,爱因斯坦提出光的受激 辐射的概念,预见到受激辐射光放大器诞生,也就是激光 产生的可能性。20世纪50年代美国科学家汤斯及前苏联科 学家普罗科霍罗夫等人分别独立发明了一种低噪声微波放 大 器 , 即 一 种 在 微 波 波 段 的 受 激 辐 射 放 大 器 Maser ( Microwave amplification by stimulated emission of radiation ).1958年美国科学家汤斯和肖洛提出在一定条件下, 可将这种微波受激辐射放大器的原理推广到光波波段,制 成受激辐射光放大器Laser(Light amplification by stimulated emission of radiation).1960年7月美国的梅曼宣布制成了第 一台红宝石激光器。1961年我国科学家邓锡铭、王之江制 成我国第一台红宝石激光器,称其为“光学量子放大器”。 随后我国科学家钱学森建议统一翻译成“激光”或“激光 器”
I2r1r2I1exG p 0a (内 )2L
一部分作为激光器的输出由M1镜透射出去,其 大小为
Ioutt1r2I1exG 0 pa (内 )2L
其余部分都作为镜面损耗而损失掉了,这部 分为
Ih a 1 I1 " a 1r 2 I1ex G 0 p a 内 ( )2 L
(4)图中纵轴上 I1''I2 代表总镜面损耗 Iout Ih , 即
泵浦(抽运)
粒子数反转
受激放大
振荡了,稍作休息
大家有疑问的,可以询问和交流
当光波经过增益介质时,引起的受激辐射就会 大于吸收,且粒子数密度的差值越大(也就是 上下能级粒子数的分布差异越大),相对于吸 收来说,受激辐射越强,光经过增益介质时增 长得也越快,这就形成了受激辐射在介质中占 主导地位的状态。
产生激光的基本条件是受激辐射大于吸收。
激光的发光原理
激光的发光原理是光的受激辐射,使处在激发态的原子收到外来
的光机理作用而跃迁到低能级,同时发出一个与外来激励光子完
全相同的光子,从而实现光的放大。但是在普通热辐射光源的情
况下,受激辐射只占很小的比例,绝大部分的辐射是自发辐射,
因此在宏观上兵不能够产生光受激放大。欲使受辐射成为主要的
梅曼的第一台红宝石激光器
我国第一台红宝石激光器
我国激光器研究情况
激光器的基本结构
1. 激光工作物质:能够实现粒子数反转,产生受激光放大 2. 激励能源:能降低能级的粒子不断抽运到高能级,补充受激
辐射减少的高能级上粒子数 3. 光学谐振腔:提高光能密度,保证受激辐射大于受激吸收
与普通光源不同,激光是靠介质内的受激辐射向外发出大 量的光子而形成的。受激辐射产生的光子与外来光子性质完 全相同,使入射光得到放大。用这种原理制成的光源称为受 激辐射的光放大器,简称激光器,其输出光称为激光。
粒子数反转
正常分布 受激吸收 占 主导 光衰减,吸收
反转分布 受激辐射 占 主导 光放大 有增益
增益介质:处于粒子数反转分布状态的物质
为实现粒子数反转分布,要求在单位时间内激发到上能级的粒 子数密度越多越好,下能级的粒子数越少越好,上能级粒子数 的寿命长些好。
激光器内形成光强的过程
激光谐振腔内光强由弱变强直至最后达到稳定的过程可以用图(2-15)来描写。 M2是反 射率r2 1的全反射镜,置于在zL处,M1是反射率 r1 1的部分反射镜,置于 z 0 坐标 处。稳定光强在腔中传播过程由闭合曲线 A I ( L )I ( , L ) I ( 2 L )I ( , 2 L ) A 所表示。
Io uIh t (a 1 t1 )r 2 I1 ex G 0 p a 内 )( 2 L
(5)此时腔内光的放大倍数为 KII1 2r1r2exG p0(a内 )2L1
激光器的类型 和应用
固体激光器
用固体激光材料作为工作物质的激光器(见激光)。 1960年,T.H.梅曼发明的红宝石激光器就是固体激光 器,也是世界上第一台激光器。固体激光器一般由 激光工作物质、激励源、聚光腔、谐振腔反射镜和 电源等部分构成。
I3
(2) I 1又' 经增益介质进行放大,再传到M1处时,
光强已增至
I 1 " I 1 'eG x 0 p a 内 )L ( r 2 I 1 eG x 0 p a 内 ) 2 ( L
如图中曲线 I1'I1'' 所示
r1
r2
L
I3
(3) I1 ' '光强在M1上一部分反射回腔内继续放大, 这部分为