九年级数学下册二次函数教案新版北师大版

合集下载

北师大版数学九年级下册2.1《二次函数》教学设计

北师大版数学九年级下册2.1《二次函数》教学设计

北师大版数学九年级下册2.1《二次函数》教学设计一. 教材分析北师大版数学九年级下册2.1《二次函数》是学生在学习了一次函数和正比例函数的基础上,进一步研究函数的性质。

本节内容主要包括二次函数的定义、一般式、图像和性质。

通过学习,使学生掌握二次函数的基本概念,了解二次函数的图像特征,能运用二次函数解决实际问题。

教材通过丰富的例题和练习题,引导学生探究、发现并掌握二次函数的知识。

二. 学情分析学生在学习了一次函数和正比例函数后,已经具备了一定的函数概念和图象观察能力。

但九年级学生的抽象思维能力仍在发展阶段,对于较为复杂的二次函数解析式和图像的理解仍存在一定的困难。

因此,在教学过程中,需要关注学生的认知水平,通过生动形象的比喻、直观的图象展示,帮助学生理解二次函数的性质。

三. 教学目标1.了解二次函数的定义和一般式;2.掌握二次函数的图像特征,能识别二次函数的图像;3.能运用二次函数解决实际问题;4.培养学生的观察能力、分析能力和动手能力。

四. 教学重难点1.二次函数的定义和一般式;2.二次函数的图像特征;3.二次函数的实际应用。

五. 教学方法1.情境教学法:通过生活实例引入二次函数,激发学生的学习兴趣;2.直观演示法:利用多媒体展示二次函数的图像,帮助学生直观理解;3.自主探究法:引导学生主动探究二次函数的性质,培养学生的动手能力;4.合作交流法:鼓励学生之间相互讨论,分享学习心得,提高学生的沟通能力。

六. 教学准备1.准备相关的多媒体教学课件;2.准备一些实际的例子,用于引入和巩固二次函数的知识;3.准备二次函数的一般式和图像,用于讲解和展示;4.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次函数的概念,如:“抛物线的形状是什么?它与什么因素有关?”让学生思考并回答,引出二次函数的定义。

2.呈现(10分钟)利用多媒体展示二次函数的一般式和图像,让学生观察并总结二次函数的图像特征,如:开口方向、对称轴、顶点等。

2024北师大版数学九年级下册2.3.2《确定二次函数的表达式》教学设计

2024北师大版数学九年级下册2.3.2《确定二次函数的表达式》教学设计

2024北师大版数学九年级下册2.3.2《确定二次函数的表达式》教学设计一. 教材分析《确定二次函数的表达式》是北师大版数学九年级下册第2章3.2节的内容。

本节课主要让学生掌握二次函数的通用形式,了解二次函数的各个系数与函数图象的关系,为后续学习二次函数的性质打下基础。

教材通过实例引导学生从实际问题中抽象出二次函数模型,进一步探究二次函数的性质。

二. 学情分析九年级的学生已经学习了函数的基本概念,对一次函数、二次函数有一定的了解。

但学生在确定二次函数表达式方面存在困难,难以把握二次函数的各个系数与函数图象的关系。

因此,在教学过程中,教师需要引导学生从实际问题中抽象出二次函数模型,并通过观察、操作、猜想、验证等方法,让学生体会二次函数的性质。

三. 教学目标1.让学生掌握二次函数的通用形式;2.使学生了解二次函数的各个系数与函数图象的关系;3.培养学生解决实际问题的能力;4.引导学生运用数形结合的方法探究二次函数的性质。

四. 教学重难点1.重点:二次函数的通用形式,二次函数的各个系数与函数图象的关系;2.难点:确定二次函数表达式,二次函数的性质。

五. 教学方法1.情境教学法:通过实际问题引出二次函数模型,激发学生兴趣;2.观察法:让学生观察二次函数图象,发现其性质;3.操作法:让学生动手操作,验证二次函数的性质;4.讨论法:分组讨论,培养学生的合作能力。

六. 教学准备1.课件:制作课件,展示二次函数的图象和性质;2.练习题:准备一些有关二次函数的练习题,巩固所学知识;3.板书:准备黑板,书写关键知识点。

七. 教学过程1.导入(5分钟)教师通过展示一个实际问题,引导学生从实际问题中抽象出二次函数模型。

例如:抛物线与x轴相交于A、B两点,且AB=2,求抛物线的解析式。

2.呈现(10分钟)教师展示二次函数的图象,让学生观察并描述二次函数的性质。

引导学生关注二次函数的顶点、开口方向、对称轴等关键点。

3.操练(10分钟)教师引导学生分组讨论,让学生动手操作,验证二次函数的性质。

北师大版九年级数学下册:2.3《确定二次函数的表达式》教学设计

北师大版九年级数学下册:2.3《确定二次函数的表达式》教学设计

北师大版九年级数学下册:2.3《确定二次函数的表达式》教学设计一. 教材分析北师大版九年级数学下册2.3《确定二次函数的表达式》一节,是在学生已经掌握了二次函数的图像和性质的基础上进行的一节内容。

本节课的主要任务是让学生学会如何根据给定的条件,确定二次函数的表达式。

教材通过实例引导学生总结出确定二次函数表达式的步骤,并通过练习让学生加深对知识的理解。

二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的图像和性质有一定的了解。

但是,如何将理论运用到实际问题中,如何根据实际问题确定二次函数的表达式,对学生来说还是一个新的课题。

因此,在教学过程中,我需要引导学生将已有的知识运用到新的问题中,帮助他们建立新的知识体系。

三. 教学目标1.知识与技能:让学生掌握确定二次函数表达式的步骤和方法。

2.过程与方法:通过实例分析,让学生学会如何将实际问题转化为数学问题,如何运用已有的知识解决新的问题。

3.情感态度与价值观:培养学生独立思考、合作交流的能力,提高他们分析问题和解决问题的能力。

四. 教学重难点1.重点:确定二次函数表达式的步骤和方法。

2.难点:如何根据实际问题确定二次函数的表达式。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例分析,总结出确定二次函数表达式的步骤。

2.利用小组合作学习,让学生在讨论中加深对知识的理解。

3.通过练习,巩固所学知识,提高学生的应用能力。

六. 教学准备1.准备相关的教学材料,如PPT、实例等。

2.准备练习题,以便学生在课堂上进行操练。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾二次函数的图像和性质,为新课的学习做好铺垫。

2.呈现(10分钟)展示实例,引导学生分析实例中给出的条件,让学生尝试根据条件确定二次函数的表达式。

学生在独立思考的基础上,进行小组讨论,总结出确定二次函数表达式的步骤。

3.操练(10分钟)让学生根据所学方法,解决一些简单的实际问题。

2024北师大版数学九年级下册2.5.2《二次函数与一元二次方程》教学设计

2024北师大版数学九年级下册2.5.2《二次函数与一元二次方程》教学设计

2024北师大版数学九年级下册2.5.2《二次函数与一元二次方程》教学设计一. 教材分析《二次函数与一元二次方程》是北师大版数学九年级下册第2.5.2节的内容。

本节课的内容包括:了解二次函数与一元二次方程的关系,掌握一元二次方程的解法,以及运用二次函数的性质解决实际问题。

教材通过实例引导学生探究二次函数与一元二次方程之间的联系,培养学生的抽象思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了二次函数的图象与性质,以及一元二次方程的基本知识。

但部分学生对于如何运用二次函数的性质解决实际问题还不够熟练。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们通过自主学习、合作探讨,提高解决问题的能力。

三. 教学目标1.知识与技能:理解二次函数与一元二次方程的关系,掌握一元二次方程的解法,能运用二次函数的性质解决实际问题。

2.过程与方法:通过探究、合作、交流,培养学生的抽象思维能力和问题解决能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。

四. 教学重难点1.重点:二次函数与一元二次方程的关系,一元二次方程的解法。

2.难点:如何运用二次函数的性质解决实际问题。

五. 教学方法1.情境教学法:通过实例引入,激发学生的学习兴趣。

2.启发式教学法:引导学生主动探究,发现规律。

3.合作学习法:鼓励学生相互讨论,共同解决问题。

4.实践教学法:让学生在实际问题中运用所学知识,提高解决问题的能力。

六. 教学准备1.教学课件:制作课件,展示二次函数与一元二次方程的关系及解法。

2.实例:准备一些实际问题,用于引导学生运用二次函数的性质解决实际问题。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一个实际问题:某商场举行打折活动,某商品原价为800元,打八折后售价为多少?引导学生思考如何用数学知识解决这个问题。

2.呈现(10分钟)展示商品打折问题,引导学生列出相应的二次函数和一元二次方程。

北师大版九年级数学下册:第二章 2.1《二次函数》精品教学设计

北师大版九年级数学下册:第二章 2.1《二次函数》精品教学设计

北师大版九年级数学下册:第二章 2.1《二次函数》精品教学设计一. 教材分析北师大版九年级数学下册第二章《二次函数》是整个初中数学的重要内容,也是九年级数学的教学难点。

本节内容主要介绍二次函数的定义、性质以及图象。

通过学习,使学生能够理解二次函数的概念,掌握二次函数的图象特征,能够运用二次函数解决实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数和二次函数有一定的了解。

但在二次函数的图象和性质方面,学生可能还存在一定的困难。

因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握二次函数的知识。

三. 教学目标1.理解二次函数的概念,掌握二次函数的图象特征。

2.能够运用二次函数解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.二次函数的定义和性质。

2.二次函数图象的特征。

3.运用二次函数解决实际问题。

五. 教学方法1.情境教学法:通过生活中的实际问题,引发学生对二次函数的兴趣,培养学生运用数学知识解决实际问题的能力。

2.数形结合法:通过二次函数图象的展示,使学生直观地理解二次函数的性质。

3.小组合作学习法:引导学生分组讨论,培养学生的团队合作意识和沟通能力。

六. 教学准备1.教学课件:制作二次函数的定义、性质和图象的课件,以便进行直观展示。

2.练习题:准备一些有关二次函数的练习题,以便进行课堂练习和巩固。

七. 教学过程1.导入(5分钟)通过一个实际问题,如抛物线跳跃游戏,引发学生对二次函数的兴趣。

引导学生思考:抛物线的形状是由什么因素决定的?2.呈现(15分钟)利用课件展示二次函数的定义和性质,让学生直观地了解二次函数的基本概念和图象特征。

同时,通过举例说明二次函数在实际生活中的应用。

3.操练(15分钟)让学生分组讨论,每组选择一个二次函数,分析其图象特征,并总结出二次函数的性质。

然后,进行小组间的分享和交流。

4.巩固(10分钟)针对刚才的学习内容,进行一些相关的练习题,检查学生对二次函数知识的掌握程度。

北师大版九年级数学下册教案:2.1二次函数

北师大版九年级数学下册教案:2.1二次函数
-难点举例:解释为什么二次函数y=ax^2+bx+c的图像与x轴交点的横坐标就是方程ax^2+bx+c=0的解;
-解决最值问题:在实际问题中,如何找到二次函数的最值;
-难点举例:如何求解二次函数在给定区间内的最大值或最小值,以及如何确定这个区间的限制条件。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如篮球投篮的轨迹)这个问题与我们将要学习的二次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数的奥秘。
北师大版九年级数学下册教案:2.1二次函数
一、教学内容
北师大版九年级数学下册教案:2.1二次函数
1.二次函数的定义与一般形式;
2.二次函数的图像与性质;
- a>0与a<0时图像的特点;
-对称轴、顶点坐标;
-最值问题;
3.二次函数的顶点式与解析式的转换;
4.实际问题中的应用:最大(小)值的求解;
5.二次函数与一元二次方程的关系。
2.增加课堂互动,鼓励学生提问,及时解答学生的疑问,确保教学效果。
3.课后加强个别辅导,关注学困生,帮助他们克服困难,提高自信心。
4.结合生活实际,引入更多有趣的案例,激发学生学习兴趣,提高数学素养。
-举例:给定一个抛物线的实际问题,如最大高度的求解,引导学生建立二次函数模型。
2.教学难点
-理解a、b、c对二次函数图像的综合影响:a决定开口方向,b影响对称轴位置,c决定图像与y轴的交点;
-难点举例:分析y=ax^2+bx+c中,当a、b、c的值变化时,图像如何相应变化;

北师大版数学九年级下册《1 二次函数》教学设计1

北师大版数学九年级下册《1 二次函数》教学设计1

北师大版数学九年级下册《1 二次函数》教学设计1一. 教材分析北师大版数学九年级下册《1 二次函数》是学生在初中阶段最后一节数学课,主要介绍二次函数的图像和性质。

本节内容在数学知识体系中具有重要的地位,是学生学习高中数学的基石。

本节课的内容包括:二次函数的一般式、顶点式、开口方向、对称轴、顶点、增减性、极值等概念,以及二次函数的图像特征。

这些概念和性质对于学生理解和掌握二次函数具有重要的意义。

二. 学情分析学生在学习本节内容前,已经学习了二次方程和一次函数的知识,对于函数的概念和性质有一定的了解。

但是,二次函数的图像和性质比较抽象,需要通过具体实例和图形来帮助学生理解和掌握。

此外,学生的数学思维能力和逻辑表达能力参差不齐,需要教师针对不同学生的实际情况进行引导和帮助。

三. 教学目标1.知识与技能:使学生掌握二次函数的一般式、顶点式、开口方向、对称轴、顶点、增减性、极值等概念,理解二次函数的图像特征。

2.过程与方法:通过具体实例和图形,帮助学生理解和掌握二次函数的图像和性质。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学思维能力和逻辑表达能力。

四. 教学重难点1.二次函数的一般式、顶点式、开口方向、对称轴、顶点、增减性、极值等概念。

2.二次函数的图像特征。

五. 教学方法1.采用问题驱动的教学方法,引导学生自主探究和发现二次函数的图像和性质。

2.利用多媒体辅助教学,展示二次函数的图像和实例,帮助学生理解和掌握。

3.分层次教学,针对不同学生的实际情况进行引导和帮助,使学生在课堂上得到充分的学习和提高。

六. 教学准备1.多媒体教学设备。

2.教学PPT。

3.练习题和测试题。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回忆一次函数和二次方程的知识,让学生思考二次函数的一般式和顶点式,引出本节课的主题。

呈现(15分钟)教师通过PPT展示二次函数的一般式和顶点式,让学生观察和分析二次函数的图像特征,如开口方向、对称轴、顶点、增减性、极值等。

九年级数学下册 第二章 二次函数教案 (新版)北师大版 教案

九年级数学下册 第二章 二次函数教案 (新版)北师大版 教案

第二章 二次函数一、学生知识状况分析学生的知识技能基础:学生在前面几节课已经学习过并能够独立作出一个二次函数的图像,掌握了二次函数y =ax 2和y=ax 2+c 的一般性质。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了二次函数y=ax 2和y=ax 2+c 的性质的探索过程,在探究过程中体会到了由特殊到一般的辩证规律,积累了解决数学问题的经验和方法。

学生愿意动手操作,乐于和同伴交流意见,形成不同的意见,积极参加探索解决问题的活动,在活动中感受数学的严密性、严谨性。

同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析第2.4节将讨论一般形式的二次函数)0(2≠++=a c bx ax y 的图象和性质。

它和学生前面几节课学习的2ax y =、c ax y +=2的图象之间有什么区别和联系?如何在已经学习过的类型上通过变化学习新的类型?如何探索一般二次函数的性质等等都是这一节需要关注的。

具体的,本节课的教学目标是:知识与技能1.能够作出y=a (x-h )2和y=a (x-h )2+k 的图象,并能够理解它与y=ax 2的图象的关系,理解a,h 和k 对二次函数图像的影响。

2.能正确说出y=a (x-h )2+k 的图象的开口方向、对称轴和顶点坐标。

过程与方法1.经历探索二次函数y=a (x-h )2+k 的图象的作法和性质的过程。

情感态度与价值观1.在小组活动中体会合作与交流的重要性。

2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识。

教学难点:理解y=a (x-h )2和y=a (x-h )2+k 的图象与y=ax 2的图象的关系,理解a 、h 和k 对二次函数图像的影响。

教学重点:y=a (x-h )2和y=a (x-h )2+k 与y=ax 2的图象的关系,y=a (x-h )2+k 的图象性质三、教学过程分析本课设计了5个教学环节:复习引入、合作探究、练习提高、课堂小结、布置作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 二次函数
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC
的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
AB长x(m) 1 2 3 4 5 6 7 8 9
BC长(m) 12
面积y(m2) 48
2.x
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试
写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学
生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提
出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为
5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。

形成共识,x的值不可
以任意取,有限定范围,其范围是0 <x <10。

对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指
出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想
通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低
0.1元,其销售量可增加10件。

将这种商品的售价降低多少时,能使销售利润最大?
在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-
8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。

[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x (0<x<10) (1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:
y=-100x2+100x+20D (0≤x≤2) (2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点?
让学生讨论、归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1 (3)y=2x3-3x2 (4)y=5x4-3x+1
2.练习第1,2题。

五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

六、作业:复习巩固 1题
教学反思:。

相关文档
最新文档