同位素示踪技术在高中生物学实验中的应用小结

合集下载

高中生物中的“同位素标记法

高中生物中的“同位素标记法

“同位素标记法”的总结利用放射性同位素不断地放出特征射线的核物理性质,就可以检测和追踪它在体内或体外的位置、数量及其转变等。

同位素标记在工业、农业生产、日常生活和科学科研等方面都有着极其广泛的应用。

在生物学领域可用来测定生物化石的年代,也可利用其射线进行诱变育种、防治病虫害和临床治癌,还可利用其射线作为示踪原子来研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理。

高中生物教材中的实验(或内容)和相关习题中许多知识都涉及同位素标记法的应用。

下面我就相关内容通过有关例题进行归纳阐述,以便大家对这项技术有一个深刻的体会,并学会同位素标记的应用。

一、氢(3H)例1:科学家用含3H标记的亮氨酸的培养液培养豚鼠的胰腺腺泡细胞,下表为在腺泡细胞几种结构中最早检测到放射性的时间表。

下列叙述中正确的是()A.形成分泌蛋白的多肽最早在内质网内合成B.高尔基体膜向内与内质网膜相连,向外与细胞膜相连C.高尔基体具有转运分泌蛋白的作用D.靠近细胞膜的囊泡可由高尔基体形成解析:分泌蛋白的多肽最早在核糖体上合成,高尔基体并不直接和内质网与细胞膜相连,而是通过囊泡间接连接。

答案:CD。

知识盘点:1.科学家在研究分泌蛋白的合成和分泌时,曾经做过这样一个实验:他们在豚鼠的胰脏腺泡细胞中注射3H标记的亮氨酸,3min后,被标记的氨基酸出现在附着有核糖体的内质网中,17min后,出现在高尔基体中,117min后,出现在靠近细胞膜内侧的运输蛋白质的小泡中,以及释放到细胞外的分泌物中。

这个实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。

2.研究肝脏细胞中胆固醇的来源时,用3H—胆固醇作静脉注射的示踪实验,结果放射性大部分进入肝脏,再出现在粪便中。

3.用3H标记的尿苷或胸腺嘧啶可用来检测转录或复制。

同位素示踪技术在生物化学研究中的应用

同位素示踪技术在生物化学研究中的应用

同位素示踪技术在生物化学研究中的应用同位素示踪技术是什么?同位素示踪技术是一种研究化学反应中物质转化的方法,它利用同位素标记来追踪化学反应中物质的转化过程。

同位素是指原子核中质子数相同、中子数不同的同种元素,这些元素的化学性质相同,但物理性质不同。

利用同位素示踪技术,我们可以了解到物质在生物化学反应中的吸收、转化和排泄的过程。

同位素示踪技术在生物化学研究中的应用1. 生物元素的代谢过程研究同位素示踪技术广泛应用于研究生物元素的代谢过程。

例如,在碳代谢的研究中,人们可以使用13C同位素标记葡萄糖,研究其在体内的代谢过程。

同样的,在研究氮代谢时,我们可以使用15N同位素标记氨基酸,研究其在体内的代谢过程。

2. 美食研究同位素示踪技术在生物化学研究过程中还有另一个应用,那就是研究美食。

例如,在研究一种特殊食材的口感、营养成分时,可以利用同位素示踪技术,将同位素标记加入到这种食材中,通过研究其代谢、吸收来评判其品质,从而开发更为优秀的美食产品。

3. 健康监测和病理研究同位素示踪技术还被应用于健康监测和病理研究中。

例如,在研究骨密度的变化时,通过在体内注入放射性同位素,我们可以测量骨组织中的同位素含量,进而确定骨密度的变化。

同样地,在研究某些疾病时,通过检查患者体内的同位素含量变化,可以及早发现和治疗疾病。

4. 生物质量养护管理同位素示踪技术还被广泛应用于农业和食品工业中。

例如,在生物质量养护研究方面,同位素示踪技术可以用于研究植物中的养分吸收情况,进而设计更为科学合理的肥料使用方案。

另外,在食品加工工业中,同位素示踪技术也被用于研究食品制造中的各种反应过程,以保证生产出更为优质的食品。

总之,同位素示踪技术在生物化学研究和应用中具有广泛的应用前景。

它不仅可以为我们更深入地了解生物元素的代谢过程提供帮助,而且还可以在美食研究、健康监测、生物质量养护以及食品工业中发挥重要作用。

同位素标记法在高中生物学中的应用总结

同位素标记法在高中生物学中的应用总结

同位素标记法在高中生物学中的应用总结同位素标记法是利用放射性同位素作为示踪剂对研究对象进行标记的微量分析方法,生物学上经常使用的同位素是组成原生质的主要元素,即H、N、C、S、P和O等的同位素。

1.分泌蛋白的合成与分泌(必修1P40简答题)20世纪70年代,科学家詹姆森等在豚鼠的胰腺细胞中注射3H标记的亮氨酸。

3min后被标记的亮氨酸出现在附有核糖体的内质网中;17min后,出现在高尔基体中;117min后,出现在靠近细胞膜内侧的囊泡中及释放到细胞外的分泌物中。

由此发现了分泌蛋白的合成与分泌途径:核糖体→内质网→高尔基体→囊泡→细胞膜→外排。

2.光合作用中氧气的来源1939年,鲁宾和卡门用18O分别标记H2O和CO2,然后进行两组对比实验:一组提供H2O和C18O2,另一组提供H218O和CO2。

在其他条件相同情况下,分析出第一组释放的氧气全部为O2,第二组全部为18O2,有力地证明了植物释放的O2来自于H2O而不是CO2。

3.光合作用中有机物的生成20世纪40年代美国生物学家卡尔文等把单细胞的小球藻短暂暴露在含14C的CO2里,然后把细胞磨碎,分析14C出现在哪些化合物中。

经过10年努力终于探索出了光合作用的“三碳途径”——卡尔文循环。

为此,卡尔文荣获“诺贝尔奖”。

4.噬菌体侵染细菌的实验1952年,赫尔希和蔡斯以T2噬菌体为实验材料,用35S、32P分别标记噬菌体的蛋白质外壳和DNA,再让被35S、32P分别标记的两种噬菌体去侵染大肠杆菌,经离心处理后,分析放射性物质的存在场所。

此实验有力证明了DNA是遗传物质。

5.DNA的半保留复制1957年,美国科学家梅塞尔森和斯坦尔用含15N的培养基培养大肠杆菌,使之变成“重”细菌,再把它放在含14N的培养基中继续培养。

在不同时间取样,并提取DNA进行密度梯度离心,根据轻重链浮力等的不同,就分出新生链和母链,这就证实了DNA复制的半保留性。

6.基因工程在目的基因的检测与鉴定中,采用了DNA分子杂交技术。

同位素标记法在高中生物教学中的应用

同位素标记法在高中生物教学中的应用

同位素标记法在高中生物教学中的应用————————————————————————————————作者:————————————————————————————————日期:同位素标记法在高中生物教学中的应用-生物论文同位素标记法在高中生物教学中的应用在人教版高中生物教材的实验和相关习题中经常出现同位素标记法的应用,现将教材中所涉及到的相关内容进行归纳总结,以期能够较深刻地了解同位素标记技术,以便于掌握和应用该项技术。

教材中关于同位素标记法的介绍比较简单:同位素可用于追踪物质的运行和变化规律。

用同位素标记的化合物,化学性质不会改变。

科学家通过追踪同位素标记的化合物,可以弄清化学反应的详细过程。

这种方法叫做同位素标记法。

现将同位素标记法相关内容进行归纳阐述,以期达到对这项技术的深刻理解。

一、同位素标记法简介1.同位素同位素是指原子序数相同,在元素周期表上的位置相同,而化学性质相似,质量不同的元素,它们是质子数相同而中子数不同的原子。

许多元素都存在同位素现象。

有放射性的同位素称为“放射性同位素”,没有放射性的则称为“稳定同位素”,即并不是所有同位素都具有放射性。

如碳的同位素有稳定同位素12C、13C和放射性同位素14C;氧的同位素有16O、17O、18O,它们都不具有放射性;氮的同位素有13N、14N、15N等。

2.同位素标记法同位素标记法是随同位素的发现而出现的一项科学应用技术。

科学家通过追踪同位素标记的化合物,从而研究细胞内的元素或化合物的来源、组成、分布和去向,弄清化学反应的详细过程,进而了解细胞的结构和功能、化学物质的变化、反应机理等。

同位素标记法具有灵敏度高,方法简便,定位定量准确,符合生理条件等特点。

二、同位素标记法在高中生物教材中的应用(一)标记某元素,追踪其转移途径1.光合作用产物O2中O元素的来源美国科学家鲁宾和卡门研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。

他们用氧的同位素18O分别标记H2O和CO2,使它们分别成为H218O和C18O2。

同位素示踪技术在生物学分析中的应用

同位素示踪技术在生物学分析中的应用

同位素示踪技术在生物学分析中的应用生物学是探究生命奥秘的学科,是自然科学中的重要一员。

在生物学领域中,各种技术手段都在飞速发展,其中同位素示踪技术是近年来广受关注的一种技术。

同位素示踪技术是指利用同位素的物理性质对分子进行标记,通过监测分子内部正常生物化学反应过程中的同位素分布情况来研究生物学问题。

本文将从同位素示踪技术在生物物理、生物化学和生物分子生物学等方面的应用等几个方面进行阐述。

生物物理学方面生命过程中,许多生物学过程的本质是由生物大分子所决定的,因此利用生物物理学技术手段进行研究是非常重要的。

其中同位素示踪技术就是一种重要的手段之一。

生物大分子中的氢原子和碳原子都具有同位素,如氢原子的氘核和碳原子的14C都可用于同位素示踪技术。

这种技术具有高分辨率、高灵敏度和高特异性等优势。

例如利用13C同位素标记技术对蛋白质分析,能够成为生物物理学研究的重要工具。

生物化学方面生物化学是研究生命体系中生物分子间的化学作用与转化规律等方面的学科。

在生物化学方面的研究中,同位素示踪技术是一种非常实用的手段。

例如,测定共价键的构成和化学应力等问题,需要有高分辨率的手段进行探究。

采用氘同位素标记和14C同位素标记技术可对化学键的构成和化学应力等问题进行研究。

这些技术能确定生物分子的结构和动力学,并进一步探究生物分子间的相互作用规律,为我们深入研究生命本质提供了新手段。

生物分子生物学方面生物分子的结构和功能是生命体系的核心。

同位素示踪技术可以同时测定不同生物分子之间的反应序列,因此被广泛应用于生物分子生物学中。

例如氢同位素示踪技术可用于酶催化反应、蛋白质修饰、代谢分析等方面的研究。

随着技术的发展,同位素示踪技术被运用于更广泛领域的研究,如RNA转录、DNA拓扑和整合基因组编码选择性等。

同位素示踪技术在生物学分析中的应用不仅能够推进生命科学研究领域的进展,更可以为医学和生物工程等领域提供技术支撑,帮助我们更好地解决一些实际问题。

高中生物同位素标记法总结

高中生物同位素标记法总结

高中生物同位素标记法总结大家好,今天咱们来聊聊高中生物里一个特别有趣的东西——同位素标记法。

听起来有点拗口,其实它就像是生物学里的“小侦探”,帮我们追踪各种生物分子的“去向”。

1. 同位素标记法概述1.1 什么是同位素标记法?说白了,同位素标记法就是用一种特殊的“标记”来追踪物质在生物体内的运动和变化。

这种标记就是“同位素”。

比如,大家都知道碳,碳有很多种“兄弟”,我们叫它们同位素。

普通的碳是碳12,而我们有时候会用碳14这种不同的碳来标记。

这些标记的“兄弟”在化学反应中表现得和普通碳一样,但它们有一个独特的特点——它们能被“发现”。

1.2 为什么要用同位素标记法?我们用这个方法来了解生物体内的化学反应。

比如说,我们想知道植物是怎么进行光合作用的,我们就可以用带有碳14的二氧化碳来“标记”植物,看看这些碳14最终去了哪里。

这样一来,植物的“秘密行动”就会暴露出来,咱们也就能更清楚地了解它们的内部“动态”了。

2. 同位素标记法的应用2.1 在生物化学中的应用同位素标记法在生物化学中的作用就像是打开了一扇新世界的大门。

举个例子,科学家们曾经用这种方法来研究细胞如何合成蛋白质。

通过在氨基酸中引入同位素,研究人员可以跟踪这些氨基酸在细胞内的“旅行路线”,从而揭示蛋白质合成的过程。

这就好比给细胞装了一个GPS,让我们能清晰地知道它们的行动轨迹。

2.2 在医学中的应用在医学领域,同位素标记法也有很多“好戏”。

比如说,医生可以利用放射性同位素来诊断一些疾病。

通过注射带有放射性同位素的药物,医生可以通过成像技术看到体内的“异常区域”,这就像是给身体做了一个“全景扫描”。

这种方法帮助医生更快、更准确地找到问题的根源。

3. 实施同位素标记法的步骤3.1 选择合适的同位素首先,我们得选择合适的同位素。

这个过程就像选购商品一样,得找对“品类”。

不同的同位素有不同的性质和用途,因此要根据实验的需要来挑选。

比如,碳14和氢3是常用的同位素,各自有其独特的“本领”。

同位素示踪法在生物学中的应用

同位素示踪法在生物学中的应用
系 的。 二 探 究 光 合 作 用 中 元 素 的转 移
用 放 射 性 同位 素 标 记 尿 嘧 啶 核 糖 核 苷 酸 ( R N A 的特 征 碱 基 为 U) 、 氨基酸 , 则在基因转录 、 翻 译 的 产 物 中就会 含有 放 射 性 同位 素 , 还 可 以 用 来确 定 转 录 、 翻译 的场 所 。
五 探究D N A分子 半泌 蛋 白 的 合
通 过放射性标记来 “ 区别 ” 亲代 与子代的D N A, 如放射性标记 J 5 N, 因为放射性物质 N的原子量和 N 的原 子量 不 同 , 因此 D N A的相 对 分子 质 量 不 同 。 如 果 D N A 分子 的两条链都 是 N , 则离 心时 为重带 ; 如果 D N A 分 子 的一 条链 是 ” N, 一 条链 是 “ N, 则 离 心 时 为 中带 ; 如果D N A 分子 的两条链都 是1 4 N , 则 离 心 时 为 轻 带 。因此 可 以根 据 重 带 、 中带 、 轻带D N A 出 现 的 比 例, 判断D N A 复 制 是全 保 留复 制 还 是半 保 留复 制 。
要 方 法 ,它 可 以研 究 细 胞 内 的元 素或 化合 物 的来 源 、 组 成、 分布 和去向等 , 进 而 了解 细胞 的 结 构 和 功 能 、化 学 物 质 的变 化 、 反应机理等 。 用 于 示踪 技术 的放射性 同位素一 般 是 用 于 构 成 细胞 化 合 物 的 重要 元素 , 如 H、 1 4 C、 N、 I s 0、 P 、 S 、 1 3 1 1 等 。在 高 中生物学 教材 中有 多 处 涉 及 放 射 性 同 位 素 的应 用 ,下 面 对 教 材 中 的相 关 知 识 进 行 归 纳 如下 :
七 在 生物 诱 变 育 种 方 面 的应 用

放射性同位素示踪法在高中生物学中的应用

放射性同位素示踪法在高中生物学中的应用

放射性同位素示踪法在高中生物学中的应用摘要】放射性同位素广泛应用于生物学的研究中,如对DNA是遗传物质、,DNA的半保留复制、基因诊断、矿质元素的运输。

C4植物光合途径、生长素的极性运输、分泌蛋白的合成与运输、光合作用、呼吸作用的原子转移的途径的研究。

【关键词】放射性同位素半保留复制 C4途径分泌蛋白基因诊断在生物学飞速发展的今天,离不开物理学和化学,我们可以这样说,物理学和化学的发展推动着生物学的发展。

如:光学显微镜、电子显微镜的应用,使我们对细胞的结构有了更进一步的认识。

各种物质的物质代谢更离不开化学,特别是化学中的同位素示踪法为研究生物的各种生命活动提供了更大的便利,下面是同位素示踪法在高中生物学中的应用实例。

一、同位素示踪法证明DNA是遗传物质在噬菌体浸染细菌的实验中,噬菌体只有两种物质:分别是DNA和蛋白质。

从组成元素上看,DNA含C、H、O、N、P,而蛋白质含C、H、O、N、S等。

且P主要存在于DNA中,而S主要存在于蛋白质外壳中,用35S、32P分别标记蛋白质和DNA,直接单独地去观察它们到底哪一种物质是遗传物质.实验过程和结果:二、研究DNA的半保留复制特点DNA的复制是全保留复制、半保留复制、还是弥散复制?我们可以用同位素示踪法进行研究。

我们把DNA用15N标记,然后提供14N的原料让其进行复制,在F1代、F2代、F3代的DNA分子中,含14N、15N的链到底有多少条?通过同位素示踪法非常清楚,即:即:DNA在第一次复制后,形成两个DNA分子,即四条链,两条链含15N,两条链含14N,进行第二次复制后,得到4个DNA分子,即八条链:其中含15N的两条,含14N的6条。

进行第三次复制后,得到八个DNA分子,即16条链,其中含15N的两条,14N的14条。

即不管DNA复制多少次,含15N的模板链只有2条,其余都是含14N的链。

若用密度梯度离心法进行离心,得到这样的结果。

所以,不论是用同位素示踪法研究DNA的复制,还是复制后进行密度梯度离心,都证明了DNA是半保留复制的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同位素示踪技术在高中生物学实验中的应用小结
1利用放射性同位素3H标记氨基酸作为示踪元素,来研究分泌蛋白在细胞中的合成部位及运输方向
科学家在研究分泌蛋白的合成和分泌时,曾经做过这样一个实验:他们在豚鼠的胰脏腺泡细胞中注射3H标记的亮氨酸,3min后,被标记的亮氨酸出现在附着有核糖体的内质网中,17min 后,出现在高尔基体中,117min后,出现在靠近细胞膜内则的运输蛋白质的小泡中,以及释放到细胞外的分泌物中。

这个实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的。

从而也证明了细胞内各种生物膜在功能上是紧密联系的。

2利用放射性同位素3H作为示踪元素来研究细胞的有丝分裂
细胞有丝分裂时,DNA分子在间期要复制,为细胞的分裂做准备。

为了研究细胞的有丝分裂,在小鼠肝细胞的培养液中加入用3H等标记的胸腺嘧啶脱氧核苷(3H-TdR),3H标记的胸腺嘧啶脱氧核苷是合成胸腺嘧啶脱氧核苷酸的原料,胸腺嘧啶脱氧核苷酸是合成DNA的原料。

因此细胞有丝分裂时,细胞核中的DNA分子复制可以被检测到。

3 利用放射性同位素18O、14C、3H作为示踪元素来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理
3.1 19世纪30年代美国科学家鲁宾(S.Ruben)和卡门(M.Kamen)研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。

他们进行了这样2组实验:用氧的同位素18O分
别标记H
2O和CO
2
,使它分别成为H
2
18O和C18O
2
,然后进行2组光合作用的实验:第1组向绿
色植物提供H
218O和CO
2
;第2组向同种绿色植物提供H
2
O和C18O
2。

在相同的条件下,对2组
光合作用实验释放出的氧进行分析,结果表明,第1组释放的氧全部是18O
2
,第2组释放的
氧全部是O
2。

从而证明了光合作用中释放的氧全部来自水。

3.2 用18O、14C标记二氧化碳(14C18O
2),固定后产生的三碳化合物有放射性(14C
3
),产物
葡萄糖(14C
6H
12
18O
6
)有放射性,产物水(H
2
18O)有放射性。

因此可以知道18O、14C元素的转移
途径为:14C18O
2→214C
3
→14C
6
H
12
18O
6
+ H
2
18O。

3.3 C
4
植物的发现过程澳大利亚科学家M.D.Hatch和C.R.Slack在研究玉米、甘蔗等原产
热带地区的绿色植物时发现,当向这些绿色植物提供14CO
2
时,光合作用开始后的1s内,竟
有90%以上的14C出现在含有4个碳原子的有机酸(一种C
4
化合物)中。

随着光合作用的进
行,C
4化合物中的14C逐渐减少,而C
3
化合物中的14C逐渐增多。

说明在这类绿色植物的光
合作用中,CO
2的C原子首先转移到C
4
化合物中,然后才转移到C
3
化合物中。

科学家将这类
植物看叫做C
4
植物。

4利用放射性同位素18O作为示踪元素来研究细胞呼吸过程中物质的转变途径,揭示呼吸作用的机理
4.1 用18O标记的氧气(18O
2
),生成的水全部有放射性,生成的二氧化碳全部无放着性,即:
18O
2→H
2
18O。

4.2 用18O标记葡萄糖(C
6H
12
18O
6
)生成的水全部无放射性,生成的二氧化碳全部有放着性,
即:C
6H
12
18O
6
→C18O
2。

5利用放射性同位素42K、32P标记无机盐离子来研究某些矿质元素在植物体内的吸收、运输过程
5.1 研究矿质元素的吸收部位。

通常用放射性同位素32P等来做实验,发现根毛区是根尖吸收矿质离子最活跃的部位。

5.2 研究矿质离子在茎中的运输部位。

用不透水的蜡纸将柳树的韧皮部和木质部隔开,并在土壤中施用含有42K的肥料,5h后测定42K在柳茎各部位的分布:有蜡纸隔开的木质部含有大量的42K,韧皮部几乎没有42K,说明运输42K的是木质部。

柳茎在用蜡纸隔开的韧皮部和木质部的以下区段以及不插入蜡纸的对照实验中,韧皮部中也有很多的42K,说明42K可以从木质部横向运输到韧皮部。

6 利用放射性同位素131I作为示踪元素来研究甲状腺
碘是合成甲状腺激素所必须的原料。

甲状腺可以将细胞外液中的碘主动吸收到甲状腺细胞。

因此可以将含有放射性同位素131I的注射液注射到小鼠体内,研究甲状腺功能和甲状腺激素调节的机理,有助于诊断甲状腺的功能性疾病。

7 利用放射性同位素来研究原肠胚各胚层的发育
动物胚胎学家用放射性同位素标记法研究原肠胚3个胚层的发育,从而确定动物3个胚层的发育规律和动物各个组织、器官的来源。

8利用放射性同位素35S和32P分别标记蛋白质和DNA来研究噬菌体侵染细菌的实验
1952年赫尔希(A.D.Hershey)和蔡斯(M.Chase)把细菌分别培养在含有放射性同位素35S 和放射性同位素32P的培养基中,细菌在生长过程中,就分别被35S和32P所标记。

然后,用T
2
噬菌体分别去侵染被35S和32P所标记的细菌。

噬菌体在细菌细胞内增殖,裂解后释放出很多子代噬菌体中,蛋白质被35S标记,DNA被32P标记。

接着用被35S和32P标记的噬菌体分别去侵染未标记的细菌,然后测定宿主细胞的同位素标记,当用35S标记的噬菌体侵染细菌时,宿主细胞内很少有同位素标记,而大多数35S标记的噬菌体蛋白质附着在宿主细胞的外面。

当用32P标记的噬菌体感染细菌时,宿主细胞的外面的噬菌体外壳中很少有放射性同位素32P,而大多数放射性同位素32P在宿主细胞内。

以上实验表明,噬菌体在侵染细菌时,进入细菌体内的是DNA,而蛋白质在细菌的外面。

可见,在噬菌体的生活史中,只有DNA是在亲代和子代之间具有连续性的物质。

9 利用放射性同位素15N作为示踪元素来研究DNA分子的半保留复制的特点
1957年,科学家用含有15N的培养基培养大肠杆菌,使之变成重细菌,接下来再把它放在含有14N的培养基中培养。

在培养过程,每隔一段时间取一部分样品,并立即提取细菌的DNA 进行密度梯度超离心,根据DNA分子在离心管中的位置不同,就可以区分出DNA分子中2条链是新生链还是母链。

10 利用放射性同位素32P作为示踪元素标记DNA分子来研究基因探针的作用
用放射性同位素32P标记DNA分子作为基因探针,利用DNA分子杂交原理,鉴定被检测样本上的遗传信息,达到检测疾病的目的,例如诊断肝炎病毒引起的传染病,诊断遗传疾病。

利用基因探针还可以检测饮用水中病毒的含量。

利用基因探针还可以对分子克隆进行筛选,以获得所需的阳性克隆。

癌症的形成是遗传因素与环境因素相互作用的结果,其中癌基因和抑癌基因的活动与癌症的发生关系密切。

利用基因探针可对它们进行分析,这不仅对阐明癌症的发生机制具有重要意义,也为在基因水平上对癌症进行诊断、分类、分型等开辟了新的途径。

基因探针还在其他许多地方发挥作用,如用性染色体Y特异的DNA探针可对妊娠早期的胎儿进行性别鉴定;应用小卫星DNA探针所进行的DNA指纹分析已在法医学中用于罪犯身份的鉴定。

相关文档
最新文档