超声波流量计
超声波流量计使用指南

超声波流量计使用指南超声波流量计是一种广泛应用于工业、商业和家庭环境中的流量测量设备。
它利用超声波技术测量流体在管道中的流速和流量。
本文将介绍超声波流量计的基本原理、安装步骤和使用注意事项,帮助读者正确、高效地使用超声波流量计。
一、超声波流量计的基本原理超声波流量计工作基于多普勒效应和声速差测量原理。
当超声波信号通过流体时,会受到流体流速和流体的声速差的影响。
通过测量超声波信号的频率差异,可以计算出流速和流量。
二、超声波流量计的安装步骤1. 确定安装位置:选择一个管道平直、无气泡和杂质的部位作为安装位置。
避免有漩涡或涡流的位置,以免干扰测量结果。
2. 准备安装工具:确保准备好合适的工具和材料,如螺丝刀、扳手、密封胶等。
3. 清洁管道表面:使用清洁剂和布料清洁管道表面,确保与超声波流量计传感器接触的部分干净无污垢。
4. 安装超声波流量计传感器:将传感器固定在管道上,根据传感器类型选择合适的安装方式(如夹紧式或焊接式)。
5. 连接电缆和电源:根据超声波流量计的规格和要求,连接传感器的电缆和电源。
6. 密封和固定:使用密封胶或安装夹固定超声波流量计传感器,确保传感器与管道之间的连接牢固且密封良好。
7. 完成安装:检查安装是否完整,并确保传感器与管道之间没有间隙或松动。
三、超声波流量计的使用注意事项1. 管道尺寸和材质:在使用超声波流量计之前,确保了解管道的尺寸和材质,以便选择合适的传感器和测量参数。
2. 流体类型和温度:超声波流量计可应用于各种液体和气体,但不同类型的流体可能需要不同配置的传感器。
同时,也要考虑流体的温度对测量结果的影响。
3. 定期校准:定期校准超声波流量计,以确保测量结果的准确性和稳定性。
校准频率根据具体使用情况和要求而定。
4. 杂质和气泡:超声波流量计对杂质和气泡敏感,可能影响测量结果。
确保管道系统清洁,并采取相应措施去除杂质和气泡。
5. 避免振动干扰:超声波流量计的准确性容易受到振动的影响。
超声波流量计参数

超声波流量计参数
超声波流量计是一种非侵入式测量流量的仪器,其优点包括不需要动态计量件、不会影响管道流动,而且精度高、可靠性好。
超声波流量计广泛应用于水利工程、化工、环保、食品、制药等领域。
超声波流量计的参数有哪些?
1. 测量范围与精度
超声波流量计的测量范围一般在0.1m/s-10m/s之间。
一般来说,测量范围越大,对管道的要求也就越高,精度会相应下降。
而测量精度一般为±1%-±2%。
2. 测量介质
超声波流量计适用于各种液体介质的流量测量,包括清水、脏水、酸碱溶液、石油、天然气等。
3. 测量管径
超声波流量计适用于大多数管道的流量测量,一般管径范围在10mm-
6000mm之间。
而且可以适用于椭圆形、矩形、异型管等。
4. 工作温度和压力
超声波流量计在工作时要注意其工作温度和工作压力,以免影响测量精度。
一般来说,温度范围通常在-30℃-90℃之间,压力范围通常在正压力0MPa-
4.0MPa之间,多采用大口径管道的应用场合压力要求低。
5. 材料
超声波流量计的测量传感器和管道部分都是由不同材质制成,根据不同介
质对材料的需求不同,但通常为高强度不锈钢、碳钢、PVC等材料,比较耐腐蚀。
6. 通信接口
超声波流量计采用数字化信号输出,可以与计算机或PLC通讯,进行数据
传输和监控。
总的来说,超声波流量计的参数主要包括测量范围、测量精度、测量介质、测量管径、工作温度和压力、材料和通信接口。
不同场合和不同介质要求的参
数是不同的。
超声波流量计使用说明

超声波流量计使用说明1. 简介超声波流量计是一种非接触式流量测量仪表,利用超声波原理测量流体的流速和流量。
它广泛应用于各个行业,如化工、石油、水处理等领域。
本文档将介绍超声波流量计的基本原理和使用方法。
2. 原理超声波流量计是根据多普勒效应原理工作的。
当超声波信号穿过流体时,会发生频率偏移。
通过测量频率偏移的大小,可以得到流体的流速。
超声波流量计通常由传感器和显示控制器两部分组成。
3. 使用方法3.1 安装传感器在使用超声波流量计之前,需要先安装传感器。
传感器通常安装在流体管道上,需要确保传感器与管道之间没有任何障碍物。
安装传感器时,应注意以下几点:•传感器应与管道垂直安装,以确保测量的准确性。
•传感器与管道之间应有适当的距离,以避免信号衰减。
•传感器的位置应选择在流体流速稳定的区域,避免影响测量结果。
3.2 连接显示控制器将传感器与显示控制器连接。
通常情况下,显示控制器提供了相应的接口和线缆。
按照说明书连接传感器与显示控制器,并确保连接牢固稳定。
3.3 设置参数在连接好传感器和显示控制器之后,需要进行参数设置。
根据实际测量需求,设置超声波流量计的采样频率、工作范围等参数。
不同的流体和管道可能需要不同的参数设置,因此需要根据实际情况进行调整。
3.4 启动测量完成参数设置后,可以启动测量。
显示控制器会实时显示流体的流速和流量。
同时,可以将测量结果通过接口输出,方便进行数据记录和分析。
3.5 定期维护为了保证测量的准确性,需要定期对超声波流量计进行维护。
主要包括清洁传感器表面、检查连接线路是否松动等。
同时,应及时更换损坏的部件,避免影响测量结果。
4. 注意事项4.1 温度影响超声波流量计的测量结果可能会受温度变化的影响。
因此,在使用过程中应注意流体的温度变化。
需根据实际情况对测量结果进行修正,以保证准确性。
4.2 介质要求超声波流量计通常适用于液体介质,如水、油等。
一些特殊介质(如气体、固体颗粒等)可能会影响测量结果。
超声波流量计量程范围

超声波流量计量程范围
超声波流量计是一种流量测量设备,用于测量液体和气体的流速、流量以及瞬时流量。
它采用了超声波技术,无需插入式流量计,可以测量管道内的任何流体,比如水、汽油、柴油、液化气等。
超声波流量计的量程一般有两种:标准量程和扩展量程。
标准量程的流速范围从0.2m/s至25m/s,流量范围从0.1m3/h至5000m3/h,可以满足大部分常见的应用场合。
扩展量程的流速范围从0.1m/s至100m/s,流量范围从0.1m3/h至10000m3/h,可以满足更高要求的应用场合。
超声波流量计的量程范围可以根据客户的需要而定,也可以根据具体应用场合选择合适的量程范围。
例如,在工业应用中,需要测量的流量范围可以比较大,这时候可以使用扩展量程的超声波流量计;如果是家庭用户消费的流量范围,则可以采用标准量程的超声波流量计。
超声波流量计的量程范围还可以根据环境温度来确定。
当环境温度较低时,可以采用低量程范围;当环境温度较高时,可以采用高量程范围。
超声波流量计的量程范围是非常丰富的,可以根据客户的需求和应用场合,以及环境温度来确定合适的量程范围。
它可以满足不同的
应用需求,是一种非常有效的流量测量设备。
超声波流量计-百度百科

超声波流量计-百度百科
JK系列超声波流量计/超声波热量表/超声波工业水表通过高精度时间数字转换芯片对超声波传输时间进行测量,有效克服零点漂移、小流量测量误差大等问题;综合利用频差法和时差法,使用实时声速、温度补偿等技术对流量进行补偿;人机接口画面丰富,支持多种通信方式;产品具有稳定性好、零点漂移小、测量精度高、量程比宽,抗干扰性强等特点。
超声波流量计产品特点
1、全系列产品流量测量精度优于1.0级;
2、支持多声道测量,默认为双声道,有效提高了仪表在复杂流体状态中的测量准确性和可靠性;
3、综合采用频差法和时差法测量技术,声速自动补偿,时间分辨率达到45皮秒,有效避免零点漂移,提高了小流量测量精度;
4、支持RS485通信,具有4~20mA变送功能,与企业能源管理系统集成更加方便;
5、支持AC 220V、DC 24V两种电源输入方式;
6、主机与探头类型多样化,可根据现场需求搭配使用,能够满足特殊环境的安装与测量;
7、人机界面丰富,使用操作便捷。
嘉可自动化仪表的超声波流量计产品种类齐全,主要有手持式超声波流量计、便携式超声波流量计、外夹式超声波流量计、插入式超声波流量计、管道式超声波流量计、固定式超声波流量计、一体式超声波
流量计、分体式超声波流量计、模块式超声波流量计、超声波工业水表、电池供电型超声波水表、超声波冷/热量表等。
超声波流量计适用范围

超声波流量计适用范围超声波流量计是一种非接触式流量测量仪器,广泛应用于工业、农业以及住宅等各个领域。
其原理是利用超声波在流体中的传播速度差异来测量流速和流量。
超声波流量计具有测量精度高、无压力损失、不受流体特性限制等优点,适用范围广泛。
本文将从工业、农业和住宅三个方面介绍超声波流量计的适用范围。
一、工业应用超声波流量计在工业领域的应用非常广泛。
首先,在化工行业中,超声波流量计可以用于测量各种化工液体的流速和流量,如酸、碱、溶液等。
其快速、准确的测量结果使得工厂能够实时监测和控制流体的流动,提高生产效率,降低资源浪费。
其次,在石油化工领域,超声波流量计能够测量各种油品(原油、汽油等)和气体的流速和流量,用于油罐、管道和储罐的监测和计量,确保流体输送过程的准确和安全。
此外,超声波流量计还被广泛应用于供水、供气等公用设施领域,以及钢铁、电力、纺织等各个工业行业,实现对各种液体和气体的精确测量和控制。
二、农业应用超声波流量计在农业领域的应用也非常重要。
在灌溉系统中,超声波流量计可以用于测量和控制水流的流速和流量,确保农田得到适当的灌溉,提高作物的生长效果。
超声波流量计对于各种液态肥料的流速和流量的测量也非常有帮助,确保农田得到适当的营养供给。
此外,超声波流量计还可以用于饮水系统、农田水利工程等方面的监测与测量,提高农业生产的效率和可持续性。
三、住宅应用在住宅领域,超声波流量计也发挥着重要的作用。
在暖通空调系统中,超声波流量计可以用于测量和控制冷热水的流速和流量,确保供暖和制冷系统的稳定运行。
超声波流量计对于供水系统和燃气的流速和流量测量也非常有帮助,保障住宅的正常供水和燃气使用。
另外,在家庭用电监测中,超声波流量计可以用于测量家庭用电设备的电量消耗,提供节能和负荷管理的参考数据,实现家庭用电的科学管理。
总结超声波流量计以其高精度、非接触等优点,在工业、农业和住宅等领域的应用范围非常广泛。
它能够测量各种流体的流速和流量,包括液体和气体。
超声波流量计方案

超声波流量计方案一、引言超声波流量计是一种常见的流量测量设备,通过利用超声波的传播特性实现对流体流量的测量。
它具有测量准确、无压力损失、无移动部件等优点,在工业生产中得到广泛应用。
本文将介绍超声波流量计的基本原理、常见类型以及应用案例,为读者提供一个全面了解和选用超声波流量计的方案。
二、基本原理超声波流量计通过发射超声波脉冲到流体中,利用声波在流体中传播的速度差异来测量流速。
其工作原理基于多普勒效应,即当声波遇到流体运动时,波长会发生变化,从而实现对流速的测量。
常见的超声波流量计包括传输时间差法和多普勒效应法,下面将分别进行介绍。
2.1 传输时间差法传输时间差法是一种基于声速差异原理的测量方法。
超声波流量计通常由两个传感器组成,一个作为发射器向下游发射超声波信号,另一个作为接收器接收信号。
超声波在流体中传播的速度取决于流体的物理性质以及流速。
当超声波流经流体时,由于流体的速度不同,传输时间会发生变化。
通过测量声波传播的时间差,可以计算出流体的平均流速。
2.2 多普勒效应法多普勒效应法是一种基于声波频率变化原理的测量方法。
超声波流量计的传感器通常同时具备发射和接收功能。
当超声波与流体运动相互作用时,声波的频率会发生变化。
对于与流体相对运动的声波而言,当流速较大时,声波频率会增加;当流速较小时,声波频率会减小。
通过测量超声波频率变化,可以计算出流体的实际流速。
三、常见类型根据实际应用需求和流体特性,超声波流量计可以分为不同类型,下面将介绍其中三种常见的类型。
3.1 声速差法超声波流量计声速差法超声波流量计采用传输时间差法进行测量,其原理是通过测量超声波在流体中传播的时间差来计算流体的流速。
该类型的流量计适用于流体中无颗粒或颗粒较小的情况,如液体或气体的流量测量。
3.2 直接时间差法超声波流量计直接时间差法超声波流量计是一种改进的传输时间差法测量方法。
与传统声速差法不同的是,该类型的流量计不再使用两个传感器,而是采用单个传感器进行测量。
超声波流量计的基本原理

超声波流量计的基本原理今天咱们来聊聊超声波流量计这个超有趣的东西哦。
你知道吗?超声波流量计就像是一个超级聪明的流量小侦探呢。
它的原理呀,和声音在介质里传播的那些奇妙事儿紧密相关。
咱先说说声音传播的速度吧。
在不同的介质里,声音传播的速度是不一样的哦。
就像你在空气中说话,声音传播的速度和在水里传播的速度就有很大差别。
超声波呢,是一种频率很高的声音,高到咱们人耳都听不到啦。
超声波流量计就是利用了超声波在流体(比如水或者油之类的液体)中传播速度的变化来测量流量的。
想象一下,有两个小超声波探头,就像两个小耳朵一样,放在管道的两边。
一个探头发出超声波,这个超声波就像一个小信使,朝着另一个探头飞奔而去。
当管道里没有流体流动的时候呢,超声波就按照它在这个介质里正常的速度传播过去。
但是呀,一旦管道里的流体开始流动了,就像是给这个小信使设置了一个小障碍,又像是给它加了一股顺风或者逆风。
如果流体朝着和超声波传播相同的方向流动,那超声波就会被“推”着走得更快一点;要是流体朝着和超声波传播相反的方向流动呢,超声波就会被“拖”着,走得慢一些。
这时候就很有趣啦,流量计就像一个特别机灵的小脑袋,它能准确地检测到超声波到达另一个探头的时间。
通过比较有流体流动和没有流体流动时超声波传播时间的差异,就能算出流体的流速啦。
就好像它能从超声波这个小信使的行程变化里,读懂流体流动的小秘密。
而且哦,这个超声波在管道里传播的时候,还不是随随便便的呢。
它的传播路径是有讲究的。
有时候是沿着管道的直径方向传播,这种叫做直射式超声波流量计。
还有一种呢,是超声波在管道里经过多次反射才到达另一个探头的,就像走了一个弯弯绕绕的小路,这种就是反射式超声波流量计。
你看,超声波流量计是不是很神奇呀?它就这么巧妙地利用了超声波在流体中的传播特性,来把那些看不见摸不着的流体流量给测量出来。
这就像是它在和流体玩一个小小的时间游戏,从时间的变化里算出流量这个大秘密。
而且呀,超声波流量计还有好多优点呢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波流量计概述:管段式超声波流量仪表[3]是以“速度差法”为原理,测量圆管内液体流量的仪表。
它采用了先进的多脉冲技术、信号数字化处理技术及纠错技术,使流量仪表更能适应工业现场的环境,计量更方便、经济、准确。
产品达到国内外先进水平,可广泛应用于石油、化工、冶金、电力、给排水等领域。
产品特点:◆独特的信号数字化处理技术,使仪表测量信号更稳定、抗干扰能力强、计量更准确。
◆无机械传动部件不容易损坏,免维护,寿命长。
◆电路更优化、集成度高、功耗低、可靠性高。
◆智能化标准信号输出,人机界面友好、多种二次信号输出,供您任意选择。
◆管段式小管径测流经济又方便,测量精度高达0.5级。
性能参数:性能参数测量液体充满被测管道的水、污水及其它均质液体,悬浮物含量小于10g/L,粒径小于1mm。
准确度±1.0%流速范围±0.01m/s~±12.0m/s管径范围DN300mm~DN2000mm传感器材质钢或不锈钢传感器承压能力管径300~600mm,压力不超过2MPa;管径700~2000mm,压力不超过1MPa转换器环境温度:-10℃~+45℃;湿度≤85%(RH) (特殊环境订货时说明)壁挂式盘装式一体式管段式传感器外型尺寸:1200 1030 1522 1434 32×44 13031400 1164 1778 1670 32×48 19141600 1298 1982 1874 36×48 24421800 1432 2236 2114 36×52 34112000 1566 2446 2324 40×52 4262ZR系列超声波流量计采用的是时差法测量原理。
它的高可靠性是积8年的制造经验加上博采众长,通过不断完善提高得到的;是由于采用了最新的诸如Philips、Tl、美国国家半导体公司的新型高性能集成元器件加上先进的SMD贴装器件生产线大规模生产实现的。
40皮秒(40×10 秒)的时间分辨率,0.5%的线性度。
低电压多脉冲原理,保证可靠运行。
两路0.1%精度的模拟输入,接入温度传感器电流信号,即变成热量计!实现中文显示,软件开放式设计,所有参数用户皆可设定;硬件元件参数无关化设计,无需调整即能确保每一台流量计具有完全相同的性能。
主机机型有:便携式、壁挂式、标准盘装式、手持式、一体式。
传感器具有:方便安装的外缚式、可靠工作的插入式、高可靠高精度的标准管段式、超高精度的标准型π管段式。
超声波流量计的主要特点是:流体中不插入任何元件,对流速无影响,也没有压力损失;能用于任何液体,特别是具有高黏度、强腐蚀,非导电性等性能的液体的流量测量,也能测量气体的流量;对于大口径管道的流量测量,不会因管径大而增加投资;量程比较宽,可达5:1;输出与流量之间呈线性等优点。
缺点:当被测液体中含有气泡或有杂音时,将会影响测量精度,故要求变送器前后分别有10D和5D的直管段;此外,结构复杂,成本较高。
测量原理当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,并且其传播时间的变化正比于液体的流速,其关系符合下列表达式其中θ为声束与液体流动方向的夹角M 为声束在液体的直线传播次数D 为管道内径Tup 为声束在正方向上的传播时间Tdown为声束在逆方向上的传播时间ΔT=Tup –Tdown设静止流体中的声速为c,流体流动的速度为u,传播距离为L,当声波与流体流动方向一致时(即顺流方向),其传播速度为c+u;反之,传播速度为c-u.在相距为L的两处分别放置两组超声波发生器和接收器(T1,R1)和(T2,R2)。
当T1顺方向,T2逆方向发射超声波时,超声波分别到达接收器R1和R2所需要的时间为t1和t2,则t1=L/(c+u) t2=L/(c-u)由于在工业管道中,流体的流速比声速小的多,即c>>u,因此两者的时间差为▽t=t2-t1=2Lu/cc 由此可知,当声波在流体中的传播速度c已知时,只要测出时间差▽t即可求出流速u,进而可求出流量Q。
利用这个原理进行流量测量的方法称为时差法。
此外还可用相差法、频差法等。
相差法原理:如果超声波发射器发射连续超声脉冲或周期较长的脉冲列,则在顺流和逆流发射时所接收到的信号之间便要产生相位差▽O,即▽O=w▽t=2wLu/cc 式中,w为超声波角频率。
当测得▽O时即可求出u,进而求得流量Q。
此法用测量相位差▽O代替了测量微小的时差▽t,有利于提高测量精度。
但存在者声速c对测量结果的影响。
频差法原理:为了消除声速c的影响,常采用频差法。
由前可知,上、下游接收器接受到的超声波的频率之差为▽f可用下式表示▽f=[(c+u)/L]-[(c-u)/L]=2u/L 由此可知,只要测得▽f就可求得流量Q,并且此法与声速无关。
超声波技术及其应用一、没测量水位概况目前水电站多采用浮子式液位计或投入式液位计来进行水位测量。
其缺点为:测量精度低,不可靠,经常出现浮子卡死不动和传感器堵塞导致测不准;维护工作量大,安装、调试不便,采集到的仅是模拟告警信号,不能直接进入电厂计算机监控系统。
对无人值班电厂不实用。
我们对拦污栅水位测量系统进行了反复对比,优化得出最后的方案设计,采用超声波液位计对栅前、栅后水位进行实时准确监测,超声波液位计用PLC对采集量进行处理。
并且把实时水位和压差数据送到中控室,超声波液位计显示和越限报警。
超声波液位计同时采用RS422/RS232接口,又把实时数据送到大坝集中控制室工控机,处理成计算机通信报文,最终将采集量送到电厂计算机监控系统上位机。
该项目实施后不仅满足栏污栅栅前、栅后水位及压差的多点实时监测,及报警功能,而且结束了拦污栅测量系统独立工作,无法与电厂计算机监控系统通讯的局面。
实现与闸门系统的监视功能、控制功能以及故障时ON-CALL寻呼系统功能的集成。
满足了无人值班电站的需要。
该技术在云南省电力系统还是第一家。
二、超声波液位计测量水位的原理以及安装要求超声波液位计工作时,高频脉冲声波由换能器(探头)发出,遇被测物体(水面)表面被反射,折回的反射回波被同一换能器(探头)接收,转换成电信号。
脉冲发送和接收之间的时间(声波的运动时间)与换能器到物体表面的距离成正比,声波传输的距离S与声速C和传输时间T之间的关系可以用公式表示:S=CⅹT/2 例如:声速C=344m/s,传输时间为50ms,即可算出传输的距离为17.2m,测定距离为8.6m。
三.可编程超声波式拦污栅水位测量系统在田坝电站应用产生的效果用超声波液位计测量大坝水位目前在国内尚不普遍,技术上尚无经验可以借鉴。
在这样的情况下,我们充分利用PLC与超声波液位计这一领域的先进技术,按照总体规划,长远考虑,一次到位,避免重复改造,重复投资的这一原则,对该项目进行自行设计,全面顺利地完成了这一课题。
在该领域取得了较有价值的经验。
为目前我国国内水电站实现对大坝水位监测系统提供了一个可以借鉴的范例。
超声波流量计原理超声波在流动的流体中传播时就载上流体流速的信息。
因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。
根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。
起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。
它与水位计联动可进行敞开水流的流量测量。
使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。
众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。
因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。
被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。
在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。
超声被流量汁也可用于气体测量。
管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。
另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。
另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。
超声波流量计的适应能力也是其它仪表不可比拟的。
超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、通用化发展,现已制成不同声道的标准型、高温型、防爆型、湿式型仪表以适应不同介质,不同场合和不同管道条件的流量测量。
超声波流量计目前所存在的缺点主要是可测流体的温度范围受超声波换能铝及换能器与管道之间的耦合材料耐温程度的限制,以及高温下被测流体传声速度的原始数据不全。
目前我国只能用于测量200℃以下的流体。
另外,超声波流量计的测量线路比一般流量计复杂。
这是因为,一般工业计量中液体的流速常常是每秒几米,而声波在液体中的传播速度约为1500m/s左右,被测流体流速(流量)变化带给声速的变化量最大也是10-3数量级.若要求测量流速的准确度为1%,则对声速的测量准确度需为10-5~10-6数量级,因此必须有完善的测量线路才能实现,这也正是超声波流量计只有在集成电路技术迅速发展的前题下才能得到实际应用的原因。
超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。
超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。
这样就实现了流量的检测和显示。
超声波流量计常用压电换能器。
它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振劝。
超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。
发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。
超声波流量计换能器的压电元件常做成圆形薄片,沿厚度振动。
薄片直径超过厚度的10倍,以保证振动的方向性。
压电元件材料多采用锆钛酸铅。
为固定压电元件,使超声波以合适的角度射入到流体中,需把元件故人声楔中,构成换能器整体(又称探头)。