相关器的研究及其主要参数的测量
声频功率放大器新旧标准解析及相关性能参数检测研究

声频功率放大器新旧标准解析及相关性能参数检测研究邝永辉【摘要】声频功率放大器是音响系统的重要组成部分,是声频信号经过声频功率放大器放大以后获得足够功率馈送给扬声器完成声音信号的再现.本文首先介绍了甲类功率放大器、乙类功率放大器、甲乙类功率放大器、定阻式功率放大器、定压式功率放大器的工作原理;再介绍了声频功率放大器新旧检验标准SJ/T 10406-2016《声频功率放大器通用规范》和SJ/T 10406-1993《声频功率放大器通用技术条件》;最后介绍了声频功率放大器相关性能参数的检测.【期刊名称】《电子测试》【年(卷),期】2018(000)002【总页数】3页(P51-53)【关键词】声频功率放大器;SYS-2722音频分析仪;增益限制的有效频率范围;总谐波失真加噪声(THD+N)【作者】邝永辉【作者单位】广东省质量监督电声产品检验站,广东江门,529000【正文语种】中文0 引言声频功率放大器简称功放,其作用是将较微弱的声频信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。
声频信号重放出来优劣的衡量主要有增益限制的有效频率范围、总谐波失真、信噪比等性能参数,这些参数与声频功率放大器本身的类型、机构设计有很大的关系,一台性能良好的声频功率放大器将给人带来高保真效果的听觉感受。
1 声频功率放大器分类声频功率放大器按功放管导电方式不同可分有甲类功率放大器、乙类功率放大器、甲乙类功率放大器等;按输出形式分有定阻式功率放大器和定压式功率放大器。
甲类功率放大器的功放管在信号的正、负半周均处于导通状态,在整个周期处于导通使得甲类功率放大器不存在开关失真和交越失真,信号在通过功放管时都可以比较完美地被放大,但因功放在没有输入信号的时候仍然要消耗电流,这样使得甲类功率放大器工作效率较低;乙类功率放大器的功率管静态工作电流为零,无信号时功放管不会消耗功率,这样使得乙类功率放大器的效率有较大的提高,但是因乙类功率放大器功率管的静态工作电流为零,使得输入信号波形的负半周不能被输出,这样会导致严重的非线性失真,乙类功率放大器工作点选择比较低,功率管在整个信号周期内只有50%的时间开启,使得乙类的效率比甲类高,但因只有一半时间进行信号放大,使得乙类功率放大器的失真比甲类大;甲乙类放大器的工作模式介于甲类与乙类之间,大部分时间只有一个晶体管工作,在零交越点时两个晶体管都工作,甲乙类放大器最大优点是改善了乙类放大器的非线性,消除了交越失真,当输入信号为零时,由于此时两个晶体管仍然处于导通状态,因此甲乙类放大器的最大工作效率介于甲类功放和乙类功放之间。
半导体激光器实验报告

半导体激光器实验报告摘要:本文旨在通过对半导体激光器的实验研究,探索其基本原理、结构和性能,并分析实验结果。
通过实验,我们了解了激光器的工作原理、调制和控制技术以及其应用领域。
在实验过程中,我们测量了激光器的输出功率、光谱特性和波长调制特性等参数,并对实验结果进行了分析和讨论。
1.引言半导体激光器是一种利用半导体材料作为活性介质来产生激光的器件。
由于其小尺寸、高效率和低成本等优点,半导体激光器被广泛应用于通信、光存储、医学和科学研究等领域。
本实验旨在研究不同结构和参数的半导体激光器的性能差异,并通过实验数据验证理论模型。
2.实验原理2.1 半导体激光器的基本结构半导体激光器由活性层、波导结构和光学耦合结构组成。
活性层是激光器的关键部分,其中通过注入电流来激发电子和空穴复合形成激光。
波导结构用于限制光的传播方向,并提供反射面以形成光腔。
光学耦合结构用于引导激光光束从激光器中输出。
2.2 半导体激光器的工作原理半导体激光器利用注入电流激发活性层中的电子和空穴,使其发生复合并产生激光。
通过适当选择材料和结构参数,使波导结构中的光在垂直方向形成反射,从而形成光腔。
当光经过活性层时,激发的电子和空穴产生辐射跃迁,并在激光器中形成激光。
随着光的多次反射和放大,激光逐渐增强,最终从光学耦合结构中输出。
3.实验步骤3.1 实验器材本实验使用的主要器材有半导体激光器装置、电源、光功率计、多道光谱仪等。
3.2 实验过程首先,将半导体激光器装置与电源连接,并通过电源控制激光器的注入电流。
然后,使用光功率计测量激光器的输出功率,并记录相关数据。
接下来,使用多道光谱仪测量激光器的光谱特性,并记录各个波长的输出光功率。
最后,调节激光器的注入电流,并测量波长调制特性。
完成实验后,对实验数据进行分析和讨论。
4.实验结果与分析通过实验测量,我们得到了半导体激光器的输出功率、光谱特性和波长调制特性等数据,并对其进行了分析。
实验结果显示,随着注入电流的增加,激光器的输出功率呈现出递增趋势,但当电流达到一定值后,增长速度逐渐减慢。
光电技术实验

光电技术实验实验报告目录一、光源与光辐射度参数的测量(必做) (3)二、PWM调光控实验 (5)三、LED色温控制实验 (8)四、光敏电阻伏安特性实验 (11)五、线阵CCD驱动电路及特性测试(必做) (13)六、相关器的研究及其主要参数的测量(必做) (15)七、多点信号平均器(必做) (19)八、考试内容 (23)实验一 光源与光度辐射度参数的测量一、实验目的1.熟悉进行光电实验过程中所用数字仪表使用方法2.了解LED 发光二极管3.研究影响LED 光照度的参数二、实验仪器光电综合实验平台主机系统 1 台、发白光的 LED 平行光源(远心照明光源)及其夹持装置各 1 个三、实验原理(1)LED 发光原理:LED 发光二极管为 PN 结在正向偏置下发光的特性。
有些材料构成的 PN 结在正向电场的作用下,电子与空穴在扩散过程中要产生复合。
复合过程中电子从高能级的“导带”跌落至低能级的“价带”, 电子在跌落过程中若以辐射的形式释放出多余的能量,则将产生发光或发辐射的现象。
并且,可以通过控制电流来控制(或调整)发光二极管的亮度,即可以通过改变发光管的电流改变投射到探测器表面上的照度,这就是 LED 光源具有的易调整性。
(2)光度参数与辐射度参数:光源发出的光或物体反射光的能量计算通常是用“通量”、“强度”、“出射度”和“亮度”等参数,而对于探测器而言,常用“照度”参数。
辐照度或光照度均为单位探测器表面所接收的辐射通量或光通量。
即)/(2m W SeEe φ=或 )(lx SvEv φ=式中S 为探测器面积。
(3)点光源照度与发光强度的关系:各向同性的点光源发出的光所产生的照度与发光强度 I v 成正比,与方向角的余弦(COS φ)成正比,与距离光源的距离平方(l^2)成反比,即)(cos 2lx lIv Ev φ=四、实验内容(1)安装LED 发光装置与照度探测器装置,并在电路中接入电流表、限流电阻和可调电阻测量发光LED 的电流。
集成电路主要参数与性能的测量方法

集成电路主要参数与性能的测量方法第一章:引言集成电路(Integrated Circuit,IC)作为现代电子技术的基础,已经成为了电路设计的主要方式和发展趋势。
因此,对于集成电路的主要参数和性能的测量方法的研究具有重要意义。
本文将对集成电路的主要参数和性能以及测量方法进行深入探讨。
第二章:集成电路的主要参数和性能(一)主要参数1.尺寸:IC的尺寸通常以晶圆直径来表示。
晶圆的直径通常在4-12英寸之间,尺寸与价格呈正相关趋势。
2.工艺节点:工艺节点是工艺技术的指标,它通常是指晶体管门宽和金属线的宽度。
工艺节点越小,表示晶体管门极容易变小,对晶体管的性能和功率效率的提高会有很大的帮助。
3.运行速度:运行速度是IC的一个重要性能参数,通常用截止频率、最大工作频率等来表示。
4.功耗:功耗是电路的重要指标之一,越小越好。
5.集成度:集成度是IC所能实现的复杂电路的规模。
(二)性能1.直流电路参数:包括电压增益、共模抑制比、输入电阻和输出电阻等。
2.交流电路参数:如输出功率、柔顺度、杂散信号等。
3.噪声参数:包括噪声系数、等效输入噪声电压等。
第三章:集成电路性能的测量方法(一)尺寸测量晶圆的尺寸测量通常使用光刻测量仪来进行,测量结果精度高、重复性好。
(二)运行速度测量1.直流电路参数的测量:可使用万用表、示波器等设备进行测量。
2.交流电路参数的测量:可以使用频谱分析器、动态信号分析仪等设备进行测量。
(三)功耗测量可以使用功率计、示波器等设备测量电路的功耗。
(四)集成度测量集成电路的集成度可以采用大规模集成电路测试系统进行测量。
(五)性能测量1.直流电路参数的测量:可使用各种测试电路(如差分放大电路)进行测量。
2.交流电路参数的测量:使用频谱分析器等仪器测量,可以得到其幅频特性、输出功率、等效杂散电平等参数。
3.噪声参数的测量:可以使用电压调制噪声功率谱仪等设备测量。
第四章:总结本文阐述了集成电路主要参数与性能的测量方法。
三球仪的研究报告

三球仪的研究报告引言三球仪是一种用于检测旋转运动的仪器,它由一个固定的底座上支持着三个互相垂直的球,球上各有一个轴。
本文旨在对三球仪的原理和应用进行研究,以及对其性能进行评估。
原理三球仪的工作原理基于旋转动力学和惯性力学的相关理论。
当三球仪发生旋转时,由于惯性的作用,每个球上的轴会发生转动。
通过测量球轴的转动角度,可以计算出旋转的角速度和角加速度。
设计与制造三球仪的设计与制造对于其性能和精度至关重要。
首先,需要选择合适的材料来制作球和轴,以保证其坚固性和耐用性。
其次,制造过程需要保证球和轴之间的连接紧固,减小摩擦力对测量结果的影响。
最后,在设计上需要考虑到球和轴之间的相互垂直和平衡性,以确保准确的测量结果。
校准与精度为了保证三球仪的准确性,在使用之前需要对其进行校准。
校准的目的是确定球轴转动和实际角速度之间的关系。
通常,校准过程会使用标准旋转仪器,通过与三球仪进行对比测量来确定其精度和误差范围。
应用领域三球仪在多个领域有着广泛的应用。
其中,以下是几个典型的应用领域:1.航天航空:三球仪可以被用于飞机和航天器的姿态控制和稳定性评估。
2.惯性导航:通过测量旋转角速度和角加速度,可以确定物体在空间中的方向和位置。
3.机械工程:用于测试旋转机械装置的运动性能和稳定性。
4.运动生物力学:在研究生物体的运动学和动力学特性时,可以使用三球仪来测量关键参数。
结论通过对三球仪的研究,我们可以看出它在旋转运动检测方面具有重要的应用意义。
其简单的原理和广泛的应用领域使它成为了一个不可或缺的工具。
然而,也应该注意到三球仪在使用前需要进行校准,并且在制造过程中需要注重设计和制造的精度。
希望本文的研究能够为三球仪的进一步发展和应用提供一些参考和借鉴。
参考文献1.Smith, J. K., & Johnson, L. M. (2005). A study on the three-ballgyroscope. Journal of Gyroscopic Engineering, 20(2), 45-52.2.Zhang, Q., & Wang, Y. (2010). Application of three-ball gyroscope inaerospace engineering. Aerospace Science and Technology, 15(3), 170-176.3.Liu, X., & Chen, Z. (2018). Development and application of three-ballgyroscope in mechanical engineering. Journal of Mechanical Engineering, 45(4), 36-42.。
光电探测器探测性能多参数分析

光电探测器探测性能多参数分析光电探测器是一种能够将光信号转化为电信号的设备,广泛应用于光通信、光电子学、生物医学等领域。
光电探测器的探测性能对于其应用效果具有重要影响,因此准确分析和评估光电探测器的性能参数是必不可少的。
1. 灵敏度光电探测器的灵敏度是指能够探测到的最小光功率。
通常用单位面积功率密度来表示。
灵敏度越高,意味着该探测器在较弱的光信号条件下仍能正常工作。
灵敏度的高低取决于光电探测器的设计及其所采用的材料。
一种常见的评估指标是光电探测器的响应度。
2. 噪声等效功率噪声等效功率指的是在光电探测器工作状态下,由于设备本身所产生的噪声引入到输出信号中的功率。
噪声等效功率是光电探测器性能的重要参数之一,能够影响到信号与噪声的比值,从而影响信号的清晰度和精确度。
3. 响应时间响应时间是光电探测器从光信号到电信号的转换所需的时间。
这个时间对于对时间精度要求比较高的应用非常重要,如高速通信和光纤通信。
较快的响应时间有助于光电探测器更快地对光信号进行处理和传输。
4. 波长响应特性波长响应特性是指光电探测器对不同波长的光源的响应能力。
由于不同波长的光源具有不同的能量和频率特性,因此光电探测器在不同波长下的响应特性可能有所差异。
光电探测器的波长响应特性需要与具体应用需求匹配。
5. 饱和光功率饱和光功率是指使光电探测器输出信号达到最大值所需输入光功率。
饱和光功率与灵敏度相关,可以用来评估光电探测器的动态范围。
较高的饱和光功率可以使光电探测器在高强度光信号条件下工作稳定。
6. 线性范围光电探测器的线性范围指的是输入光功率的变化范围,使得其输出信号与输入信号之间呈现线性关系。
较宽的线性范围意味着光电探测器能够适应更大范围的输入光功率变化,从而提高测量的精确性和可靠性。
以上介绍的参数只是光电探测器性能分析中的一小部分,还有一些其他的性能指标也是需要考虑的,如扩散响应、非线性特性等。
在实际应用中,根据具体的需求选取相应的参数进行分析和评估是非常重要的。
二氧化碳培养箱主要参数和校准方法研究

二氧化碳培养箱主要参数和校准方法研究摘要:二氧化碳培养箱是一种常用的细胞、组织培养的生物类仪器,广泛应用于生物、医学检测和科研领域。
由于二氧化碳培养箱性能要求较高,进口品牌占领绝大多数市场份额。
本文对二氧化碳培养箱相关标准和关键控制参数进行梳理,并给出了关键参数的校准和检测方法,为二氧化碳培养箱性能检测方法提供了参考依据。
关键字:二氧化碳培养箱;校准;标准二氧化碳培养箱是一种常用的细胞、组织培养的生物类仪器。
该仪器通过在箱体内模拟形成一个类似细胞/组织在生物体内的生长环境,使体内细胞可以在体外生长,从而达到研究病理或其他生物现象的仪器,广泛应用于微生物、医学、制药、环保、食品、畜牧等科学领域的研究和生产。
1.二氧化碳培养箱使用现状1.1二氧化碳培养箱使用现状目前二氧化碳培养箱主要应用于生物细胞、组织、细菌培养中,主要应用于医院的医疗人员、高校和科研机构,广泛分布于各大医院,生殖中心,肿瘤医院,高校实验室,生物公司中。
由于体外培养细胞及组织的要求较高,所以用户对二氧化碳培养箱各项参数要求较高。
二氧化碳培养箱的市场仍主要被进口大品牌所垄断,比如美国热电Thermo、德国宾德Binder、日本三洋SANYO等。
这类二氧化碳培养箱经过长时间检验,性能相对稳定,使用寿命较长,用户口碑较好,但同时相对的价格较为昂贵。
近年来,陆续有厂家有二氧化碳培养箱上市,国内品牌通常走低价路线,其价格相对进口品牌较低,但是同时性能也不如进口品牌稳定。
国产二氧化碳培养箱生产企业还需要加强技术研发,只有真正在质量上赶上甚至超过进口,才能真正抢占市场,与进口品牌竞争。
1.2二氧化碳培养箱相关标准随着生物技术发展,各种生物技术研究和检测都需要细胞体外培养,二氧化碳培养箱的重要性日益体现。
最早,二氧化碳培养箱并没有适用的标准,只有依据普通培养箱和空气中二氧化碳测量浓度的相关标准。
2020年4月1日实施的YY 1621-2018《医用二氧化碳培养箱》是目前二氧化碳培养箱的适用的标准。
相关器1

没有直流分量输出,说明相关器能抑制偶次谐波, 是以参考信号频率为参数的方波匹配滤波器。
物理学实验教学示范中心
近代物理实验
相敏特性
当输入信号为一恒定幅度的与参考信号同步的对 称方波时,相关器输出直流电压和参考信号与输 入信号的相位差成线性关系,这时相关器可作为 签相器。
物理学实验教学示范中心
近代物理实验
相关器原理图
物理学实验教学示范中心
近代物理实验
相关器各点波形
物理学实验教学示范中心 近代物理实验
谐波响应
当输入信号的频率与参考信号的奇次谐波频率 (2n+1)相同时,经低通滤波器就会有直流分量 输出,而这些奇次谐波输出的幅度为基波幅度的 (2n+1)分之1。当输入信号的频率与参考信号 的偶次谐波频率(2n)相同时,经低通滤波器将
物理学实验教学示范中心 近代物理实验
实验原理
当待测信号与参考信号同频率时,相关器输出的 信号与待测信号的幅度Vs有关,也与待测信号与 参考信号的相位差有关。调整参考信号的相位, 当时,相关器的输出信号与待测信号的幅度成正 比,因而实现了幅度的检测目的。
物理学实教学示范中心
近代物理实验
实验原理
微弱信号检测技术(一) 相关器的研究及其主要参数测量
指导教师:赖发春
物理学实验教学示范中心
近代物理实验
实验目的
1.了解相关器的原理 2.了解锁定放大器的工作原理 3.学习锁定放大器测量微弱信号的特点 4.测量相关器的输出特性
物理学实验教学示范中心
近代物理实验
实验仪器
ND—501型微弱信号检测实验综合装置
物理学实验教学示范中心 近代物理实验
思考题
1.锁定放大器与一般含义的放大器有什么主要的 区别? 2.相关器和同步积分器是依据什么原理来检测微 弱信号的? 3.输入信号频率与参考信号的频率不同则锁定放 大器就不会有输出,对否?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关器的研究及其主要参数的测量微弱信号检测的核心问题是对噪声的处理。
最简单、最常用的办法是采用选频放大技术。
为检测信号,要求选频放大器的中心频率f 0与检测信号的频率f s 相同,尽量压缩带宽使Q 值提高,Q =f 0/Δf ,( Δf 选频放大器的信号带宽),从而使大量处于通带两侧的噪声得以抑制,而检测有用的信号。
但是,选频放大器对信号频率f s 没有跟踪能力,很难达到f 0=f s 的要求;另外对于选频放大器信号带宽应大于被测信号的频谱宽度,Q 值一般不能太高,当背景信号中的窄带噪声谱宽度与信号谱宽度可以比拟时,或在信号频率f s 附近有较强的干扰时,选频放大器处理噪声和干扰的能力更差。
据此,在微弱信号检测中,常规的选频放大器已不能满足要求。
对于窄带微弱信号,要求电路具有极窄的信号频带,即极高的Q 值,并且对于信号频率的变化不仅要具有自动的跟踪能力,而且同时又锁定信号 的相位ϕ,那么,噪声要同时符合与信号既同频又同时的可能性大为减少。
这就是相干检测的基本思想以及对噪声的处理方法。
也就是说,我们需要另一个相干信号,它只能识别被测信号的频率与相位。
完成频域信号窄带化处理的相干检测系统称为锁相放大器(Lock-in Amplifier ),简称LIA 。
因为它实现了锁定相位的功能,故亦有译为锁定放大器的。
目前,锁定放大技术已广泛地用于物理、化学、生物、电讯、医学等领域。
因此,培养学生掌握这种技术的原理和应用,具有非常重要的现实意义。
本实验的目的是让学生了解相关器的原理,测量相关器的输出特性,掌握相关器正确的使用方法等。
一、实验目的通过对相关器的主要参数的测量了解相关器的工作原理。
二、相关器的工作原理1、相关检测微弱信号检测的基础是被测信号在时间轴上具有前后相关性的特点,所谓相关,是指两个函数间有一定的关系。
如果它们之间的乘积对时间求平均(积分)为零,则表明这两个函数不相关(彼此独立);如不为零,则表明两者相关。
相关的概念按两个函数的关系又可分为自相关和互相关两种。
由于互相关检测抗干扰能力强,因此在微弱信号检测中大都采用互相关检测原理。
如果)(1t f 和)(2τ-t f 为两个功率有限信号,则可定义他们的相关函数为)(τR =∞→τlim T 21dt t f t f T T )()(21τ-⋅⎰- 10-1-1 另)()()(11t n t V t f S +=,)()()(22t n t V t f r +=,其中)(1t n 和)(2t n 分别代表与待测信号)(t V S 及参考信号)(t V r 混在一起的噪声,则式10-1-1可写成∞→=ττlim )(R T 21dt t V t V t n t V r r T T S )]}()([)]()({[1ττ-+-⋅+⎰-=∞→τlim T 21[⎰--T T r S dt t V t V )()(τ+⎰--T T S dt t n t V )()(2τ+⎰--T T r dt t n t V )()(1τ+⎰--T T dt t n t n )()(21τ] =)()()()(1212ττττR R R R r s sr +++ 10-1-2式中)(τsr R 、)(2τs R 、)(1τr R 、)(12τR 分别代表两信号之间,信号对噪声及噪声之间的相关函数。
由于噪声的频率和相位都是随机量,它们的偶尔出现可用长时间积分使它不影响信号的输出。
所以,可认为信号和噪声、噪声和噪声之间是互相独立的,它们的相关函数为零,于是10-1-2可写为)(τR =∞→τlim T 21⎰--T T r S dtt V t V )()(τ 10-1-3上式表明,对两个混有噪声的功率有限信号进行相乘和积分处理(即相关检测)后,可将信号从噪声中检出,噪声被抑制,不影响输出。
2.相关器根据相关检测的原理可以设计的相关检测器,简称相关器,如图10-1-1所示,它是锁定放大器的心脏。
参考图10-1-1 相关器基本框图通常相关器由乘法器和积分器构成。
乘法器有两种:一种是模拟乘法器;另一种是开关式乘法器,常采用方波作参考信号,而积分器通常由RC 低通滤波器构成。
现设式10-1-3中两个信号均为正弦波:待测信号为:t e t V S S ωcos )(=;参考信号为: ])cos[()(ϕωωτ+∆+=-t e t V r r在式中τ为两个信号的延迟时间,它们进入乘法器后变换输出为)(t V ,)(t V =t t e e t V t V r s r S ωϕωωτcos ])cos[()()(⋅+∆+=-⋅=21]})2cos[(){cos(ϕωωϕω+∆+++∆t t e e r s即由原来以ω为中心频率的频谱变换成以差频ω∆及和频ω2为中心的两个频谱,通过低通滤波器(简称LPF)后,和频信号被滤去,于是经LPF输出的信号为)cos()(0ϕω+∆=t e Ke t V r s 若两信号频率相同(这符合大多数实验条件),则ω∆=0,上式变为ϕcos )(0r s e Ke t V = 10-1-4式中K是与低通滤波器的传输系数有关的常数。
上式表明,若两个相关信号为同频正弦波时,经相关检测后,其相关函数与两信号幅度的乘积成正比,同时与它们之间位相差的余弦成正比,特别市当待测信号和参考信号同频同位相,即ω∆=0,ϕ=0时,输出最大,即r s om e Ke V =可见,参考信号也参与了输出。
模拟乘法器组成的相关器虽然简单,但它存在一系列缺陷,对参考信号的稳定性要求极高;对存在于待测信号和参考信号中的各高次谐波分量,以及低次谐波分量等,均有一定的响应;更严重的是,电路利用器件的非线形特性进行相乘运算,造成对输入信号中的各种分量及噪声进行检波而得到的直流输出,形成输出噪声,以致仍把微弱信号检出量淹没,基于上述原因,现行的设备中常采用开关式乘法器构成。
信号V s (R sr (t )V 0(t )开关式乘法器,称为相敏检波器(简称PSD )。
相关器由相敏检波器与低通滤波器组成。
此时待测信号)(t V S 为正弦信号,参考信号)(t V r 为方波信号。
t e t V s s S ωcos )(= ])(5cos 51)(3cos 31)[cos(4)(⋅⋅⋅⋅⋅⋅-+++-+=-ϕωϕωϕωπτt t t t V r r r r ])(3cos[31]){cos[(4)()(ϕωωϕωωπτ+±-+±=-⋅t t e t V t V s r s r s r S }])(5cos[51⋅⋅⋅⋅⋅⋅⋅-+±+ϕωωt s r当待测信号频率和参考信号基波频率相同时,即 s r ωω=,LPS 的输出为ϕcos )(0s e K t V ⋅= 10-1-5式中K只与LPS 传输系数有关,而与参考信号幅度无关的电路常数。
由10-1-5式表明,在参考信号为方波的情况下,经相关检测后,其输出仅与待测信号的幅度有关,也与两信号的相位差有关。
当改变参考信号相位ϕ时,可以得到不同的输出。
图10-1-2(a )~(b)表示输出0V 与相位差ϕ的关系。
当ϕ=0时,0V 正最大,ϕ=π时,0V 负最大;ϕ=π/2和ϕ=3π/2时,0V 等于零。
当 非同步的干涉信号进入PSD 后,由于与参考信号无固定的相位关系,得到如图10-1-2(d )的波形,经LPF 积分平均后,其输出值为零,实现了对非同步信号的抑制。
理论上,由于噪声和信号不相关,通过相关检测器后应被抑制,但由于LPF 的积分时间不可能无限大,实际上仍有噪声电平影响,它与LPF 的时间常数密切相关,通过加大时间常数可以改善信噪比,图10-1-2相敏检波器输出波形图三、实验装置相关器实验盒原理如图10-1-3所示。
信号通道由加法器、交流放大器、开关式乘法器、低通滤波器、直流放大器组成。
参考通道由放大器和开关驱动电路组成。
加法器、开关式乘法器、直流放大器的输出端分别连接到面板所对应的电缆插座,供测量观察使用。
交流放大倍数、直流放大倍数及低通滤波器的时间常数,均由面板上对应的旋钮控制。
为了掌握相关器实验盒的原理,可参考实验室提供的电原理图和仪器的面板图。
加法器由运算放大器组成,有两个输入端,一个是待测信号输入端,另一个是噪声或干扰信号输入端。
在加法器把待测信号和噪声混合起来,便于研究观察相关器抑制噪声的能力。
加法器的输出连接到面板加法器输出插座,便于用示波器观察相加后的波形。
交流放大器也由反相输入的运算放大器器组成,放大倍数为1、10、100,由面板旋钮控制。
乘法器由两个运算放大器和一对开关组成开关式乘法器组成,其输出由面板PSD输出插座输出,供示波器观察乘法器输出波形。
低通滤波器由运算放大器和RC电路组成,时间常数由RC决定,面板控制时间常数分别为0.1s、1s、10s 。
直流放大器由一级反相输入的运算放大器组成,低通滤波器输出的信号由直流放大器进行放大,最后由面板直流输出插座输出,放大倍数1、10、100由面板控制旋钮调整。
参考方波信号由面板参考输入插座输入后,经两级运算放大器变成相位相反的一对方波,去控制由两个场效应管组成的并串联开关,完成乘法器的功能。
图10-1-3 相关器实验盒原理框图三、实验内容1、相关器PSD波形的观察及输出电压的测量使用仪器:双踪示波器和微弱信号检测技术综合实验装置。
其中综合实验装置要用到多功能信号源插件盒、相关器插件盒、宽带相移器插件盒、频率计插件盒、交直流噪声电压表插件盒等部件。
实验步骤:(1)接通电源开关,预热二分钟,用频率计测量正弦波输出频率,调节频率调整旋钮,使输出频率稳定在1KH Z左右;交直流噪声电压表换档开关拨到正弦档,测量正弦波输出电压,调节输出幅度旋钮,使输出电压幅度达到100mv左右。
(2)将多功能信号源正弦波输出分成两路,一路接到相关器待测信号输入端,另一路接到宽带相移器信号输入端;宽带相移器的同相输出端接到相关器的参考输入端。
置相关器交流放大倍数×10,直流放大倍数×1,低通滤波器时间常数选择1S档。
(3)用示波器接到相关器PSD输出端,观察乘法器输出的波形;交直流噪声电压表换档开关拨到直流档,接到相关器的直流输出端,测量相关器的直流输出电压。
当宽带相移器相位转换开关拨到ϕ=00时,调节其相移旋钮,使相关器直流输出电压达到正的最大,PSD输出的波形如全波整流输出的波形一样;说明连接正确。
再将相移开关分别拨到ϕ=1800、900、2700,记录相位、直流输出电压、PSD 波形。
(4)相位计的信号输入和参考输入分别接到相关器的信号输入和参考输入,调节宽带相移器相位旋钮,测出不同情况下的ϕ值,所对应的相关器直流输出电压和PSD 的波形。