史上最全最好固体物理复习资料
史上最全最好固体物理复习资料

第一章晶体的结构a)晶体的共性:i.长程有序:晶体中的原子按一定规则排列ii.自限性:晶体自发地形成封闭几何多面体的特性,晶面夹角守恒定律iii.各向异性:晶体的物理性质是各向异性的,是区别晶体与非晶体的中要特征。
b)密堆积:i.正方堆积:最简单的堆积方式ii.体心立方堆积:iii.立方堆积和六角堆积:配位数为12c)配位数和致密度:i.配位数:一个原子球与最近邻的相切原子的个数,如配位数为12即与1个原子求与相邻的12个原子相切。
ii.致密度:晶胞中所包含的原子体积与晶胞体积的比值。
d)布喇菲空间点阵原胞和晶胞i.布喇菲点阵:对实际晶体结构的抽象成无数相同的点的分布,把这些点构成的总体称为布喇菲点阵。
ii.原胞:晶体中体积最小的重复单元称为原胞,他们并不是唯一的,但是体积总是相等的。
iii.晶胞(布喇菲原胞):晶体中体积不一定是最小的,但是能够反映出晶体对称的特征的重复单元称为晶胞。
iv.原胞基矢:原胞重复单元的边长称为原胞基矢,以a1、a2、a3表示。
v.晶胞基矢:晶胞重复单元的边长称为晶胞基矢,以a、b、c表示。
e)立方晶系:i.简立方:晶胞和原胞是统一的,对应一个结点。
ii.体心立方:原胞体积V= a1 ·(a2*a3)/ 2 = a^3 / 2,a是晶胞边长,又称晶格常数。
一个体心立方晶胞对应两个格点。
iii.面心立方:原胞体积V=a1 ·(a2*a3)= a^3 / 4;为晶胞体积的1/4,一个面心立方晶胞对应4个格点。
iv.NaCl结构:简立方结构,一个原胞对应一个基元,包含一个钠离子一个氯离子。
v.金刚石结构:构成面心立方结构,vi.简单晶格:基元包含一个原子的晶格,又称布喇菲格子。
vii.复式晶格:基元包含两个或者以上的原子的晶格。
f)晶列、晶面指数:i.晶列的特征:1. 取向;2. 格点的周期。
ii.原胞基矢的晶列指数:设R= l1a1+l2a2+l3a3,其中l1,12,l3互质。
史上最全最好固体物理复习资料

第一章晶体的结构a)晶体的共性:i.长程有序:晶体中的原子按一定规则排列ii.自限性:晶体自发地形成封闭几何多面体的特性,晶面夹角守恒定律各向异性:晶体的物理性质是各向异性的,是区别晶体与非晶体的中要特征。
密堆积:正方堆积:最简单的堆积方式体心立方堆积:立方堆积和六角堆积:配位数为12配位数和致密度:配位数:一个原子球与最近邻的相切原子的个数,如配位数为12即与1个原子求与相邻的12个原子相切。
致密度:晶胞中所包含的原子体积与晶胞体积的比值。
布喇菲空间点阵原胞和晶胞布喇菲点阵:对实际晶体结构的抽象成无数相同的点的分布,把这些点构成的总体称为布喇菲点阵。
原胞:晶体中体积最小的重复单元称为原胞,他们并不是唯一的,但是体积总是相等的。
晶胞(布喇菲原胞):晶体中体积不一定是最小的,但是能够反映出晶体对称的特征的重复单元称为晶胞。
原胞基矢:原胞重复单元的边长称为原胞基矢,以a1、a2、a3表示。
晶胞基矢:晶胞重复单元的边长称为晶胞基矢,以a、b、c表示。
立方晶系:简立方:晶胞和原胞是统一的,对应一个结点。
体心立方:原胞体积V= a1 ·(a2*a3)/ 2 = a^3 / 2,a是晶胞边长,又称晶格常数。
一个体心立方晶胞对应两个格点。
面心立方:原胞体积V=a1 ·(a2*a3)= a^3 / 4;为晶胞体积的1/4,一个面心立方晶胞对应4个格点。
NaCl结构:简立方结构,一个原胞对应一个基元,包含一个钠离子一个氯离子。
金刚石结构:构成面心立方结构,简单晶格:基元包含一个原子的晶格,又称布喇菲格子。
复式晶格:基元包含两个或者以上的原子的晶格。
晶列、晶面指数:晶列的特征:1. 取向;2. 格点的周期。
原胞基矢的晶列指数:设,其中l1,12,l3互质。
那么称为晶列指数。
晶列指数的周期为,|R|。
晶胞基矢的晶列指数:设,其中m、n、p互质。
那么称[mnp] 称为晶列指数。
晶面:所有的格点都分布在相互平行的一平面族上,每一个平面族都有格点分布,称这样的平面为晶面。
固体物理复习资料

固体物理复习资料第一章晶体结构1、晶体、非晶体的概念2、常见的几种晶格结构:简单立方晶格、体心立方晶格、面心立方晶格、六角密排晶格、金刚石晶格结构、NaCl晶格结构、CsCl晶格结构、ZnS晶格结构。
3、晶格中最小的重复单元为原胞。
4、简单晶格中,某一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。
简单立方晶格、体心立方晶格和面心立方晶格均为简单晶格。
5、几种简单晶格的原胞基矢及原胞的体积6、复式晶格包含两种或两种以上的等价原子(或离子)。
常见的复式晶格有……7、维格纳—塞茨原胞:由某一个格点为中心,做出其与最近格点和次近格点连线的中垂面,这些中垂面所包围的空间为维格纳—塞茨原胞。
8、实际晶格= 布拉伐格子(理解)+ 基元(理解)9、理解晶列、晶向,会确定晶向指数;10、会确定晶面指数——密勒指数11、理解倒格子及相关内容(第四节)12、按宏观对称的结构划分,晶体分属于7大晶系,共14种布拉伐格子。
13、作业P578 习题1.3 至1.914、第五节、第六节主要掌握作业涉及的内容第二章固体的结合1、一般固体的结合可以概括为离子性结合、共价结合、金属性结合和范德瓦尔结合四种基本形式。
2、作业P579 习题2.1 2.33、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性结合、共价结合、金属性结合和范德瓦尔结合力的特点。
离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交叠产生强大的排斥力。
当排斥力和吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时,每个原子的最外层电子为所有原子共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。
在这种情况下,电子和原子实之间存在库仑作用,体积越小,电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。
固体物理总复习(阎守胜)最全.pdf

晶体周期性可以用布拉伐点阵表征,也可以等价地用原胞描述. (5)单胞和单胞基矢 单胞:在能够保持晶格对称性的前提下,构成晶体的最小的周期性结构单元称为晶体的
单胞;
单胞基矢:单胞的边矢量称为单胞基矢,通常用 a 、 b 、 c 表示.
原胞是晶体最小的周期性结构单元,利用原胞基矢可以很方便地写出各个格点的位矢; 而单胞直观地反映了晶体的对称性.晶体的原胞和单胞,在晶体结构分析和性质研究中,各 有所长.
该判据只是原胞的一个必要判据,如果一个单元含有两个或两个以上的基元,该单元就肯定
不是原胞。原胞有时称为初基原胞,相应地原胞基矢称为初基基矢。
简立方:
a1
ai , a2
aj , a3
ak
体心;立方: 面心立方:
a1
a 2
(i
j
k)
a2
a
(i
2
j
k)
a3
a 2
(i
j
k)
a1
第一章 晶体结构
§1.1 晶体结构的基本概念
1 晶体结构的基本概念
(1)晶体和基元
固体物理期末复习提纲终极版

固体物理期末复习提纲终极版《固体物理》期末复习要点第一章1.晶体、非晶体、准晶体定义晶体:原子排列具有长程有序的特点。
非晶体:原子排列呈现近程有序,长程无序的特点。
准晶体:其特点是介于晶体与非晶体之间。
2.晶体的宏观特征1)自限性2)解理性3)晶面角守恒4)各向异性5)均匀性6)对称性7)固定的熔点3.晶体的表示,什么是晶格,什么是基元,什么是格点晶格:晶体的内部结构可以概括为是由一些相同的点在空间有规则地做周期性无限分布,这些点的总体称为晶格。
基元:若晶体有多种原子组成,通常把由这几种原子构成晶体的基本结构单元称为基元。
格点:格点代表基元的重心的位置。
4.正格和倒格之间的关系,熟练掌握典型晶体的倒格矢求法5.典型晶体的结构及基矢表示6.熟练掌握晶面的求法、晶列的求法,证明面间距公式7.什么是配位数,典型结构的配位数,如何求解典型如体心、面心的致密度。
一个粒子周围最近邻的粒子数称为配位数。
面心:12 体心:8 氯化铯(CsCl):8 金刚石:4 氯化钠(NaCl):68.什么是对称操作,有多少种独立操作,有几大晶系,有几种布拉维晶格,多少个空间群。
对称操作:使晶体自身重合的动作。
根据对称性,晶体可分为7大晶系,14种布拉维晶格,230个空间群。
9.能写出晶体和布拉维晶格10.了解X射线衍射的三种实验方法及其基本特点1)劳厄法:单晶体不动,入射光方向不变。
2)转动单晶法:X射线是单色的,晶体转动。
3)粉末法:单色X射线照射多晶试样。
11.会写布拉格反射公式12.什么是几何结构因子。
几何结构因子:原胞内所有原子的散射波,在所考虑方向上的振幅与一个电子的散射波的振幅之比。
第二章1.什么结合能,其定位公式晶体的结合能就是将自由的原子(离子或分子) 结合成晶体时所释放的能量。
2.掌握原子间相互作用势能公式,及其曲线画法。
3.什么叫电离能、亲和能、负电性电离能:中性原子失去电子成为价离子时所需要的能量。
电子亲和能:中性原子获得电子成为-1价离子时所放出的能量。
固体物理总复习

gap
2 )q 一维双原子链的长声学波 ( a mM B 长声学波中相邻原子的振动 ( A ) 1
光学波 长波极限
2
mM B m , ( ) - mM A M
§3.4
1. 三维复式格子
三维晶格的振动
l i [ t R l k q ] 格波的一般形式 A e k k
ab c
§5 晶体的宏观对称性
点对称操作 1. 绕轴旋转 2.旋转-反演(反演,镜面) 对称操作
1. 绕轴旋转
2.旋转-反演 3.空间平移
晶体的宏观对称性只有8种独立的对称操作: 1,2,3,4,6, 1 ( i ),
2 (m)
和
4
能证明为何晶体中没有5次对称性?
第二章
• 晶体结合的类型? • 晶体结合的物理本质? • 固体结合的类型与固体性质之间的联系?
T —— 电子对比热的贡献, 即电子热容
AT 3—— 晶格振动对比热的贡献, 即晶格热容
温度不太低时,可以忽略电子的贡献 爱因斯坦模型与德拜模型 爱因斯坦温度和德拜温度
§3.9 晶格振动模式密度
晶格振动模式密度 —— 单位频率间隔的振动模式数目
n g ( ) lim 0
在q空间,晶格振动模是均匀分布的,状态密度
本课程的主要内容
晶格动力学
原子核的运动规律 核外电子的运动规律
固体物理
固体电子论
晶格动力学
1. 晶体结构 2. 固体的结合 3. 晶格振动和热学性质
固体电子论
4. 能带理论 5. 外场中电子的运动 6. 金属电子论
第一章 摘
§1-1 §1-2 §1-3 §1-4 §1-5 §1-6 §1-7 §1-8 §1-9
固体物理复习资料

固体物理复习资料固体物理复习资料固体物理是物理学中的一个重要分支,研究固体物质的性质和行为。
对于学习固体物理的同学来说,复习资料的准备是非常重要的。
本文将为大家提供一些固体物理复习资料,帮助大家更好地理解和掌握这门学科。
一、晶体结构晶体结构是固体物理的基础,它描述了固体中原子、离子或分子的排列方式。
了解晶体结构有助于我们理解固体的性质和行为。
在复习晶体结构时,我们可以从晶体的基本概念开始,如晶体的定义、晶体的分类等。
然后,可以学习晶体的几何结构,如立方晶系、六方晶系等。
此外,还应该了解晶体的点阵结构和晶格常数的计算方法。
二、晶体缺陷晶体缺陷是指晶体中存在的一些不完美的结构。
了解晶体缺陷对于理解固体的性质和行为非常重要。
在复习晶体缺陷时,可以学习晶体缺陷的分类和特点,如点缺陷、线缺陷、面缺陷等。
还可以学习晶体缺陷对固体性质的影响,如导电性、热导性等。
此外,还可以学习晶体缺陷的形成和控制方法。
三、晶体生长晶体生长是指从溶液或气相中形成晶体的过程。
了解晶体生长对于制备晶体材料具有重要意义。
在复习晶体生长时,可以学习晶体生长的基本原理和方法,如溶液法、气相法等。
还可以学习晶体生长的条件和影响因素,如温度、浓度、溶液饱和度等。
此外,还可以学习晶体生长的控制方法和应用,如生长单晶、合成纳米晶等。
四、固体的电学性质固体的电学性质是指固体导电和电介质性质的研究。
了解固体的电学性质对于理解固体的导电机制和应用非常重要。
在复习固体的电学性质时,可以学习固体的导电机制,如金属的自由电子理论、半导体的能带理论等。
还可以学习固体的导电性质,如电导率、电阻率等。
此外,还可以学习固体的电介质性质,如介电常数、介质极化等。
五、固体的热学性质固体的热学性质是指固体的热传导和热膨胀性质的研究。
了解固体的热学性质对于理解固体的热传导机制和热膨胀行为非常重要。
在复习固体的热学性质时,可以学习固体的热传导机制,如导热电子、晶格振动等。
还可以学习固体的热传导性质,如热导率、热扩散系数等。
复习资料-固体物理

声子: 晶格振动是晶体中诸原子(离子)集体地在其平衡位置附近作振动,由于原子间的相互作用力,各个原子的振动不是彼此独立的,表现为一系列的格波。
格波的能量是量子化的,其最小单位也是 ω,称声子,它是一种玻色子。
声子是格波能量变化的最小单位,它并不是那个原子所有,而是某个格波能量的变化单位。
声子的性质: (1)声子是一种准粒子。
(2)是一种自旋量子数为零的玻色子。
(3)满足动量守恒与能量守恒定律。
(4)声子间互相碰撞改变状态、消灭、形成新的声子。
声子与声子的作用:产生或湮灭,倒过程,产生热导与热阻。
热传导的产生:固体热传导的能量载体包括电子,声子和光子。
温度高处声子浓度大,声子将以声速往温度低处运动,这就是声子导热过程。
由于晶格作非简諧运动,声子间会发生散射。
倒格矢及其正格子的关系及其证明设倒格子的基矢为b 1、b 2、b 3,倒格矢可表示为: 当倒格子基矢b j (j = 1,2,3)与正格子基矢a i (i = 1,2,3)之间符合以下关系式(1.1.7)自然满足。
以a i 为基矢的格子与b j 为基矢的格子,互为正倒格子。
晶体中缺陷的产生分类及其性质缺陷是引起晶体中周期性畸变的区域。
缺陷的形成或消失,都是通过与其它的缺陷(如位错、晶界、界面等)间相互作用来完成的,缺陷可以分为原子缺陷与电子缺陷两大类。
使晶体中电子周期性势场畸变的称电子缺陷;使原子排列周期性畸变的称原子缺陷。
根据原子缺陷的线度可分为:点缺陷、线缺陷、面缺陷、体缺陷、微缺陷、声子 布洛赫函数与布洛赫波及其性质u(k,r)应具有与晶格相同的周期性 上式称布洛赫函数或布洛赫波物理意义:电子可以在整个晶体中运动;不同点发现的几率不同;电子出现在不同原胞的对应点上几率是相同的,是晶体周期性的反映。
布洛赫函数的状态由波矢决定。
布洛赫波性质这是一个调幅平面波。
表明晶体中电子是公有化的:不同点发现的几率不同;等同点或对称点发现电子几率相同。
能带的产生及其性质从能量的角度看,如果电子只有原子内运动(孤立原子情况),电子的能量取分立的能级;若电子只有共有化运动(自由电子情况),电子的能量连续取值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章晶体的结构a)晶体的共性:i.长程有序:晶体中的原子按一定规则排列ii.自限性:晶体自发地形成封闭几何多面体的特性,晶面夹角守恒定律iii.各向异性:晶体的物理性质是各向异性的,是区别晶体与非晶体的中要特征。
b)密堆积:i.正方堆积:最简单的堆积方式ii.体心立方堆积:iii.立方堆积和六角堆积:配位数为12c)配位数和致密度:i.配位数:一个原子球与最近邻的相切原子的个数,如配位数为12即与1个原子求与相邻的12个原子相切。
ii.致密度:晶胞中所包含的原子体积与晶胞体积的比值。
d)布喇菲空间点阵原胞和晶胞i.布喇菲点阵:对实际晶体结构的抽象成无数相同的点的分布,把这些点构成的总体称为布喇菲点阵。
ii.原胞:晶体中体积最小的重复单元称为原胞,他们并不是唯一的,但是体积总是相等的。
iii.晶胞(布喇菲原胞):晶体中体积不一定是最小的,但是能够反映出晶体对称的特征的重复单元称为晶胞。
iv.原胞基矢:原胞重复单元的边长称为原胞基矢,以a1、a2、a3表示。
v.晶胞基矢:晶胞重复单元的边长称为晶胞基矢,以a、b、c表示。
e)立方晶系:i.简立方:晶胞和原胞是统一的,对应一个结点。
ii.体心立方:原胞体积V= a1 ·(a2*a3)/ 2 = a^3 / 2,a是晶胞边长,又称晶格常数。
一个体心立方晶胞对应两个格点。
iii.面心立方:原胞体积V=a1 ·(a2*a3)= a^3 / 4;为晶胞体积的1/4,一个面心立方晶胞对应4个格点。
iv.NaCl结构:简立方结构,一个原胞对应一个基元,包含一个钠离子一个氯离子。
v.金刚石结构:构成面心立方结构,vi.简单晶格:基元包含一个原子的晶格,又称布喇菲格子。
vii.复式晶格:基元包含两个或者以上的原子的晶格。
f)晶列、晶面指数:i.晶列的特征:1. 取向;2. 格点的周期。
ii.原胞基矢的晶列指数:设R= l1a1+l2a2+l3a3,其中l1,12,l3互质。
那么称[l1l2l3]为晶列指数。
晶列指数的周期为,|R|。
iii.晶胞基矢的晶列指数:设R=ma1+na2+pa3,其中m、n、p互质。
那么称[mnp] 称为晶列指数。
iv.晶面:所有的格点都分布在相互平行的一平面族上,每一个平面族都有格点分布,称这样的平面为晶面。
v.晶面特征:1. 方位;2. 晶面的间距。
vi.晶面指数:设基矢末端落在距离远点h1d、h2d,h3d的晶面上,则基矢的与法向量的方向余弦的比值有:cos (a1,n ):cos (a2,n ):cos (a3,n )=ℎ1a1:ℎ2a2:ℎ3a3由于晶体机构确定,则晶体常数也确定了,因此只要h1、h2、h3确定下来,就能确定整个晶面的方位,故把 (h1h2h3) 称为晶面指数。
这里应该强调的一个物理意义是,基矢a1,a2,a3被分别被平均为h1,h2,h3份。
参考P14页的1.22图。
vii. 米勒指数:在晶面指数中,利用晶胞基矢计算出来的晶面指数称为米勒指数,常计为(hkl )。
对于立方晶体晶列指数 [hkl ] 与晶面指数 (hkl ) 正交。
g) 倒格空间:i. 倒格基矢:倒格基矢具有与正格基矢倒逆的量纲,以 b1、b2、b3 表示。
ii. 倒格矢:倒格矢是倒格基矢的线性组合,一般用 Kh 表示。
由倒格基矢平移组成的格子称为倒格子,倒格子构成原胞称为倒格原胞。
iii. 倒格子和正格子的性质:1. 正格原胞的体积与倒格原胞的体积之积等于(2π)^3;2. 正格子与倒格子互为对方倒格子。
3. 倒格矢Kh = h1b1 + h2b2 +h3b3 与正格子晶面族 (h1h2h3)正交。
4. 倒格矢Kh 的模与晶面族 (h1h2h3) 的间距d ℎ1ℎ2ℎ3成正比。
d ℎ1ℎ2ℎ3=2π|K h | h) 晶体对称性:i. 对称操作:一个晶体在某一个变换后,晶格在空间的分布保持不变,这一变换称为对称变换。
ii. 空间群:若包括平移,有230种对称类型。
点群:不包括平移,有32钟宏观对称类型。
iii. 正交变换:在对称操作变换中,晶体两点间距离保持不变的变换。
正交变换的变换矩阵A 的转置矩阵AT 即为A 的逆矩阵A-1,即 AT = A-1类型有:1. 转动: 使晶体沿x 轴转θ角度,变换矩阵为A = [1000cosθ−sinθ0sinθcosθ]2. 中心反演:从 (x,y,z) -> (-x,-y,-z)的变换,变换矩阵为:A = [−1000−1000−1]3. 镜像操作:以x=0的平面为晶面,将任一点从 (x,y,z) -> (-x,y,z),变换矩阵为:A = [−100010001]iv. 晶列的周期:值相邻的结点之间的距离,并不是指晶列距离。
晶列的旋转操作限制:受晶列周期的限制,晶体只允许按照一定的角度进行选择,分别是选择:π2n ,n =1、2、3、4、6 这些角度,晶体的周期性不允许有5度的旋转角。
v.n度旋转角:其中的n为1、2、3、4、6。
vi.n度旋转反演角:表示经过n度旋转之后再反演,通常用1̅、2̅、3̅、4̅、6̅表示。
其中1̅常被称为 i表示,2̅用m表示。
vii.测量立方晶体介电常数:垂直于x轴或者y轴或者z轴切下一薄片晶体,在晶体主表面镀上电极,测量出他们的电容,即可求出介电常数。
i)晶体结构的分类:i.七大晶系:立方晶系,六角晶系,四方晶系,三角晶系,正交晶系,单斜晶系,三斜晶系。
ii.十四钟布喇菲格子晶胞:1.简单三斜、2.简单单斜、3.底心单斜、4.简单正交、5.底心正交、6.体心正交、7.面心正交、8.六角、9.菱面三角、10.简单四方、11.体心四方、12.简单立方、13.体心立方、14.面心立方。
j)晶体X光衍射:i.Sii.Siii.S第二章晶体的结合---- 价电子的相互作用决定了原子间相互作用的性质a)原子的电负性:i.核外电子分布原则:遵循泡利不相容原理,能量最低原理和洪特规则。
1.泡利不相容原理:包括自旋在内,不可能存在量子态全同的两个电子。
2.能力最低原理:在任何稳定的体系中,其能力最低。
3.洪特规则:电子随着能量由低到高依次进入轨道并先单一自旋平行地占据尽量多的等价轨道。
ii.电离能:使原子失去一个电子所需要的能量。
iii.电子亲和能:一个中性原子获得一个电子称为负离子所释放的能量。
iv.电负性:用来度量原子吸引电子的能力。
v.电负性的特征:1. 周期表从上往下,元素的电负性逐渐减小。
2. 一个周期内重金属的电负性差别较小。
vi.金属性:易于失去电子的倾向称为金属性;易于获得电子的倾向称为非金属性。
b)晶体的结合类型:共价结合、离子结合、金属结合、分子结合、氢键结合。
i.共价结合:两个电负性较大的原子可以各出一个电子,形成电子共享的形式,它们的自旋是相反的,称为配对原子,而配对方式称为共价键。
特点:硬度高,熔点高,热膨胀系数小,导电能力差。
如金刚石、C、Si。
ii.离子结合:一边电负性小,一边电负性大,因此相互吸引结合的方式,称为离子键。
结合动力为正负离子之间的库仑力,特点:硬度高,熔点高,热膨胀系数小,导电性差。
如NaCl。
iii.金属结合:特点:导电性,导热性良好。
如:Au、Ag。
iv.分子结合:结合力为范德瓦尔斯力,极性分子之间的结合是库仑力;极性与非极性的结合也是库仑力;非极性分子之间的结合是电偶极矩的一种相互作用。
如氢气。
v.氢键结合:氢原子电负性很大,先诱导电负性大的原子形成共价键结合,后来由于氢核与负电中心不重合,由产生极化现象,此时具有正点的氢键的一端和通过库仑力与另一个电负性较大的原子结合。
表示为:A-H---B;冰是典型的氢键晶体。
c)结合力及结合能i.结合力的共性:随着距离的增加,排斥势比结合势更快地减少,即排斥势是短程效应。
ii.原子之间的相互作用力:吸引力是由库伦引力引起的;排斥力有库伦斥力和泡利不相容原理引起而定。
.可以看出,当原子相距很远的时候,相互作用力为零;当原子逐渐靠近时,原子间出现引力;当r = rm的时候,吸引力达到最大,接着吸引力开始减少,当r = r0的时候排斥力与吸引力相等,合力为0,对应势能最低点。
iii.分子解体的临界距离:即rm,因为从这个点之后吸引力随传播距离而减少。
iv.结合能:自由粒子结合成晶体过程中释放出的能量,或者把晶体拆散成一个个自由粒子所提供的能量。
粒子的结合能= 原子动能+ 原子间相互作用势能。
当温度在0K时,原子动能约为0,故结合能= 原子间相互作用的势能。
d)分子力结合:三种分子吸引势都与(r^6)成反比。
i.极性分子结合:极性分子之间存在着永久偶极矩每一个极性分子就是一个电偶极子,因此产生相互作用力。
ii.非极性分子结合:非极性分子间的相互作用时瞬间偶极矩与瞬间感应矩的作用。
iii.极性分子和非极性分子的结合:非极性分子的电子云容易被极性分子的偶机电场所极化从而产生诱导偶极矩。
e)共价结合:i.理论基础:只有当电子的自旋相反时两个氢原子才结合成稳定的分子。
ii.共价键定义:自旋相反的两电子称为配对原子,称配对的电子结构为共价键。
这种共享配对电子的结合方式称为共价结合。
f)离子结合:离子晶体的结合能主要来自库伦能,排斥能仅是库伦能绝对值的1 / n。
离子的库伦作用只与r的一次方成反比。
第三章晶格振动与晶体热学性质:a)晶格振动:晶体中的原子每时每刻都在其平衡位置附近做微振动。
它决定了晶体的宏观热学性质。
b)第二章、第三章和第五章的联系:i.离子实质量比电子大很多,那么电子运动速度比离子实快很多,离子实可以看作为静止在平衡位置,研究电子在离子实的势场的运动规律。
使用固体电子论。
ii.当考虑离子实的运动时,电子运动很快,能跟上离子实的运动,相当于中性分子,做微小运动。
用晶格振动理论。
iii.考虑以上两者的相互作用时,用能带理论。
iv.一维晶格的相互作用力:1.第n个原子和第n+1个原子的互作用力:f=−β(u n+1−u n)u 是位移,β是常数,称为弹性恢复力系数,β大于0时是向右的吸引力,向左是小于0的排斥力。
2.波恩---卡门条件:在实际原子链的两端接上了全同的原子链之后,由于电子之间的相互作用力主要取决于近邻,所以除两端极少原子的受力与实际情况不符合以外,其他绝大多数的原子的运动并不受假想原子链的影响。
3.格波:在任意时刻,原子的位移有一定的周期分布,也就是原子的位移构成了波,这种波称为格波。
4.格波角频率:w=2(βm )0.5|sin (qa2)|显然:qa / 2 = mπ 时,w的值并不会变化,出现周期性,即q = 2nπ / a 时w不会变化,且n为负数时,也成立,那么可以称w具有反演对称性。
设格波传播速度为v,则传播速度由v = w / q,以及q = 2π / λ得到:v=λπ(βm)0.5|sin (πaλ)|故波传播的速度是波长的函数,波长不同格波传播速度不同,故把w和q 的关系成为色散关系。