例谈三角函数值域(最值)的几种求法

合集下载

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下.1 配方分析法如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法.例1求函数y=2cos2x+5sinx-4的值域.解原函数可化为当sinx=1时,y max=1;当sinx=-1时,y min=-9,∴原函数的值域是y∈[-9,1].注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意.“cosx”,再求已知函数的最值例2求下列函数的最值,并求出相应的x值.y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max=3 求反函数法如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.∴原函数的值域是4 应用函数的有界性上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下.解由原式可得(3y-1)sinx+(2y-2)cosx=3-y,则上式即为利用函数的有界性有∴原函数的值域是5 部分分式分析法例5求下列函数的值域:当sinx=-1时,y有极小值,y极小=2;∴原函数的值域是(2)原函数化为部分分式为:∴原函数的值域是6 应用平均值定理求最值例6求函数y=(1+cosx)sinx,x∈[0,π]的最大值.7 换元法例7求函数y=(1+sinx)(1+cosx)的值域.解原函数即为y=1+sinx+cosx+sinxcosx,∴原函数即为8 应用二次函数的判别式求最值9 几何法求函数的最值两点的直线的斜率,在平面直角坐标系中作出点(2,2)和单位圆,则很容易确定y的取值范围.得(k2+1)x2-(4k2-4k)x+4k2-8k+3=0,Δ=(4k2-4k)2-4(k2+1)(4k2-8k+3)=-12k2+32k-12.10 应用函数的单调性。

求解三角函数值域的几种常见方法

求解三角函数值域的几种常见方法

4 利用几何意义求值域
例 4 求 函数 ) , = —s — l n x 的值域.
。 COS 一

点评: 一 般 先 化 为 Y=A f ( + )+k的 形 式 ,
然后利 用三角 函数 的 图 象和 性 质 求 解 , 此题 往 往 容
易忽 视 对 口的 讨 论
解 : 。 . 。 ) = - 2 口 ( 丢 c 。 s 2 + 譬 s i n 2 ) + 2 。 + 6



3 1 ≤ ’
= 一 s i n ( + 詈 ) + + b , x ∈ 0 , 号 】 , . s i n 2 + 詈 ) ∈ 卜 1 , ・ 】 .
《 数学之友>
2 0 1 4年第 2 4 期
பைடு நூலகம்
求解三角函数值域的几种常见方法
解 题 探 索



( 江苏省阜宁县第一高级中学 , 2 2 4 4 0 0 )
三角函数是高中数 学的主要内容, 在历年高考
点评 : 换元后 一定要 及 时确 定 t 的范围, 即 注 意
中频频 出现 , 特别是三角 函数最值 问题使学生更感 棘手. 如何找到解题途径 , 培养学生的数学能力尤为
1 利用 Y = A f ( W X + ) + k的性质 求解
例1 设 函数 )= 2 a s i n 一 2 口 c o s x s i n x+ a
角, 求t a I l ( A— B ) 的最大值. 解: ’ . ‘ s i n A c o s B= 4 c o s A s i n B’ . . . t a n A= 4 t a n B .
) 一 = 3 a+ 2’ ) = b ,

【三角函数值域的求法】 求三角函数值域图解

【三角函数值域的求法】 求三角函数值域图解

所以t∈[-3,3].
六、三角函数也是函数,所以其他一些函数值域的求法对于求三角
函数的值域照样适用
如分别常数法:
例6 若cos2x+2msinx-2m-2sin2x+1sinx-1,
sinx-1=t∈[-1,0)
所以2m>t+2t+2,因为(t+2t+2)max=-1.
所以m>-12.
巧用“对比法〞解题
江苏靖江季南初中(214523) 陈一平
对比法:把两个或两个以上的事物进行比较,找其共同点与不同点的进行解题的方法.对比法是最基本的思维,也是解题方法.它有时会使思维、解题一清二楚,直接明了.
例1 横河九年级物理兴趣小组的同学在讨论“沙子和水谁的吸热本事大〞时,选用了两只完全相同的酒精灯分别给质量都是200 g的沙子和水加热.他们绘制出沙子与水的温度随加热时间改变的图象如图1所示. 已知酒精的热值是3.0×107 J/kg,水的比热容4.2×103 J/(kg·℃),加热时酒精灯平均每分钟消耗0.8 g酒精.那么请问:
(1)图中a图和b图哪个是沙子吸热升温的图象?为什么?
(2)请依据图象说出水在受热过程中温度改变的特点.
(3)加热满2 min时,水汲取了多少热量?
(4)给水加热持续了10 min时间,共消耗了多少酒精?这些酒精假如完全燃烧将放出多少热量?
(5)试求出沙子的比热容.
图1解:(1) 图a表示的是沙子吸热升温的过程,因为沙子的比热比水小,汲取相同热量时沙子温度升得多.。

例谈三角函数值域(最值)的几种求法

例谈三角函数值域(最值)的几种求法
四、易元变换 ,整体 思想求解 例 5 求 函数 Y sinx+COSX+sinxcosx的值 域 . 解 法 一 设 sinx+COSX=t,
则 =√_sin( +号) [一 , ]'si眦COSX-丁t2-1,
【一芋, 】, 由 sin2x+C082X ̄. ,得 m2+/7,2: 1 ,m s
【关键词 】高 中数 学;三角 函数 的值域 ;几种求法
·


y :

= ÷(£+1) 一1, e[- , ].
故当 : 寸,有Y = +÷.
解 法二 构造对偶 式转化为某一变量 的二次 函数在 闭 区间内求最 大值
设 sinx=m +n,COSX=m —g/ ,, 则 sinx+c0s =2m,sino %cos.x=m2一n2.
· = sinx + COSX +siaxeosx = 2m + m 一 = 2m +2m 一
. .
÷,m [一 , 】,
故当m:牟时,有),…: +
五 、方 程 架 桥 ,问题 转 化
例6 求函数Y: 一±≥ 拿 巫 的最大值、最 Z 十 S1眦
小值 .
解析 将 问题转化为求一元二次 方程在 闭区间上有 解
有 cosl≤COS(sinx)≤1,.’. cos1≤ cos(sinx)≤1
三、抓住结构特征 。巧用均值不等式
例 3 若 0< <竹,求_厂( )= 坠
的最小值
解 析 由 0 < <"IT得 :XSl[I ̄>0,根 据 均 值 小 等 式 :
)=9 si似 4≥2 ̄9xsinx xsLi=12.
即 d-
:l,即 3k 一8k+3:0,解得 : ,

常见的三种三角函数值域的求法

常见的三种三角函数值域的求法

常见的三种三角函数值域的求法三角函数是高中数学中常见的一个概念,它是指正弦函数、余弦函数和正切函数,这三个函数在计算中十分常用,下面将详细介绍三种三角函数值域的求法。

一、正弦函数值域的求法正弦函数的值域在[-1, 1]之间。

具体求法如下:1. 代数法:由正弦函数的定义可知,y=sin x,其中-1≤y≤1。

即y 的取值范围为[-1, 1]。

2. 图像法:正弦函数的图像在[-π/2,π/2]内单调递增,且满足y的取值范围为[-1, 1]。

3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的正弦值等于这段弧上点的y坐标。

而当角度为0和π时,y坐标分别为0和1,因此正弦函数的值域为[-1,1]。

二、余弦函数值域的求法余弦函数的值域在[-1,1]之间。

具体求法如下:1. 代数法:由余弦函数的定义可知,y=cos x,其中-1≤y≤1。

即y 的取值范围为[-1, 1]。

2. 图像法:余弦函数的图像在[0,π]内单调递减,且满足y的取值范围为[-1, 1]。

3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的余弦值等于这段弧上点的x坐标。

而当角度为0和π/2时,x坐标分别为1和0,因此余弦函数的值域为[-1,1]。

三、正切函数值域的求法正切函数的值域为实数集。

具体求法如下:1. 代数法:由正切函数的定义可知,y=tan x,其中y可取遍所有实数。

因此,正切函数的值域为实数集。

2. 图像法:正切函数的图像在(π/2n,π/2n+1)(n∈Z)上有无限个垂直渐近线。

这说明正切函数可以取遍所有实数,因此正切函数的值域为实数集。

3. 应用法:正切函数在实际应用中十分重要,比如在三角定位中,我们经常需要根据已知的两条边求第三条边的长度,这时就需要用到正切函数。

正切函数值域为实数集,可以表示所有可能的长度。

综上所述,正弦函数的值域为[-1,1],余弦函数的值域为[-1,1],正切函数的值域为实数集。

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法(一)一次函数型或利用:=+=x b x a y cos sin )sin(22ϕ+⋅+x b a化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解;(2)2sin(3)512y x π=--+,x x y cos sin =(3)函数x x y cos 3sin +=在区间[0,]2π上的最小值为 1 .(4)函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是 (,1][1,)-∞-⋃+∞(二)二次函数型利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。

(2)函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于43.(3).当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 4 .(4).已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是 1 .(5).若2αβπ+=,则cos 6sin y βα=-的最大值与最小值之和为____2____.(三)借助直线的斜率的关系,用数形结合求解型如dx c bx a x f ++=cos sin )(型。

此类型最值问题可考虑如下几种解法:①转化为c x b x a =+cos sin 再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。

例1:求函数sin cos 2xy x =-的值域。

解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。

作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2xy x =-得最值,由几何知识,易求得过Q 的两切线得斜率分别为33-、33。

结合图形可知,此函数的值域是33[,]33-。

三角函数最值或值域的求法

三角函数最值或值域的求法

三角函数最值或值域的求法三角函数的最值问题是本章的一个重要内容,要求掌握求三角函数最值的常见方法。

类型一:利用1cos 1sin ,≤≤x x 这一有界性求最值。

例1:求函数xx y sin 21sin --=的值域。

解:由x x y si n 21si n --=变形为(1)si n 21y x y +=+,知1y ≠-,则有21sin 1y x y +=+,由21|sin |||11y x y +=≤+22221||1(21)(1)1y y y y +⇒≤⇒+≤++203y ⇒-≤≤,则此函数的值域是2[,0]3y ∈-类型二:x b x a y cos sin +=型。

此类型通常可以可化为sin cos )y a x b x x ϕ=+=+求其最值(或值域)。

例2:求函数)3sin()6sin(ππ++-=x x y (R x ∈)的最值。

解法1:)12sin(2]4)6sin[(2)6cos()6sin(πππππ+=+-=-+-=x x x x y ,∴函数的最大值为2,最小值为2-。

分析2:运用公式sin (α±β) = sin αcos β ± cos αsin β解法2:x x y cos 213sin 213-++=∴函数的最大值为2,最小值为2-。

分析3:观察发现角)3(π+x 与角)6(π-x 的差恰好为2π,故将)6(π-x 看成基本量,将函数化归为同一角)6(π-x 的函数式。

解法3: (运用和差化积公式 ))4cos()12sin(2ππ-+=x y )12sin(2π+=x ∴函数的最大值为2,最小值为2-。

类型三:)0(sin sin 2≠++=a c x b x a y 型。

此类型可化为)0(2≠++=a c bt at y 在区间]1,1[-上的最值问题。

例3:求函数1sin 3cos 2++=x x y (R x ∈)的最值分析:转化为一个角的同一种函数sinx ,将问题化归为“二次函数”的最值问题,用配方法。

三角函数专题:三角函数最值(值域)的5种常见考法(解析版)

三角函数专题:三角函数最值(值域)的5种常见考法(解析版)

三角函数专题:三角函数最值(值域)的5种常见考法1、形如sin y a x = (或cos y a x =)型可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论 2、形如sin()y a x b ωϕ=++ (或cos()y a x b ωϕ=++型 (1)先由定义域求得x ωϕ+的范围(2)求得sin()x ωϕ+ (或cos()x ωϕ+)的范围,最后求得最值 3、形如sin cos y a x b x =+型引入辅助角转化为22)y a b x ϕ=++,其中tan baϕ=,再利用三角函数的单调性求最值。

4、形如2sin sin (0)y a x b x c a =++≠或2cos cos (0)y a x b x c a =++≠型, 可利用换元思想,设sin y x =或cos y x =,转化为二次函数2y at bt c =++求最值,t 的范围需要根据定义域来确定. 5、形如sin cos (sin cos )y x x x x =⋅±±型利用sin cos x x ±和sin cos x x ⋅的关系,通过换元法转换成二次函数求值域 6、分式型三角函数值域(1)分离常数法:通过分离常数法进行变形,再结合三角函数有界性求值域; (2)判别式法题型一 借助辅助角公式求值域【例1】该函数sin 3y x x =的最大值是( ) A .1 B 6 C .2 D .2- 【答案】C【解析】因为πsin 32sin 3y x x x ⎛⎫==+ ⎪⎝⎭,又[]πsin 1,13x ⎛⎫+∈- ⎪⎝⎭,所以函数sin 3y x x =的最大值是2.故选:C.【变式1-1】已知()()sin 3cos 0f x A x x A =->的最大值是2,则()3sin 3cos g x x A x +在π3π,44⎡⎤⎢⎥⎣⎦中的最大值是( )A .32B .3C 326+ D .23【答案】C【解析】根据辅助角公式可得:()2223sin 3=333f x A x x A x x A A ⎫=+⎪⎪++⎭()2=3A x ϕ+-,其中3tan ϕ=. 由()f x 的最大值为2()2320A A +>,解得1A =.∴()1333cos 23sin 2g x x x x x ⎫=+=⎪⎪⎭π233x ⎛⎫=+ ⎪⎝⎭.∵π3π,44x ⎡⎤∈⎢⎥⎣⎦,∴π7π13π,31212x ⎡⎤+∈⎢⎥⎣⎦. ∴当π7π312x +=,即π4x =时,()g x 取得最大值. 故()max ππ343g x ⎛⎫=+ ⎪⎝⎭231326232⎫+==⎪⎪⎝⎭故选:C.【变式1-2】已知函数()()3cos sin 3cos 0,2f x x x x x π⎫⎡⎤=∈⎪⎢⎥⎣⎦⎝⎭,则函数()f x 的值域为( ) A .33⎡⎢⎣⎦ B .3⎡⎤⎢⎥⎣⎦C .11,22⎡⎤-⎢⎥⎣⎦D .1,12⎡⎤-⎢⎥⎣⎦ 【答案】B【解析】()23sin cos 3x x f x x =+)133sin 21cos 22x x =+sin 23x π⎛⎫=+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 42,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以3sin 213x π⎛⎫≤+≤ ⎪⎝⎭, 所以函数()f x 的值域为3⎡⎤⎢⎥⎣⎦.故选:B【变式1-3】函数2()sin 3cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A .1B .2C .32D .3 【答案】C【解析】因为2()sin 3cos f x x x x =,所以1cos 231()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .【变式1-4】己知函数()3sin 4cos ,R f x x x x =+∈,则()()12f x f x -的最小值是_________. 【答案】10-【解析】由题意可得()()343sin 4cos 5sin cos 5sin 55f x x x x x x ϕ⎛⎫=+=+=+ ⎪⎝⎭,其中4sin 5ϕ=,3cos 5ϕ=,且0,2πϕ⎛⎫∈ ⎪⎝⎭.因为12,R x x ∈,所以min max ()5,()5f x f x =-=.所以()()12f x f x -的最小值是min max ()()10f x f x -=-.题型二 借助二次函数求值域【例2】求函数22sin 2sin 1y x x =-++的值域.【答案】3[3,]2-【解析】y =−2sin 2x +2sinx +1=−2(sinx −12)2+32,−1≤sinx ≤1,根据二次函数性质知,当1sin 2x =时,max 32y =;当sin 1x =-时,min 3y =-, 故值域为3[3,]2-.【变式2-1】函数2cos sin 1y x x =+-的值域为( )A .11[,]44-B .1[0,]4C .1[2,]4-D .1[1,]4- 【答案】C【解析】函数222cos sin 11sin sin 1sin sin y x x x x x x =+-=-+-=-+,设sin t x =,11t -≤≤,则()2f t t t =-+, 由二次函数的图像及性质可知2124t t -≤-+≤,所以cos 2sin 1y x x =+-的值域为1[2,]4-,故选:C.【变式2-2】函数2tan 4tan 1y x x =+-的值域为____________【答案】[)5,-+∞【解析】因为2tan 4tan 1y x x =+-令tan t x =,则t R ∈所以()()224125f t t t t =+-=+-,所以()[)5,f t ∈-+∞,故函数的值域为[)5,-+∞【变式2-3】函数()193sin cos 2R 24y x x x =+-∈的最小值是( ) A .14B .12 C .234- D .414-【答案】C【解析】22197313sin cos 2sin 3sin sin 24422y x x x x x ⎛⎫=+-=-+-=--+ ⎪⎝⎭,令sin x t =,则11t -≤≤.因为23122t ⎛⎫--+ ⎪⎝⎭在[]1,1-上单增,所以当1t =-时,2min31231224y ⎛⎫=---+=- ⎪⎝⎭.故选:C .题型三 借助换元法求值域【例】已知函数(),则()A .()f x 的最大值为3,最小值为1 B .()f x 的最大值为3,最小值为-1 C .()f x 的最大值为32,最小值为34D .()f x 的最大值为32,最小值为32 【答案】C【解析】因为函数()sin cos 2sin cos 2f x x x x x =+++,设sin cos 24x x x t π⎛⎫+=+= ⎪⎝⎭,2,2t ⎡∈-⎣, 则22sin cos 1x x t =-,所以2213124y t t t ⎛⎫=++=++ ⎪⎝⎭,2,2t ⎡∈-⎣,当12t =-时,()min 34f t =;当2t =时,()max 32f t =故选:C【变式3-1】函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________. 【答案】[-1,1]【解析】设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,即sin x cos x =1-t 22,且-1≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1. 当t =1时,y max =1;当t =-1时,y min =-1. ∴函数的值域为[-1,1].【变式3-2】函数()sin cos sin 2f x x x x =++的最大值为( ) A .1 B .12 C .12 D .3 【答案】C【解析】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[2,2]t ∈-,则22(sin cos )12sin cos t x x x x =+=+, 所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[2,2]t ∈,对称轴为12t =-,所以当2t 时,21y t t =+-取得最大值,所以函数的最大值为222121=,即()sin cos sin 2f x x x x =++的最大值为12C【变式3-3】函数f (x )=sinxcosx +√2sin (x −π4)的值域为________. 【答案】[−12−√2,1]【解析】由于f (x )=sinxcosx +√2sin (x −π4)=sinxcosx +sinx −cosx ,令sinx −cosx =t ,则sinxcosx =1−t 22,于是函数化为y =1−t 22+t =−12(t −1)2+1,而t =sinx −cosx =√2sin (x −π4)∈[−√2,√2] , 所以当1t =时,函数取最大值1,当t =−√2时,函数取最小值−12−√2,故值域为[−12−√2,1].题型四 分式型三角函数的值域【例4】函数cos 12cos 1x y x +=-的值域是( )A .][(),04,∞∞-⋃+B .][(),02,∞∞-⋃+ C .[]0,4 D .[]0,2 【答案】B【解析】令11cos ,1,,122x t t ⎡⎫⎛⎤=∈-⋃⎪ ⎢⎥⎣⎭⎝⎦,13(21)11322212122211t t y t t t -++===+⋅---,可得[)(]213,00,1t -∈-⋃,[)11,1,213t ⎛⎤∈-∞-⋃+∞ ⎥-⎝⎦,3113,,22122t ⎛⎤⎡⎫⋅∈-∞-⋃+∞ ⎪⎥⎢-⎝⎦⎣⎭,故(][),02,y ∈-∞⋃+∞.故选:B.【变式4-1】函数sin 3sin 2x y x +=+的值域为___________. 【答案】4,23⎡⎤⎢⎥⎣⎦【解析】解:sin 31sin 2sin 21x y x x +==+++, 因为1sin 1x -≤≤,所以1sin 23x ≤+≤,所以1113sin 2x ≤≤+,所以411+23sin 2x ≤≤+, 所以sin 3sin 2x y x +=+的值域是4,23⎡⎤⎢⎥⎣⎦.【变式4-2】函数sin cos ()1sin cos =++x xf x x x的值域为_____________.【答案】212111,2⎡⎫⎛-----⎪ ⎢⎪⎣⎭⎝⎦【解析】令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,[2,1)(1,2]t ∈---,则212sin cos t x x =+,即21sin cos 2t x x -=,所以2112()12t t f t t --==+,又因为[2,1)(1,2]t ∈---,所以()212111,2f t ⎫⎛---∈--⎪ ⎪ ⎣⎭⎝⎦, 即函数sin cos ()1sin cos =++x xf x x x 的值域为212111,2⎡⎫⎛-----⎪ ⎢⎪ ⎣⎭⎝⎦.【变式4-3】当04x π<<时,函数221sin ()cos sin sin xf x x x x-=⋅-的最小值是________.【答案】4【解析】22cos ()sin cos sin xf x x x x=-21tan tan x x =-, 当04x π<<时,tan (0,1)x ∈,所以21110tan tan 244<-≤-=x x ,()4f x ∴≥,即221sin ()cos sin sin xf x x x x-=⋅-的最小值为4.含绝对值的三角函数值域A .[-1,0] B .[0,1] C .[-1,1] D .[-2,0] 【答案】D【解析】当0sin 1x ≤≤ 时,sin sin 0y x x =-= ,所以,当1sin 0x -≤<,2sin y x =,又22sin 0x -≤< ,所以函数的值域为[]2,0-,故选:D.【变式5-1】函数()2sin 3cos f x x x =+的值域是( )A .[]2,5B .[]3,5C .13⎡⎤⎣⎦D .13⎡⎣【答案】C【解析】()sin()2cos()2sin 3cos 2sin 3cos f x x x x x x x +=+++=-+-=+πππ,∴()f x 为周期函数,其中一个周期为T π=,故只需考虑()f x 在[0,]π上的值域即可,当[0,]2x π∈时,()2sin 3cos 13)f x x x x =+=+α,其中cos 13α,sin 13α=, ∴max ()()132f x f =-παmin ()()22f x f ==π,当[,]2x ππ∈时,()2sin 3cos 13)f x x x x =-=+β,其中,cos 13β=sin 13=β, ∴max ()()132f x f =-πβmin ()()22f x f ==π,∴()f x 的值域为13].故选:C【变式5-2】设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是______. 【答案】0【解析】∵2()|sin |2cos 1f x x x =+-|sin |cos 2x x =+为偶函数,∴只需求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值,此时2()sin cos22sin sin 1f x x x x x =+=-++,令[]sin 0,1t x =∈,则221y t t =-++,函数的对称轴为[]10,14t =∈,∴当1t =时,min 2110y =-++=.【变式5-3】若不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则k 的取值范围是______. 【答案】[)2,∞+ 【解析】∵ ()sin 1cos sin tan sin sin cos cos x x xx x x x x++=+=,3,4x ππ⎡⎤∈⎢⎥⎣⎦∴ sin 0,1cos 0,cos 0x x x >+><,∴ tan sin 0x x +<,∴sin tan tan sin sin tan tan sin 2tan x x x x x x x x x -++=---=-, ∵ 不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立 ∴ 2tan k x ≥-,3,4x ππ⎡⎤∈⎢⎥⎣⎦,∴()max 2tan 2k x ≥-=. 故k 的取值范围是[)2,∞+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例谈三角函数值域(最值)的几种求法
南县一中 肖胜军
有关三角函数的值域(最值)的问题是各级各类考试考察的热点之一,这类问题的解决涉及到化归、转换、类比等重要的数学思想,采取的数学方法包括易元变换、问题转换、等价化归等重常用方法。

掌握这类问题的解法,不仅能加强知识的纵横联系,巩固基础知识和基本技能,还能提高数学思维能力和运算能力。

一、合理转化,利用有界性求值域 例1、求下列函数的值域:
(1)1sin cos y x x =+ (2)cos 3
cos 3
x y x -=
+
(3)2
2
sin 2sin cos 3cos y x x x x =++ (4)3sin()4cos()44
y x x π
π
=+
++解析:
(1)根据11sin cos sin 222x x x ≤
≤可知:13
22
y ≤≤ (2)将原函数的解析式化为:3(1)cos 1y x y +=
-,由cos 1x ≤可得:1
22
y -≤≤-
(3) 原函数解析式可化为:2
1sin 22cos 2sin 2cos 22)4
y x x x x x π
=++=++=++
可得:
22y ≤≤+
(4)根据sin cos )a x b x x φ⎡+=+∈⎣可得:55y -≤≤
二、单调性开路,定义回归
例2、求下列函数的值域:
(1)y =
(2)y =
(3)2cos ,63y x x x ππ⎛⎫
⎡⎤=+∈ ⎪⎢
⎥⎣⎦⎝⎭
(4)y
1sin 02x ≤≤≤解析:(1)由-1知:
1sin 1,cos1cos sin 1
2
2
x x π
π
≤-≤≤≤
≤≤≤≤(2)由-
有()125sin()663366
x x x ππππππ
+≤≤≤+≤≤≤(3)y=2由知:由正弦函数的单调性:1y 2
[](4)0,2y ==
三、抓住结构特征,巧用均值不等式
2222min 9sin 4
30,()sin 0sin 0,4()9sin 12
sin 44
9sin sin ()12
sin 9
x x x f x x x
x x x f x x x x x x x x x f x x x ππ+<<=<<>=+≥====例、若求的最小值
解析:由得:根据均值不等式:
当即时, 例4、sin cos(),sin β
αβαββα=+已知其中、为锐角,求tan 的最大值
[][
]2
2
sin sin ()sin()cos cos()sin sin cos()sin()cos 2sin cos(),tan()2tan tan()tan tan 1tan tan ()1
1tan tan()12tan 42tan tan 112tan tan tan 2βαβααβααβαααβαβαααβαβααβαα
βαβαααβα
αα
ααα=+-=+-+=++=++=+-=+-=
==≤++++==解析:由即有于是:当即
时,有max tan 4
β=()
四、易元变换,整体思想求解
5sin cos sin cos y x x x x =++例、求函数的值域
222
11)sin 2)12sin ()424241
sin ())442
sin()1
42y x x x x x x x ππππππ⎡⎤=++=+--+⎢⎥
⎣⎦
=+++-
⎡=++-⎢⎣⎦
解法一:
max 1
sin()142
x y π+==当
时,2
22max 1sin cos ),sin cos 42
11
(1)122
1
,2
t x x t t x x x t y t t t y π
-⎡+==+∈=⎣-⎡∴=+=+-∈⎣==解法二:设,则,t 故当有
2222222
2
2
max sin ,cos ,sin cos 2,sin cos 1
sin cos 1,2221
sin cos sin cos 222,2221
22
x m n x m n x x m x x m n x m n m y x x x x m m n m m m m y =+=-+==-⎡+=+=∈-⎢⎣⎦
⎡∴=++=+-=+-∈-⎢⎣⎦
=
=+解法三、构造对偶式转化为某一变量的二次函数在闭区间内求最大值设则由,得故当
五、方程架桥,问题转化
()()[]
221sin 3sin 62sin sin (4)sin 320sin ,1
32011x x y x
x y x y t x t t y ++=++-+-==≤∴++-=-例:求函数的最大值、最小值。

解析:将问题转化为求一元二次方程在闭区间上有解的充要条件: 原函数解析式转化为: 令则t 在,上有解,故有:2(4)4411
2(1)0(1)0
y y f f ∆=--≥--≤-≤-≥≥(3-2y )0
或(1)(1)0f f -≤
8
03
y ≤≤解得:
六、运用模型、数形结合
22sin 82cos 4138303
x
y x
k k -=
-±=-+=⎣⎦
例:求函数的值域。

解析:函数的值域可看作求过点P(2,2)的单位圆切线的斜率k 的最大、最小值设切线PA 的方程为:y-2=k(x-2)即:kx-y-2k+2=0 设原点到切线的距离d,则d=1 即:即解得:k=。

相关文档
最新文档