数字电子时钟设计原理

合集下载

《电子技术》课程设计报告-数字电子钟设计

《电子技术》课程设计报告-数字电子钟设计

《电子技术》课程设计报告-数字电子钟设计一、背景介绍数字电子钟是一个实时的计时器,它可以按照设定的时刻精确地表示时间。

它使用微处理器和时钟芯片来处理时间。

因此,它可以被视为一个微处理器系统,系统中含有存储器、计数器、报警功能等。

最新的电子时钟如石英钟使用特制石英晶片来制定时钟。

由于石英可以产生完美的电振动,因此可以更准确地检测时钟改变。

二、数字电子钟的设计原理1、时钟驱动电子时钟的操作需要一定的时间和精度,主要是依靠特殊的驱动器来实现的。

驱动器有石英、硅、力学和光学等多种。

其中石英芯片是电子时钟的核心部件并且最常用。

可以让电子时钟每秒产生32千分之一秒的精度。

2、晶振电路晶体振荡器电路是将电能转换成振荡信号和时钟信号的基础电路。

在电子时钟中,晶振电路可以将3.3V的DC电源转换成正弦波信号。

3、控制电路控制电路是接收电子时钟信号,并将其转换为可读取的数字信号的电路。

它通过检测当前的时钟值与它预设的标准值,来决定是否需要重新设定。

4、显示电路为了使时间显示准确,显示电路需要有一定的能力,它可以将控制电路经过变换后的数字转化为可视的数字或符号信号,比如LED。

我们首先使用PIC16F628A微控制器来控制数字电子钟,PIC16F628A是一款常用的单片机,在实现数字电子钟的最基本功能时天然的具有很多优势,即具有丰富的I/O口及高性能的CPU。

而在驱动这个数字电子时钟时,我们选择了普通的石英晶振,其工作电压为3.3V,频率为32.768kHz。

它的作用是将电源电压转换成正弦波信号,然后此信号可以被PIC单片机读取,从而实现全电子时钟功能。

在处理每秒钟走过的时间时,我们使用计数器根据晶振输入的时钟信号逐渐计数,而当计数器计数到一定值时,PIC单片机就知道一秒的时间已经过去,然后继续进行计算.最后,我们选用一个4位共阳极数码管来将这些数据转化为显示数字的动作,它从数据地址上读取数据,然后一次送到一位,就可以实时显示电子时钟的实时时间。

51单片机里电子时钟设计原理

51单片机里电子时钟设计原理

51单片机里电子时钟设计原理单片机是一种集成电路芯片,具有微处理器的所有功能。

电子时钟是一种通过数字化方式显示时间的装置,通常由时钟芯片、计时电路、显示电路、报警电路等组成。

在51单片机中设计电子时钟,主要包括以下几个方面的原理。

1.时钟芯片选择:选择一款适合的时钟芯片非常重要。

时钟芯片提供了计时的稳定性和精度,并且具有时间数据的存储功能。

在51单片机设计中,常常使用DS3231、DS1302等高性能的时钟芯片。

2.计时电路设计:计时电路是电子时钟的核心部分,它通过计数器实现时间的累加。

在51单片机设计中,可以使用定时器和计数器来实现计时功能。

通过设定定时器的工作模式和计数值,可以实现从1ms到秒、分、时的计时。

3.显示电路设计:显示电路用于将计时电路的计时结果以数字形式显示出来。

通常使用数码管或液晶显示屏作为显示装置。

在51单片机设计中,通过控制数码管或液晶显示屏的引脚,将对应的数字段点亮,实现数字的显示。

4.按键输入设计:电子时钟通常具有设置时间、调整时间、报警等功能。

这些功能需要通过按键来实现。

在51单片机设计中,可以使用矩阵按键,通过行列扫描的方式检测按键的按下,并根据按键的不同触发不同的功能。

5.报警电路设计:电子时钟通常具有报警功能,可通过蜂鸣器或其他音频输出装置实现。

在51单片机设计中,通过控制IO口的高低电平输出,控制蜂鸣器的工作状态,从而实现报警功能。

6.软件设计:单片机的设计离不开软件的支持。

在51单片机设计中,通常使用C语言编程,通过编写程序来实现各个功能的控制。

根据需求,设计相应的算法和逻辑,实现时间的计算、显示、设置和报警等功能。

以上是51单片机中设计电子时钟的一些原理。

通过合理的硬件设计和软件编程,可以实现功能齐全、稳定可靠的电子时钟。

基于单片机的数字电子时钟设计

基于单片机的数字电子时钟设计

基于单片机的数字电子时钟设计数字电子时钟是一种非常常见的电子产品,它可以帮助我们实现精确的时间显示,让我们的生活更加方便。

随着科技的不断发展,数字电子时钟也在不断更新和发展,基于单片机的数字电子时钟已经成为当前最先进的技术之一。

本文将介绍基于单片机的数字电子时钟的设计原理和实现方法。

一、数字电子时钟的设计原理数字电子时钟的实现原理就是把时间信号转换成数字信号,再通过计算机芯片来显示时间。

其中,时间信号可以是电缆信号或者无线信号,并且也可以通过外部的控制电路进行调节。

而计算机芯片可以采用单片机、PLC控制器等方案进行设计。

基于单片机的数字电子时钟,可以使用数字时钟芯片和定时器芯片来完成。

数字时钟芯片是一种能够实现数据的统计、时钟显示等功能的IC芯片,通过将其与定时器芯片相连,就能够实现精确的时间统计和显示。

此外,在设计时还需要进行软硬件电路的优化和调试。

二、基于单片机的数字电子时钟的实现方法1、硬件设计基于单片机的数字电子时钟的硬件设计,主要包含单片机控制电路、显示电路、外设接口电路、供电电路、时钟芯片和定时器芯片等部分。

其中,时钟芯片用于提供精准的时间信号,定时器芯片则用于进行计时,而单片机和外设接口电路则用于控制整个数字电子时钟的功能。

另外,数字电子时钟还需要进行外观设计,通常采用的是数码管或液晶屏幕显示时间。

通过优化电路布局和参数匹配,可以有效地提高整个数字电子时钟的稳定性和精度。

2、软件设计在数字电子时钟的软件设计中,主要包含固件设计和操作系统设计两部分。

固件设计是指对单片机系统进行程序编写、调试和优化,以实现时钟的各种功能;而操作系统设计,则是对固件进行封装,建立起一套完整的操作环境,方便用户进行操作。

在固件设计中,需要考虑到时钟的显示、调节、闹钟、定时等多种功能的实现。

通常,这些功能都会涉及到多个模块和数据结构的设计,需要通过循序渐进的方式逐步实现。

在操作系统设计中,需要对时钟的各种操作进行封装,形成一套完整的操作界面。

电子钟的工作原理

电子钟的工作原理

电子钟的工作原理电子钟是一种通过电子技术来实现时间显示的钟表。

它采用了数字显示方式,以数字形式显示小时和分钟。

下面将详细介绍电子钟的工作原理。

1. 时钟信号发生器电子钟的工作原理首先依赖于一个时钟信号发生器,它产生一个稳定的频率信号作为基准。

常见的时钟信号发生器可以采用晶体振荡器或者电子振荡器来产生一个固定的频率信号。

2. 分频器时钟信号发生器产生的频率信号通常非常高,需要通过分频器将其分频得到合适的时钟信号。

分频器可以将高频率信号分频为低频率信号,例如将1MHz的信号分频为1Hz的信号。

3. 时钟芯片分频后的时钟信号经过放大和处理,进入时钟芯片。

时钟芯片是电子钟的核心组成部分,它包含了时钟电路、计数器和显示控制电路。

4. 计数器时钟芯片中的计数器用来记录时钟信号的脉冲数,从而实现时间的计数。

计数器通常采用二进制计数方式,例如使用4位二进制计数器可以表示0-15的十进制数。

5. 显示控制电路计数器中的计数数值经过显示控制电路进行处理,将其转换为数字形式的小时和分钟数值。

显示控制电路通常包括数码管驱动电路,用来控制数码管的亮灭和显示内容。

6. 数码管电子钟的显示部分通常采用数码管来显示小时和分钟。

数码管是一种能够显示数字的显示器件,常见的有共阳极和共阴极两种类型。

数码管根据接收到的信号,通过控制对应的线路和段选信号,点亮相应的数字。

7. 供电电源电子钟需要一个稳定的供电电源来提供工作电压。

通常使用交流电源或者直流电源,通过适配器或者电池来提供所需的电压和电流。

总结:电子钟的工作原理是通过时钟信号发生器产生稳定的频率信号,经过分频器分频得到合适的时钟信号,然后经过时钟芯片的计数器和显示控制电路处理,最后通过数码管显示出小时和分钟。

电子钟的工作原理简单明了,通过电子技术实现了时间的准确显示。

纯数字电路数字时钟原理图(免费)

纯数字电路数字时钟原理图(免费)

做成时钟,并不难,把十进改成6进就行了如下:1,震荡电路的电容用晶震,记时准确.2, 时:用2块计数器,十位的用1和2(记时脚)两个脚.分:用2块计数器,十位的用1,2,3,4,5,6,(记时脚)6个脚.秒:同分.评论:74系列的集成块不如40系列的,如:用CD4069产生震荡,CD4017记数,译码外加.电压5V.比74LS160 74LS112 74LS00好的.而且CD4069外围元件及少.如有需要我可以做给你.首先需要产生1hz的信号,一般采用CD4060对32768hz进行14分频得到2hz,然后再进行一次分频。

(关于此类内容请参考数字电路书中同步计数器一章)(原文件名:4060.JPG)一种分频电路:(原文件名:秒信号1.JPG)采用cd4518进行第二次分频另一种可以采用cd4040进行第二次分频第三种比较麻烦,是对1mhz进行的分频(原文件名:秒信号2.JPG)介绍一下cd4518:CD4518,该IC是一种同步加计数器,在一个封装中含有两个可互换二/十进制计数器,其功能引脚分别为1~7和9~{15}。

该计数器是单路系列脉冲输入(1脚或2脚;9脚或10脚),4路BCD码信号输出(3脚~6脚;{11}脚~{14}脚)。

此外还必须掌握其控制功能,否则无法工作。

手册中给有控制功能的真值(又称功能表),即集成块的使用条件,如表2所示。

从表2看出,CD4518有两个时钟输入端CP和EN,若用时钟上升沿触发,信号由CP输入,此时EN端应接高电平“1”,若用时钟下降沿触发,信号由EN端输入,此时CP端应接低电平“0”,不仅如此,清零(又称复位)端Cr也应保持低电平“0”,只有满足了这些条件时,电路才会处于计数状态,若不满足则IC不工作。

计数时,其电路的输入输出状态如表3所示。

值得注意,因表3输出是二/十进制的BCD码,所以输入端的记数脉冲到第十个时,电路自动复位0000状态(参看连载五)。

另外,该CD4518无进位功能的引脚,但从表3看出,电路在第十个脉冲作用下,会自动复位,同时,第6脚或第{14}脚将输出下降沿的脉冲,利用该脉冲和EN端功能,就可作为计数的电路进位脉冲和进位功能端供多位数显用。

数字时钟的工作原理

数字时钟的工作原理

数字时钟的工作原理
数字时钟是一种通过数字显示时间的设备。

它的工作原理基于电子技术和计数原理。

下面是数字时钟的工作原理:
1. 音频信号处理:数字时钟会通过收音机或者其他方式接收到来自国家授时中心发出的准确时间信号。

这个信号是经过调制和编码处理的。

2. 信号解码:通过解码电路将接收到的时间信号转换为数字信号。

解码电路采用数字逻辑门电路,根据输入的不同的电信号状况,输出相应的电信号。

3. 计数:数字时钟中会有一个计数器电路,它接收来自解码电路的数字信号并进行计数。

计数器电路的设计可以是二进制,即通过几个存储单元分别计数0-9。

当计数达到9时,存储单元会归零并将进位信号发送到高位的计数单元。

4. 时钟控制:数字时钟还包括一个时钟电路,它通过一个稳定的时钟振荡器来提供稳定的时钟信号给计数器电路。

时钟信号控制计数器的计数速度,使其按照正确的时间间隔进行计数。

5. 数字显示:数字时钟使用数字显示器来显示时间。

常见的数字显示器有LED和LCD两种。

LED数字显示器通过控制发光二极管的亮暗显示数字,LCD数字显示器则是通过液晶屏幕来显示。

数字时钟将计数器电路的输出信号传送到数字显示器上,显示出时间。

通过以上步骤,数字时钟能够准确地计时并通过数字显示器向人们展示时间。

它具有显示清晰、精确度高的特点,适用于各种场景中的时间显示需求。

电子钟的工作原理

电子钟的工作原理

电子钟的工作原理电子钟是一种通过电子技术来实现时间显示的钟表。

它采用了数字显示方式,通过内部的电子元件来驱动显示屏幕,以显示当前的时间。

电子钟的工作原理可以分为以下几个步骤:1. 时钟信号生成:电子钟内部会有一个时钟信号生成器,它负责产生一个稳定的高频信号,通常是晶体振荡器产生的。

这个时钟信号会作为电子钟的基准信号,用于计时和驱动显示。

2. 时间计算:电子钟内部有一个计时器电路,它会根据时钟信号进行时间的计算。

计时器电路会将时钟信号进行分频,得到不同的时间单位,如秒、分、时等。

通过这种方式,电子钟能够精确地计算出当前的时间。

3. 数字显示:电子钟通常使用LED或者LCD等显示屏幕来显示时间。

计时器电路会将计算得到的时间信息转换为数字信号,然后通过驱动电路将这些数字信号发送到显示屏幕上。

显示屏幕上的数字会根据这些信号进行相应的显示,从而呈现出当前的时间。

4. 时间设置:电子钟通常会提供时间设置功能,用户可以通过按键或者旋钮来设置时间。

当用户进行时间设置时,电子钟会根据用户的操作,将设置的时间信息传递给计时器电路,从而更新当前的时间。

5. 电源供电:电子钟需要外部电源来供电。

通常情况下,电子钟会使用直流电源,可以通过插座或者电池来提供电源。

电源会为电子元件提供所需的电能,使得电子钟能够正常工作。

总结:电子钟通过时钟信号生成、时间计算、数字显示、时间设置和电源供电等步骤来实现时间的显示。

它利用电子技术的优势,能够提供精确的时间显示,并且具有方便设置、易读、易操作等特点。

电子钟已经广泛应用于家庭、办公场所、公共场所等各种场合,成为现代人们日常生活中不可或者缺的时间工具。

数字电子时钟设计

数字电子时钟设计

数字电子时钟设计数字电子时钟是一种简单易用、精度高、使用方便的时钟仪器。

在现代化的生活中,数字电子时钟已经成为人们生活和工作中不可缺少的一部分。

本文将介绍数字电子时钟的设计及其原理。

1. 数字电子时钟的结构数字电子时钟一般由数字显示器、电源、时钟芯片、振荡电路和控制电路等几个部分组成。

数字显示器:数字电子时钟采用的是七段数码管作为显示器,显示出当前时刻的时间。

电源:数字电子时钟的电源一般采用直流电源,可以通过普通的插座或者电池供电。

时钟芯片:时钟芯片是数字电子时钟的核心部分,可以提供高精度的时钟信号,并且可以根据用户设置的时间来进行计时。

振荡电路:振荡电路是数字电子时钟的发挥器,用于产生一个稳定的高精度的时钟信号。

控制电路:控制电路主要用于对数字电子时钟进行各种设置,并且可以控制数字电子时钟的各种功能。

2. 数字电子时钟的操作原理数字电子时钟的操作原理是通过时钟芯片来实现的。

时钟芯片可以提供一个高精度的时钟信号,这个时钟信号可以被控制电路所接收,并且控制电路可以将这个信号转化为秒、分、时等时间单位。

随着科技的发展,数字电子时钟的精度越来越高,可以达到秒级甚至毫秒级的精度。

这些高精度的时钟芯片可以通过电子时钟所连接的振荡电路来产生非常稳定的时钟信号。

3. 数字电子时钟设计的技术要求数字电子时钟的设计需要考虑以下几个方面的技术要求:(1)高精度的时钟信号数字电子时钟的时钟信号需要具有高精度,通常要求时钟误差不超过几秒钟。

这就需要时钟芯片具有非常高的精度的时钟信号源,同时还需要连接高精度的振荡电路。

(2)显示效果清晰明了数字电子时钟的显示效果要求非常的清晰明了,这就需要采用高质量的七段数码管,并且数量要足够,以显示出完整的时间信息。

(3)快速响应、稳定性好由于数字电子时钟是人们生活和工作中不可缺少的一部分,因此数字电子时钟的响应速度和稳定性也非常的重要,需要在设计时特别注重。

4. 数字电子时钟的优点和缺点数字电子时钟有以下几个优点:(1)高精度稳定数字电子时钟可以提供高精度的时钟信号,并且可以保持这个时钟信号的稳定性,误差范围非常小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计论文论文题目:数字电子时钟设计原理某职业技术学院电气工程系毕业设计任务书1.能够利用软件设计数字电子钟电路原理图。

2.要求熟悉集成芯片功能。

3.具有时、分、秒显示功能。

三、毕业设计进程表毕业设计进程表起止日期设计内容备注第1周资料准备,查阅相关文献第2周设计电路第3-4周编写说明书,交指导老师审阅第5周整理资料,准备答辩前言目前市场上提供的无论是机械钟还是石英钟在晚上无照明的情况下都是不可见的。

要知道当前的时间,必须先开灯,故较为不便。

现在市场上出现了这样一类的电子钟,它以六只LED数码管来显示时分秒,与传统的以指针显示秒的方式不同,超越了人们传统的习惯与理念。

数字电子钟是一种用数字显示秒、分、时的计时装置,与传统的机械钟相比,具有走时准确、显示直观、无机械传动装置等优点,因而得到广泛的应用。

如,日常生活中的电子手表,车站、码头、机场等公共场所的大型数显电子钟。

要实现数字电子钟的设计可以由单片机控制或者由数字IC构成。

这里我们要做的是一个由数字IC构成的数字电子钟设计。

目录1 设计功能要求 (1)2 设计方案 (1)3设计中所用到的元器件 (2)3.1译码器 (2)3.2计数器 (4)3.3显示器 (4)3.4振荡器 (5)4 电路设计 (6)4.1时分秒计数器 (6)4.1.1秒计数器的设计 (6)4.1.2分计数器的设计 (8)4.1.3时计数器的设计 (8)4.2校时电路 (8)4.3译码显示电路 (10)4.4总体电路 (11)5器件清单 (13)结束语 (14)致谢 (15)参考文献 (16)附录A 数字电子钟整体体电路图 (17)1 设计功能要求设计一数字钟,该数字钟能够准确计时,以数字形式显示时、分、秒的时间和校时功能。

在电路中,振荡电路提供的1Hz脉冲信号。

在计时出现误差时电路还可以进行校时、校分和校秒的功能。

并且要用数码管显示时、分、秒,各位均为两位显示。

具体要求如下:1.时的计时要求为“23置0”,分和秒的计时要求为60进制。

2.准确计时,以数字形式显示时,分,秒的时间。

3.校正时间。

2 设计方案根据设计要求首先建立了一个多功能数字钟电路系统的组成框图,框图如图2.1所示。

由图2.1可知,电路的工作原理是:多功能数字钟电路主要由振荡器、计数器、译码器和显示器构成。

图2.1 电路框图主体电路由基准频率源、计数器、译码显示驱动器、数字显示器和校准电路等五部分组成。

其中:(1)基准频率源是数字电子钟的核心,它产生一个矩形波时间基准源信号,其稳定性和频率精确度决定了计时的准确度。

(2)译码器采用BCD码-七段显示译码驱动器。

显示器采用LED七段数码管。

(3)校准电路可采用按键及门电路组成。

系统工作原理:振荡器产生的稳定高频脉冲信号作为数字钟的时间基准。

秒计数器计满60后向分计数器进位,分计数器计满60后向小时计数器进位,小时计数器按照“23置0”规律计数。

计数器的输出经译码器送显示器,计时出现误差可以用校时电路进行校时、分、秒。

3设计中所用到的元器件3.1译码器显示译码器,一般是将一种编码译成十进制码或特定的编码,并通过显示器件将译码器的状态显示出来。

发光二极管点亮只须使其正向导通即可,根据LED的公共极是阳极还是阴极分为两类译码器,即针对共阳极的低电平有效的译码器和针对共阴极LED的高电平输出有效。

这里我选用CD4511,它是一个用于驱动共阴极LED(数码管)显示器的BCD码—七段显示译码器,其特点为:具有BCD转换,信号锁存控制,能提供较大的拉电流。

可直接驱动LED显示器。

它的引脚图如图3.1所示:图3.1 CD4511的引脚图其功能介绍如下:BI:4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭(消隐)状态,不显示数字。

LT:3脚是测试输入端,当BI=1,LT=0 时,译码输出全为1,不管输入 DCBA 状态如何,七段均发亮,显示“8”。

它主要用来检测数码管是否损坏。

LE:锁定控制端,当LE=0时,允许译码输出。

LE=1时译码器是锁定保持状态,译码器输出被保持在LE=0时的数值。

A1、A2、A3、A4、为8421BCD码输入端。

a、b、c、d、e、f、g:为译码输出端,输出为高电平1有效。

左边的引脚表示输入,右边表示输出,还有两个引脚8、16分别表示的是GND、Vcc。

CD4511的逻辑功能如表3.1所示。

表3.1 CD4511的逻辑功能输入输出LE BI LI D C B A a b c d e f g 显示X X 0 X X X X 1 1 1 1 1 1 1 8X 0 1 X X X X 0 0 0 0 0 0 0 消隐0 1 1 0 0 0 0 1 1 1 1 1 1 0 00 1 1 0 0 0 1 0 1 1 0 0 0 0 10 1 1 0 0 1 0 1 1 0 1 1 0 1 20 1 1 0 0 1 1 1 1 1 1 0 0 1 30 1 1 0 1 0 0 0 1 1 0 0 1 1 40 1 1 0 1 0 1 1 0 1 1 0 1 1 50 1 1 0 1 1 0 0 0 1 1 1 1 1 60 1 1 0 1 1 1 1 1 1 0 0 0 0 70 1 1 1 0 0 0 1 1 1 1 1 1 1 80 1 1 1 0 0 1 1 1 1 0 0 1 1 90 1 1 1 0 1 0 0 0 0 0 0 0 0 消隐0 1 1 1 0 1 1 0 0 0 0 0 0 0 消隐0 1 1 1 1 0 0 0 0 0 0 0 0 0 消隐0 1 1 1 1 0 1 0 0 0 0 0 0 0 消隐0 1 1 1 1 1 0 0 0 0 0 0 0 0 消隐0 1 1 1 1 1 1 0 0 0 0 0 0 0 消隐1 1 1 X X X X 锁存锁存3.2计数器在数字电子技术中应用的最多的时序逻辑电路中,计数器不仅能用于对时钟脉冲计数,还可以用于分频、定时以及进行数字运算等。

按照计数器中的触发器是否同时翻转分类,可将计数器分为同步计数器和异步计数器。

常见的同步计数器有74160系列,74LS290系列。

这里选用74LS160。

它是一个具有异步清零、同步置数的集成四位同步十进制加法计数器。

它的引脚图如图3.2所示。

图3 .2 74LS160的引脚图它的工作真值表如表3.2所示表3.2 74LS160工作真值表输入变量输出变量工作模式MR PE CEP CET CLK P3 P2 P1 P0 Q3 Q2 Q1 Q00 X X X X X X X X 0 0 0 0 异步清零1 0 X X ↑d3 d2 d1 d0 d3 d2 d1 d0 同步置数1 1 1 1 ↑X X X X 计数加法计数1 1 0 X X X X X X 保持数据保持1 1 X 0 X X X X X 保持数据保持3.3显示器常用的数字显示器有多种类型。

按接法分有两种:共阳极显示器或共阴极显示器。

按发光物质分,有半导体显示器【又称发光二极管(LED)显示器】、荧光显示器(VFD)、液晶显示器(LCD)、等。

我所选用用的是LED显示器。

因为选用的CD4511译码器对应的显示器是共阴极显示器,所以它的结构和共阴极接法如图3.3所示。

图a LED结构图b LED共阴极接法图3.3七段显示器3.4振荡器振荡器有石英晶体震荡和多谐振荡器两种。

石英晶体震荡较多谐振荡器昂贵,我们对精度要求不高所以选择由集成555定时器与R、C组成的多谐振荡器。

555构成的多谐振荡器,输出振荡频率f=1Hz的脉冲。

555定时器的引脚排列如图3.4所示。

图3.4 555引脚排列图由它组成的多谢振荡器电路图如图3.5。

图3.5 555构成的多谐振荡器图中,C是外接定时电容,R1、R2是充电电阻,R2又是放电电阻。

C1用于防干扰。

当接通电源后,Vcc要通过电阻对C充电,充至当THOLD=2/3Ucc时, A1输出为1,比较器A2输出高电平,输出端3输出低电平,放电三极管T导通,电容C又要通过R2、T放电,Vcc下降,当Vcc下降至1/3Ucc时,VT截止,C又重新充电,以后恢复以上过程。

其震荡周期为T=T1+T2=0.7(R1+R2)C (式3.1)因为f=1Hz,所以T=1s。

根据公式3.1选择R1、R2、C即可。

4 电路设计4.1时分秒计数器4.1.1秒计数器的设计秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。

74LS160实现60进制的方式有两种:异步清零、同步置数。

我选择的是同步置数功能,即当计数到59时清零并重新开始计数,所以MR应设置为1。

因为单片74LS160所能实现的最大记数模数M=10,构成N=60进制计数器,M<N<M*M=100,故需两片74LS160.而且S N-1状态只能用8421BCD码,而不能用二进制码.N=60, S N-1=01011001用74LS160构成六十计数所示, 低位片(1)实现十进制,时位片(2)实现六进制。

其工作原理如下:十进制加法计数:将低位片的MR和CEP、CET并联,即MR=CEP=CET=1,当秒输出的输出信号≠59时,低位片和高位片的输出信号通过与非门74LS20后使低位片和高位片的PE=1,在CLK端输入计数脉冲,此时低位片进行十进制加法计数。

低位片每计数到第十次时,进位输出信号TC=1,将低位片的TC端接高位片的CEP和CET,即CEP=CET=TC=1, 高位片的MR=1=PE,此时高位片进行十进制加法计数。

保持:当低位片没有进位输出信号时,即TC=0,高位片的CET=CEP=0,MR=PE=1,高位片保持状态不变。

同步置数:当低位片输出为9且高位片输出为5时置零。

所以将低位片和高位片的输出信号连接与非门74LS20。

当高位片低位片输出信号为59时,低位片和高位片的输出信号通过与非门74LS20使低位片和高位片的PE=0,又因为MR=1,在输入时钟脉冲CLR上升沿作用下,并行输入端的数据P0P1P2P3被置入计数器的输出端,即低位片和高位片的Q0Q1Q2Q3= P0P1P2P3,所以把P0P1P2P3接地,使得Q0Q1Q2Q3=0。

从而完成低位片(1)、高位片(2)的同步置数。

电路图如4.1所示。

图4.1 秒部分设计图4.1.2分计数器的设计分的设计与秒的设计原理基本相同,不再阐述。

4.1.3时计数器的设计根据设计要求,时计数器设计必须为24进制技术,(5)片为是时信号低位片,(6)片为时信号高位片。

当高位片为0,1时,低位片为十进制计数,当高位片为2时,低位片为4进制记数。

因此,要实现数字电子时钟时信号24小时制的功能,只需要加入与非门进行条件判断,在按照4.1的内容,同理易得二十四进制记数即24计数电路如图4.2所示。

相关文档
最新文档