IC集成电路设计工艺流程

合集下载

半导体集成电路工艺流程

半导体集成电路工艺流程

半导体集成电路工艺流程
一、wafer切割
wafer切割是半导体集成电路(IC)生产过程中的第一步,也是半导体片材料的重要环节,它是把单晶和多晶片成型成多种尺寸的半导体片的重要工艺。

经过精密加工,工艺流程从一块单晶或多晶片,变形成多根小片,均匀分开,并实现精密切削,形成一定大小的半导体片材,用于后续的处理和加工。

此外,wafer切割还可以保证切割表面的质量和光洁度,减少片材表面的细孔和针孔,减少电路间的干扰和杂讯,提高电路的可靠性。

二、Lithography
Lithography是半导体IC晶圆工艺流程中的第二步,也是半导体片材料制造的重要环节。

它是利用光刻机在半导体片上按照设计绘制图案,利用光刻技术实现图案和电路的微米级加工的工艺。

Lithography在半导体工艺流程中,相当于画笔,利用不同的光刻设备,以不同的分辨率,把原始工艺设计按照比例缩小,然后在光刻机的放射束范围内,直接绘出晶圆上的基本芯片。

通常,在Lithography步骤中,光刻机会在未经曝光的晶圆上,使用蒙特卡洛照片精确测量曝光量,保证批处理的曝光精度,然后,使用激光对晶圆表面进行曝光,形成电路设计图案,从而实现芯片逻辑反馈。

三、Dicing
Dicing是晶圆工艺流程的第三步。

集成电路制造的五个步骤

集成电路制造的五个步骤

集成电路制造的五个步骤集成电路(IC)制造是一项复杂而精密的过程,通常包括以下五个主要步骤:设计、掩膜制造、晶圆制造、芯片加工,以及封装测试。

每个步骤都至关重要,任何一个环节的问题都可能导致整个生产过程的失败。

第一步:设计集成电路的设计是制造过程中最关键的一步。

设计人员使用计算机辅助设计软件(CAD)来创建电路图和布局,以确定电路中各个元件的位置和连接方式。

这一步骤要求设计人员具备深厚的电子学知识和丰富的工程经验。

第二步:掩膜制造在掩膜制造过程中,设计人员根据之前的设计图纸,使用光刻技术将电路图案镀在透明的掩膜玻璃上。

这一过程类似于摄影,在类似相纸的底片上通过光线和化学药液将图像显影出来。

掩膜制造的质量直接影响到后续步骤的成功。

第三步:晶圆制造在晶圆制造过程中,硅片(晶圆)通过化学腐蚀等工艺被加工成平整的表面以及所需的晶格结构。

晶圆通常由高纯度的硅材料制成,然后进行薄化和抛光,以实现更高的电子器件集成度和可靠性。

第四步:芯片加工在芯片加工过程中,晶圆被分割成多个单个的芯片。

这一过程通常包括光刻、薄膜沉积、离子注入、化学蚀刻等工艺步骤。

通过这些工艺步骤,电路图案被转移到晶圆上,并形成电子元件的结构。

各个元件通过金属连接线进行连接,形成功能完整的集成电路芯片。

第五步:封装测试在封装测试中,芯片被封装在塑料或陶瓷封装中,并通过焊接连接到外部引脚。

封装后的芯片被送往测试环节,通过电性能测试等一系列检测来验证产品质量。

这一步骤的目的是确保芯片的性能和可靠性符合设计要求。

需要注意的是,以上仅为集成电路制造的基本步骤,实际生产过程可能因产品类型和制造流程的不同而有所差异。

此外,制造过程中质量控制和设备维护也是至关重要的补充步骤,以确保产品的一致性和可持续性。

ic设计流程的先后顺序

ic设计流程的先后顺序

ic设计流程的先后顺序IC设计流程的先后顺序可以分为以下几个步骤:1.定义设计规格:在开始IC设计之前,需要明确这个芯片的设计规格和需求。

这包括确定芯片的功能、性能要求、功耗、工作频率等等。

设计规格的准确定义对后续设计步骤非常重要。

2.系统级设计:在系统级设计阶段,设计人员会将整个系统的功能进行划分和定义,确定各个模块之间的接口和通信方式。

这一阶段还可能包括算法设计和建立性能模型等。

3.架构设计:架构设计进行具体芯片内部功能的划分和组织。

设计人员需要根据功能要求和非功能要求,确定芯片中各个模块的划分,并建立模块之间的逻辑结构和通信方式。

4. 逻辑设计:在逻辑设计阶段,设计人员主要负责将功能要求转化为数字逻辑电路。

这一阶段的主要任务是使用硬件描述语言(如Verilog或VHDL)来描述各个功能模块的功能,然后对这些模块进行综合、优化和验证。

5.线路和物理设计:线路设计包括电路设计、布局设计和布线设计。

电路设计是指将逻辑电路转化为物理电路,包括选择和设计电路的各个组成部分,如逻辑门、触发器等。

布局设计是指确定电路中各个元件的位置和相互关系。

布线设计是将元件之间连接的路径进行规划和优化。

6.设计验证:设计验证是确保设计工作符合规格要求的一个重要步骤。

在设计验证中,设计人员使用仿真工具来验证设计的正确性,并进行功能验证、时序验证和功耗验证等。

这一步骤帮助设计人员发现和修复设计中的错误和问题。

7.物理验证:物理验证主要是为了保证物理设计的正确性,并确保设计在布局和布线阶段的实现是否满足规定的约束和特定的目标。

物理验证通常包括设计规则检查(DRC)、布局与尺寸规则检查(LVS)、电器规则检查(ERC)等。

8.仿真和验证:设计完成后,需要对芯片进行全面的仿真和验证以确保芯片的正确性和性能。

这包括行为仿真、时序仿真、功耗仿真等。

9.制造准备:制造准备是确定制造芯片所需的流程、工艺和设备,并生成相应的工艺文件和掩模文件。

IC设计流程及各阶段典型软件

IC设计流程及各阶段典型软件

IC设计流程及各阶段典型软件IC设计流程是指整个集成电路设计的整体过程,包括需求分析、系统设计、电路设计、物理设计、验证与测试等阶段。

每个阶段都有其典型的软件工具用于支持设计与开发工作。

本文将详细介绍IC设计流程的各个阶段及其典型软件。

1.需求分析阶段需求分析阶段是集成电路设计的起点,主要目的是明确设计目标和规格。

在这个阶段,设计团队与客户进行沟通和讨论,确定设计的功能、性能、功耗、面积等要求。

常用软件工具有:- Microsoft Office:包括Word、Excel、PowerPoint等办公软件,用于编写设计需求文档、文档整理和汇报。

2.系统设计阶段系统设计阶段主要是将需求分析阶段得到的设计目标和规格转化为可实现的电路结构和算法设计。

常用软件工具有:- MATLAB/Simulink:用于算法设计和系统级模拟,包括信号处理、通信系统等。

- SystemVerilog:一种硬件描述语言,用于描述电路结构和行为。

- Xilinx ISE/Vivado:用于FPGA设计,进行电路逻辑设计和Verilog/VHDL代码的仿真和综合。

3.电路设计阶段电路设计阶段是将系统级设计转化为电路级设计。

常用软件工具有:- Cadence Virtuoso:用于模拟和布局设计,包括原理图设计、电路模拟和布局与布线。

- Mentor Graphics Calibre:用于DRC(Design Rule Checking)和LVS(Layout vs. Schematic)设计规则检查和布局与原理图的对比。

4.物理设计阶段物理设计阶段主要是将电路级设计转化为版图设计,并进行布局布线。

常用软件工具有:- Cadence Encounter:用于逻辑综合、布局和布线。

- Cadence Innovus:用于布局布线和时钟树设计。

- Mentor Graphics Calibre:用于DRC和LVS设计规则检查和验证。

集成电路ic工艺流程

集成电路ic工艺流程

集成电路ic工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!揭秘集成电路IC的神秘工艺流程集成电路(Integrated Circuit,简称IC),被誉为现代电子设备的“大脑”,其微小而强大的功能令人惊叹。

集成电路制造工艺流程

集成电路制造工艺流程

集成电路制造工艺流程概述集成电路(Integrated Circuit, IC)是由几千个甚至是数十亿个离散电子元件,如晶体管、电容、电阻等构成的电路,在特定的芯片上进行集成制造。

IC制造工艺流程主要包括晶圆制备、晶圆加工、芯片制造、封装测试等几个环节,是一个非常严谨、复杂的过程。

晶圆制备晶圆制备是IC制造的第一步。

晶圆是用硅单晶或其他半导体材料制成的薄片,作为IC芯片的基础材料。

以下是晶圆制备的流程:1.单晶生长:使用气态物质的沉积和结晶方法,使单晶硅的原料在加热、冷却的过程中逐渐成为一整块的单晶硅材料。

2.切片:将生长好的单晶硅棒利用切割机械进行切片,制成形状规整的圆片,称为晶圆。

3.抛光:将晶圆表面进行机械研磨和高温氧化处理,使表面达到极高的光滑度。

4.清洗:用去离子水等高纯度溶剂进行清洗,清除晶圆表面的污染物,确保晶圆的纯度和光洁度。

晶圆加工晶圆加工是IC制造的关键环节之一,也是最为复杂的过程。

在晶圆加工过程中,需要通过一系列的步骤将原始的晶圆加工为完成的IC芯片。

以下为晶圆加工的流程:1.光刻:通过光刻机将芯片图案转移到光刻胶上,然后使用酸洗、去除光刻胶,暴露出芯片的表面。

2.蚀刻:利用化学蚀刻技术,在IC芯片表面形成电路图案。

3.离子注入:向芯片进行掺杂,改变材料的电学性质。

4.热处理:对芯片进行高温、低温处理,使其达到设计要求的电学性能。

5.金属沉积:在芯片表面沉积一层金属,用于连接芯片各个元件。

芯片制造芯片制造是最为核心的IC制造环节,主要将晶圆加工后的芯片进行裁剪、测试、绑定等操作,使其具备实际的电学性能。

以下是IC芯片制造的流程:1.芯片测试:对芯片的性能进行测试,找出不合格的芯片并予以淘汰。

2.芯片切割:将晶圆上的芯片根据需求进行切割。

3.接线:在芯片表面安装金线,用于连接各个器件。

4.包装:将芯片放入封装盒中,并与引线焊接,形成成品IC芯片。

封装测试封装测试是IC制造的最后一步。

集成电路制造工艺流程介绍

集成电路制造工艺流程介绍1. 晶圆生长:制造过程的第一步是晶圆生长。

晶圆通常是由硅材料制成,通过化学气相沉积(CVD)或单晶硅引入熔融法来生长。

2. 晶圆清洗:晶圆表面需要进行清洗,以去除可能存在的污染物和杂质,以确保后续工艺步骤的成功进行。

3. 光刻:光刻是制造过程中非常关键的一步。

在光刻过程中,先将一层光刻胶涂覆在晶圆表面,然后使用光刻机将芯片的设计图案投影在晶圆上。

接着,进行光刻胶显影,将未受光的部分去除,留下所需的图案。

4. 沉积:接下来是沉积步骤,通过CVD或物理气相沉积(PVD)将金属、氧化物或多晶硅等材料沉积在晶圆表面上,以形成导线、电极或其他部件。

5. 刻蚀:对沉积的材料进行刻蚀,将不需要的部分去除,只留下所需的图案。

6. 接触孔开孔:在晶圆上钻孔,形成电极和导线之间的接触孔,以便进行电连接。

7. 清洗和检验:最后,对晶圆进行再次清洗,以去除可能残留的污染物。

同时进行严格的检验和测试,确保芯片质量符合要求。

以上是一个典型的集成电路制造工艺流程的简要介绍,实际的制造过程可能还包括许多其他细节和步骤,但总的来说,集成电路制造是一个综合了多种工艺和技术的高精度制造过程。

集成电路(Integrated Circuit,IC)制造是一项非常复杂的工艺,涉及到材料科学、化学、物理、工程学和电子学等多个领域的知识。

在这个过程中,每一个步骤都至关重要,任何一个环节出错都可能导致整个芯片的质量不达标甚至无法正常工作。

以下将深入介绍集成电路的制造工艺流程及相关的技术细节。

8. 电镀:在一些特定的工艺步骤中,需要使用电镀技术来给芯片的表面涂覆一层导电材料,如金、铜或锡等。

这些导电层对于芯片的整体性能和稳定性非常重要。

9. 封装:制造芯片后,需要封装芯片,以保护芯片不受外部环境的影响。

封装通常包括把芯片封装在塑料、陶瓷或金属外壳内,并且接上金线用以连接外部电路。

10. 测试:芯片制造完成后,需要进行严格的测试。

集成电路设计与制造的主要流程

集成电路设计与制造的主要流程集成电路(Integrated Circuit,简称IC)是由许多晶体管、电阻、电容和其他电子器件组成的微小芯片。

它广泛应用于计算机、手机、汽车、医疗设备等各个领域。

本文将介绍集成电路设计与制造的主要流程。

1. 需求分析与规划集成电路设计的第一步是进行需求分析和规划。

这一阶段中,设计团队与客户和市场调研团队合作,明确产品的功能需求、性能要求和市场定位。

同时,还需要考虑技术可行性和经济可行性,确定设计和制造的目标。

2. 电路设计在电路设计阶段,设计团队将根据需求分析的结果,设计电路图。

他们使用EDA(Electronic Design Automation)工具,如Cadence、Mentor Graphics等,进行原理图设计,包括选择器件、连接电路等。

3. 电路模拟与验证电路设计完成后,设计团队使用模拟器对电路进行仿真和验证。

他们会通过仿真进行各种测试,以确保电路设计的正确性和性能是否满足需求。

如果需要,还可以进行电路优化,提升性能。

4. 物理设计与版图布局物理设计阶段是将原理图转化为实际物理结构的过程。

设计团队使用EDA工具进行版图布局和布线,将电路元件放置在芯片上,并根据需要进行电路逻辑换位和时序优化。

5. 设计规则检查(DRC)与逻辑等效检查(LEC)在物理设计完成后,需要进行设计规则检查(DRC)和逻辑等效检查(LEC)。

DRC检查确保设计规则与制造工艺的兼容性,而LEC检查则确保逻辑及电气规格与原始电路设计的一致性。

6. 掩膜制作与掩膜层压在确定物理设计没有问题后,接下来需要制作芯片的掩膜。

掩膜是一种精确描绘芯片电路图案的遮罩。

设计团队将设计好的版图转化为掩膜,并将其层压在某种光刻胶上。

7. 掩膜曝光与光刻掩膜制作完成后,需要使用光刻机将掩膜上的电路图案曝光到芯片表面的硅片上。

光刻过程包括对光刻胶曝光、显影和刻蚀等步骤,最终得到芯片的图案。

8. 清洗与离子放置经过光刻后,芯片上会有大量的光刻胶残留物和掩膜层。

IC工艺流程简介

IC工艺流程简介IC工艺流程简介 (1)工艺流程................................................................................................... 错误!未定义书签。

1) 表面清洗 (1)2) 初次氧化 (1)3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。

(2)4) 涂敷光刻胶 (4)5) 此处用干法氧化法将氮化硅去除 (7)6) 离子布植将硼离子(B+3) 透过SiO2膜注入衬底,形成P型阱 (8)7) 去除光刻胶,放高温炉中进行退火处理 (8)8)用热磷酸去除氮化硅层,掺杂磷(P+5) 离子,形成N型阱 (9)9) 退火处理,然后用HF去除SiO2层 (9)10) 干法氧化法生成一层SiO2层,然后LPCVD沉积一层氮化硅 (9)11) 利用光刻技术和离子刻蚀技术,保留下栅隔离层上面的氮化硅层 (10)12) 湿法氧化,生长未有氮化硅保护的SiO2层,形成PN之间的隔离区 (10)13) 热磷酸去除氮化硅,然后用HF溶液去除栅隔离层位置的SiO2,并重新生成品质更好的SiO2薄膜, 作为栅极氧化层。

(10)14) LPCVD 沉积多晶硅层,然后涂敷光阻进行光刻,以及等离子蚀刻技术,栅极结构,并氧化生成SiO2保护层。

(10)15) 表面涂敷光阻,去除P阱区的光阻,注入砷(As) 离子,形成NMOS的源漏极。

用同样的方法,在N阱区,注入B离子形成PMOS的源漏极。

(10)16) 利用PECVD 沉积一层无掺杂氧化层,保护元件,并进行退火处理。

(10)17) 沉积掺杂硼磷的氧化层 (10)18) 濺镀第一层金属 (10)19) 光刻技术定出VIA孔洞,沉积第二层金属,并刻蚀出连线结构。

然后,用PECVD法氧化层和氮化硅保护层。

集成电路中的设计流程和方法

集成电路中的设计流程和方法集成电路(Integrated Circuit,IC)是现代电子技术的重要组成部分,也是各种电子设备的核心。

在集成电路的制作过程中,设计流程和方法起着至关重要的作用。

本文将介绍集成电路中常见的设计流程和方法,以及它们的应用。

一、设计前期准备在进行集成电路设计之前,需要进行一系列的准备工作。

首先,需要明确设计目标和需求,包括电路的功能、性能要求等。

然后,需要对所需芯片的规模和复杂度进行评估和确定。

此外,还需要进行市场研究,了解类似产品的市场需求和竞争情况。

最后,要制定详细的设计计划和时间表。

二、电路设计电路设计是集成电路设计的核心环节之一。

在电路设计过程中,需要进行原理图设计、逻辑设计和电路仿真等工作。

原理图设计是将电路的功能和连接关系用图形和符号表示出来,以便于后续的设计和验证。

逻辑设计是根据功能和性能要求,将电路设计为逻辑门电路、寄存器、时序逻辑等。

电路仿真是利用电子设计自动化(EDA)工具对电路进行仿真和验证,以确保电路的功能和性能满足设计要求。

三、物理设计物理设计是将电路设计转化为实际的物理结构和版图。

物理设计主要包括布局设计和布线设计两个阶段。

布局设计是将电路的各个组成部分进行合理的排列和布局,以保证电路的整体性能和可制造性。

布线设计是根据布局设计的结果,将电路中的导线进行布线,并解决导线间的冲突和干扰问题。

物理设计涉及到的技术包括布局规划、布线规划、时钟分配等。

四、验证和测试在集成电路设计完成后,需要进行验证和测试工作,以验证电路的功能和性能是否满足设计要求。

验证主要包括功能验证和时序验证两个方面。

功能验证是通过编写测试程序,对设计的电路进行功能测试,以确认其能够正常工作。

时序验证是通过时序模拟器和时钟分析工具,对电路的时序性能进行分析和验证。

测试是在电路生产过程中对芯片进行测试和筛选,以确保芯片的质量和可靠性。

五、后期调试和优化在完成验证和测试后,可能还需要进行一些后期的调试和优化工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集成电路设计工艺流程晶体的生长晶体切片成 wafer晶圆制作功能设计à模块设计à电路设计à版图设计à制作光罩工艺流程1) 表面清洗晶圆表面附着一层大约 2um 的 Al2O3 和甘油混合液保护之 , 在制作前必须进行化学刻蚀和表面清洗。

2) 初次氧化有热氧化法生成 SiO2 缓冲层,用来减小后续中 Si3N4 对晶圆的应力氧化技术干法氧化 Si( 固 ) + O2 à SiO2( 固 )湿法氧化 Si( 固 ) +2H2O à SiO2( 固 ) + 2H2干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。

干法氧化成膜速度慢于湿法。

湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。

当 SiO2 膜较薄时,膜厚与时间成正比。

SiO2 膜变厚时,膜厚与时间的平方根成正比。

因而,要形成较厚的 SiO2 膜,需要较长的氧化时间。

SiO2 膜形成的速度取决于经扩散穿过 SiO2 膜到达硅表面的 O2 及 OH 基等氧化剂的数量的多少。

湿法氧化时,因在于 OH 基在 SiO2 膜中的扩散系数比 O2 的大。

氧化反应, Si 表面向深层移动,距离为 SiO2 膜厚的 0.44 倍。

因此,不同厚度的 SiO2 膜,去除后的 Si 表面的深度也不同。

SiO2 膜为透明,通过光干涉来估计膜的厚度。

这种干涉色的周期约为 200nm ,如果预告知道是几次干涉,就能正确估计。

对其他的透明薄膜,如知道其折射率,也可用公式计算出(d SiO2) / (d ox) = (n ox) / (n SiO2) 。

SiO2 膜很薄时,看不到干涉色,但可利用 Si 的疏水性和 SiO2 的亲水性来判断 SiO2 膜是否存在。

也可用干涉膜计或椭圆仪等测出。

SiO2 和 Si 界面能级密度和固定电荷密度可由 MOS 二极管的电容特性求得。

(100) 面的Si 的界面能级密度最低,约为 10E+10 -- 10E+11/cm –2 .e V -1 数量级。

(100) 面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。

3) CVD(Chemical Vapor deposition) 法沉积一层 Si3N4(Hot CVD 或 LPCVD) 。

1 常压 CVD (Normal Pressure CVD)NPCVD 为最简单的 CVD 法,使用于各种领域中。

其一般装置是由 (1) 输送反应气体至反应炉的载气体精密装置; (2) 使反应气体原料气化的反应气体气化室; (3) 反应炉; (4) 反应后的气体回收装置等所构成。

其中中心部分为反应炉,炉的形式可分为四个种类,这些装置中重点为如何将反应气体均匀送入,故需在反应气体的流动与基板位置上用心改进。

当为水平时,则基板倾斜;当为纵型时,着反应气体由中心吹出,且使基板夹具回转。

而汽缸型亦可同时收容多数基板且使夹具旋转。

为扩散炉型时,在基板的上游加有混和气体使成乱流的装置。

2 低压 CVD (Low Pressure CVD)此方法是以常压 CVD 为基本,欲改善膜厚与相对阻抗值及生产所创出的方法。

主要特征: (1) 由于反应室内压力减少至 10-1000Pa 而反应气体,载气体的平均自由行程及扩散常数变大,因此,基板上的膜厚及相对阻抗分布可大为改善。

反应气体的消耗亦可减少;(2) 反应室成扩散炉型,温度控制最为简便,且装置亦被简化,结果可大幅度改善其可靠性与处理能力 ( 因低气压下,基板容易均匀加热 ) ,因基可大量装荷而改善其生产性。

3 热 CVD (Hot CVD)/(thermal CVD)此方法生产性高,梯状敷层性佳 ( 不管多凹凸不平,深孔中的表面亦产生反应,及气体可到达表面而附着薄膜 ) 等,故用途极广。

膜生成原理,例如由挥发性金属卤化物 (MX) 及金属有机化合物 (MR) 等在高温中气相化学反应 ( 热分解,氢还原、氧化、替换反应等 ) 在基板上形成氮化物、氧化物、碳化物、硅化物、硼化物、高熔点金属、金属、半导体等薄膜方法。

因只在高温下反应故用途被限制,但由于其可用领域中,则可得致密高纯度物质膜,且附着强度极强,若用心控制,则可得安定薄膜即可轻易制得触须 ( 短纤维 ) 等,故其应用范围极广。

热 CVD 法也可分成常压和低压。

低压 CVD 适用于同时进行多片基片的处理,压力一般控制在 0.25-2.0Torr 之间。

作为栅电极的多晶硅通常利用 HCVD 法将 SiH4 或Si2H 。

气体热分解(约 650 oC )淀积而成。

采用选择氧化进行器件隔离时所使用的氮化硅薄膜也是用低压 CVD 法,利用氨和 SiH4 或 Si2H6 反应面生成的,作为层间绝缘的SiO2 薄膜是用 SiH4 和 O2 在 400 --4500 oC 的温度下形成SiH4 + O2 –-SiO2 + 2H2或是用 Si(OC2H5)4 (TEOS: tetra – ethoxy – silanc ) 和 O2 在 750 oC 左右的高温下反应生成的,后者即采用 TEOS 形成的 SiO2 膜具有台阶侧面部被覆性能好的优点。

前者,在淀积的同时导入 PH3 气体,就形成磷硅玻璃( PSG : phosphor – silicate – glass )再导入 B2H6 气体就形成BPSG(borro – phosphor – silicate – glass) 膜。

这两种薄膜材料,高温下的流动性好,广泛用来作为表面平坦性好的层间绝缘膜。

4 电浆增强 CVD (Plasma Enhanced CVD)NPCVD 法及 LPCVD 法等皆是被加热或高温的表面上产生化学反应而形成薄膜。

PECVD 是在常压 CVD 或 LPCVD 的反应空间中导入电浆 ( 等离子体 ) ,而使存在于空间中的气体被活化而可以在更低的温度下制成薄膜。

激发活性物及由电浆中低速电子与气体撞击而产生。

光 CVD (Photo CVD)PECVD 使薄膜低温化,且又产生如 A-Si 般的半导体元件。

但由于薄膜制作中需考虑: (1) 在除去高温 (HCVD) 及 PECVD 时掺入元件中的各种缺陷 ( 如 PECVD 中带电粒子撞击而造成的损伤 ) ; (2) 不易制作的元件 ( 不纯物剖面 ) ,不希望在后面受到工程高温处理被破坏,因此希望可于低温中被覆薄膜。

PCVD 是解决这此问题的方法之一。

遇热分解时,因加热使一般分子的并进运动与内部自由度被激发 ( 激发了分解时不需要的自由度 ) ,相对的,在 PCVD 中,只直接激发分解必须的内部自由度,并提供活化物促使分解反应。

故可望在低温下制成几无损伤的薄膜且因光的聚焦及扫描可直接描绘细线或蚀刻。

5 MOCVD (Metal Organic CVD) & 分子磊晶成长 (Molecular Beam Epitaxy)CVD 技术另一重要的应用为 MOCVD ,此技术与 MBE(Molecular Beam Epitaxy) 同为: (1) 成长极薄的结晶; (2) 做多层构造; (3) 多元混晶的组成控制; (4) 目标为化合物半导体的量产。

此有装置有下列特征: (1) 只需有一处加热,装置构造简单,量产装置容易设计; (2) 膜成长速度因气体流量而定,容易控制; (3) 成长结晶特性可由阀的开头与流量控制而定; (4) 氧化铝等绝缘物上可有磊晶成长; (5) 磊晶成长可有选择,不会被刻蚀。

相反地亦有: (1) 残留不纯物虽已改善,但其残留程度极高; (2) 更希望再进一步改良对结晶厚度的控制; (3) 所用反应气体中具有引火性、发水性,且毒性强的气体极多; (4) 原料价格昂贵等缺点。

多层布线间的层间绝缘膜的沉积,以及最后一道工序的芯片保护膜的沉积必须在低温下(450 C 以下 ) 下进行,以免损伤铝布线。

等离子 CVD 法就是为此而发明的一种方法。

6 外延生长法 (LPE)外延生长法 (epitaxial growth) 能生长出和单晶衬底的原子排列同样的单晶薄膜。

在双极型集成电路中,为了将衬底和器件区域隔离 ( 电绝缘 ) ,在 P 型衬底上外延生长 N 型单晶硅层。

在 MOS 集成电路中也广泛使用外延生长法,以便容易地控制器件的尺寸,达到器件的精细化。

此时,用外延生长法外延一层杂质浓度低 ( 约 10 15 cm-3) 的供形成的单晶层、衬底则为高浓度的基片,以降低电阻,达到基极电位稳定的目的。

LPE 可以在平面或非平面衬底生长、能获得十分完善的结构。

LPE 可以进行掺杂,形成 n- 和 p- 型层,设备为通用外延生长设备,生长温度为 300 oC-900 oC ,生长速率为 0.2um-2um/min ,厚度 0.5um-100um ,外延层的外貌决定于结晶条件,并直接获得具有绒面结构表面外延层。

4) 涂敷光刻胶光刻制造过程中,往往需采用 20-30 道光刻工序,现在技术主要采有紫外线 ( 包括远紫外线 ) 为光源的光刻技术。

光刻工序包括翻版图形掩膜制造,硅基片表面光刻胶的涂敷、预烘、曝光、显影、后烘、腐蚀、以及光刻胶去除等工序。

(1) 光刻胶的涂敷在涂敷光刻胶之前,将洗净的基片表面涂上附着性增强剂或将基片放在惰性气体中进行热处理。

这样处理是为了增加光刻胶与基片间的粘附能力,防止显影时光刻胶图形的脱落以及防止湿法腐蚀时产生侧面腐蚀 (side etching) 。

光刻胶的涂敷是用转速和旋转时间可自由设定的甩胶机来进行的。

首先、用真空吸引法将基片吸在甩胶机的吸盘上,将具有一定粘度的光刻胶滴在基片的表面,然后以设定的转速和时间甩胶。

由于离心力的作用,光刻胶在基片表面均匀地展开,多余的光刻胶被甩掉,获得一定厚度的光刻胶膜,光刻胶的膜厚是由光刻胶的粘度和甩胶的转速来控制。

所谓光刻胶,是对光、电子束或 X 线等敏感,具有在显影液中溶解性的性质,同时具有耐腐蚀性的材料。

一般说来,正型胶的分辩率高,而负型胶具有高感光度以及和下层的粘接性能好等特点。

光刻工艺精细图形 ( 分辩率,清晰度 ) ,以及与其他层的图形有多高的位置吻合精度 ( 套刻精度 ) 来决定,因此有良好的光刻胶,还要有好的曝光系统。

(2) 预烘 (pre bake)因为涂敷好的光刻胶中含有溶剂,所以要在 80C 左右的烘箱中在惰性气体环境下预烘15-30 分钟,去除光刻胶中的溶剂。

(3) 曝光将高压水银灯的 g 线 (l=436 nm), i 线 (l=365nm) 通过掩模照射在光刻胶上,使光刻胶获得与掩模图形同样的感光图形。

根据曝光时掩模的光刻胶的位置关系,可分为接触式曝光、接近式曝光和投影曝光三种。

相关文档
最新文档