实验十二-菠菜色素的提取和分析
菠菜色素的提取和分离实验报告

菠菜色素的提取和分离实验报告菠菜色素提取实验报告菠菜中色素的提取和色素分离绿色植物如菠菜叶中含有叶绿素(绿)、胡萝卜素(橙)和叶黄素(黄)等多种天然色素。
叶绿素存在两种结构相似的形式即叶绿素a(C55H72O5N4Mg)和叶绿素b(C55H70O6N4Mg)),差别仅是a中一个甲基被b中的甲酰基所取代。
它们都是吡咯衍生物与金属镁的络合物,是植物进行光合作用所必需的催化剂,也是食用的绿色色素,可用于糕点、饮料水等中,添加于胶姆糖中还可消除口臭。
植物中a的含量通常是b的3倍。
尽管叶绿素分子中含有一些极性基团,但大的烃基结构使它易溶于石油醚等一些非极性溶剂。
胡萝卜素(C40H56)是具有长链结构的共轭多烯。
它有三种异构体α—,β—,和γ—胡萝卜素,其中β—异构体含量最多,也最重要。
生长期较长的绿色植物中,异构体中β—的含量多达90,。
β—具有维生素A的生理活性,其结构是两分子维生素A在链端失去两分子水结合而成。
生物体内,β—体受酶催化氧化即形成维生素A。
目前,β—体可作为维生素A使用,也可作为食品工业的色素,β一胡萝卜素还有防癌功能。
叶黄素(C40H56O2)是胡萝卜素的羟基衍生物,在光合作用中能起收集光能的作用。
在绿叶中通常是胡萝卜素的两倍。
较易溶于醇而在石油醚中溶解度较小。
由此可见,叶绿素等天然色素有广泛的用途,对于色素的提取与分离就显得很重要了(本实验就提取和分离做了相关的研究。
1 实验部分1.1 仪器与试剂仪器:研钵、分液漏斗、显微载玻片、毛细管、层析柱(20×10 cm)、UV-240 紫外分光光度计试剂:石油醚、乙醇(95%)、菠菜叶、丙酮(化学纯)、乙酸乙酯(化学纯)、无水硫酸钠、硅胶G、中性氧化铝(150目,160目)1.2 提取与分离1.2.1 浸泡法提取色素在研钵中放入20 g新鲜的菠菜叶,加入20 mL3:2(体积比)石油醚—乙醇混合液,适当研磨(不要研成糊状,否则会给分离造成困难),用倾析法将提取液转移到分液漏斗中,每次用10ml水洗涤两次,以除去萃取液中的乙醇。
菠菜色素的提取和分离实验报告

菠菜色素的提取和分离实验报告
一、实验目的:
本次实验的主要目的是学习和掌握菠菜色素的提取和分离技术,了解菠菜中色素的提取和分离原理以及实验操作过程。
二、实验方法:
1、制备样品:将新鲜的菠菜叶片洗净晾干,切碎成小块备用;
2、提取菠菜色素:将切碎的菠菜叶片加入适量无水乙醇,研
磨成泥状物,过滤后取得浸提液;
3、进一步提取:将浸提液过滤并再次提取,过滤得到过滤液;
4、分离:将过滤液使用氯仿进行分离,水相和氯仿相层的色
素分离;
5、测定:将得到的色素溶于适量乙醇,测定菠菜色素的吸光度。
三、实验结果:
经过提取和分离,得到了深绿色的液体,与纯菠菜色素溶液比
较后发现两者颜色相似。
测定得到吸光度为0.54。
四、实验分析:
本次实验成功提取和分离了菠菜色素,并得到了较为准确的测定值。
在实验中,氯仿和无水乙醇是常用的有机溶剂,主要是因为在这些溶剂中菠菜色素的溶解度较高。
但是,在实验操作过程中需要注意保持实验环境的卫生和安全,氯仿是一种易挥发的有机物,需要注意防火和防烟。
五、实验结论:
通过本次实验,我们成功地提取和分离了菠菜色素,并且得到了较为准确的测定值。
同时,我们也了解了菠菜中色素的提取和分离原理以及实验操作过程。
本次实验的成功对于今后相关实验研究以及实际应用具有一定的指导意义。
菠菜色素的提取和分离实验报告

菠菜色素的提取和分离实验报告菠菜色素的提取和分离实验报告引言:菠菜是一种常见的绿叶蔬菜,富含多种营养物质,其中包括一种被称为菠菜色素的成分。
菠菜色素是一类天然的色素,具有良好的生物活性和抗氧化性质。
本实验旨在通过提取和分离的方法,研究菠菜色素的性质和应用。
实验材料和方法:材料:新鲜菠菜叶片、无水乙醇、丙酮、石油醚、二氯甲烷、硅胶G柱、色谱柱、色谱试纸等。
方法:1. 取适量新鲜菠菜叶片,洗净并切碎成细末状。
2. 将菠菜末置于研钵中,加入适量无水乙醇,浸泡30分钟,搅拌均匀。
3. 将菠菜浸提液过滤,收集滤液。
4. 取少量滤液,加入石油醚,振荡混合,使菠菜色素溶于石油醚中。
5. 将石油醚层收集,加入少量无水乙醇,使溶液变为淡绿色。
6. 将淡绿色溶液倒入色谱柱中,以无水乙醇为洗脱剂,收集洗脱液。
7. 将洗脱液浓缩,得到菠菜色素。
实验结果和讨论:通过以上实验步骤,我们成功地从菠菜中提取和分离出了菠菜色素。
在实验过程中,我们使用了无水乙醇作为提取剂,因为乙醇能够有效溶解菠菜中的色素成分。
同时,我们使用石油醚作为分离剂,因为石油醚能够与菠菜色素发生亲和作用,使其溶于石油醚中。
在分离过程中,我们使用了色谱柱和色谱试纸进行分离和检测。
色谱柱是一种常见的分离工具,通过其内部填充的固定相材料,能够将混合物中的成分按照其亲和性和分子大小进行分离。
我们选择了硅胶G柱作为固定相材料,因为硅胶G柱对菠菜色素具有较好的亲和性。
通过使用无水乙醇作为洗脱剂,我们成功地将菠菜色素从硅胶G柱中洗脱出来。
在实验中,我们观察到菠菜色素呈现淡绿色。
这是因为菠菜色素主要由叶绿素和类胡萝卜素等成分组成,这些成分赋予了菠菜独特的颜色。
叶绿素是一种绿色的色素,具有光合作用的功能。
类胡萝卜素则是一类黄、橙、红等颜色的色素,具有抗氧化和免疫调节等作用。
菠菜色素不仅在食品工业中有广泛应用,还在医药和化妆品等领域发挥着重要作用。
菠菜色素富含抗氧化物质,能够有效清除自由基,延缓衰老和预防疾病。
实验十二-菠菜色素的提取和分析

菠菜色素的提取和分离一、实验目的1、通过绿色植物色素的提取,学习天然物质的提取方法;2、通过薄层色谱分析,掌握有机物色谱分析的原理和方法。
二、实验原理1 菠菜色素的提取绿色植物如菠菜叶中含有叶绿素(绿)、胡萝卜素(橙)和叶黄素(黄)等多种天然色素。
叶绿素存在两种结构相似的形式即叶绿素a(C 55H 72O 5N 4Mg)和叶绿素b(C 55H 70O 6N 4Mg),其差别仅是叶绿素a 中一个甲基被甲酰基所取代从而形成了叶绿素b 。
它们都是吡咯衍生物与金属镁的络合物,是植物进行光合作用所必需的催化剂。
植物中叶绿素a 的含量通常是b 的3倍。
尽管叶绿素分子中含有一些极性基团,但大的烃基结构使它易溶于醚、石油醚等一些非极性的溶剂。
胡萝卜素(C 40H 56)是具有长链结构的共轭多烯。
它有三种异构体,即 -胡萝卜素、β-胡萝卜素和γ-胡萝卜素,其中β-胡萝卜素含量最多,也最重要。
在生物体,β-胡萝卜素受酶催化氧化形成维生素A 。
目前β-胡萝卜素已可进行工业生产,可作为维生素A 使用,也可作为食品工业中的色素。
叶黄素(C 40H 56O 2)是胡萝卜素的羟基衍生物,它在绿叶中的含量通常是胡萝卜素的两倍。
与胡萝卜素相比,叶黄素较易溶于醇而在石油醚中溶解度较小。
N N NNH 3CCHCH 2RCH 2CH 3CH 3H 3COCO 2CH 3CH 2CH 2OO3CH 3CH 3CH 3CH 3Mg叶绿素a (R = CH 3) 叶绿素b (R = CHO )H 3C CH 3RCH 3H 3CRH 3CCH 3CH 3CH 3CH 3CH 3β-胡萝卜素(R = H ) 叶黄素(R = OH )H 3CCH 3CH 3CH 2OHCH 3CH 3维生素A2 薄层色谱原理常用TLC 表示,又称薄层层析,属于固液吸附色谱。
样品在薄层板上的吸附剂(固定相)和溶剂(移动相)之间进行分离。
由于各种化合物的吸附能力各不相同,在展开剂上移时,它们进行不同程度的解吸,从而达到分离的目的。
菠菜中色素的提取分离和鉴定(有机化学实验)

菠菜中的色素提取、分离及鉴定一、实验目的1.进一步熟悉和掌握薄层色谱的原理及应用2.了解菠菜中主要色素的基本性质,通过菠菜色素的提取和分离,了解天然物质分离提纯方法及原理3.掌握用紫外光谱和荧光光谱鉴别菠菜中色素的原理及方法二、菠菜中的色素简介菠菜叶中富含多种色素成分,如叶绿素(绿色)、胡萝卜素(橙黄色)和叶黄素(黄色)等多种天然色素。
叶绿素存在两种结构相似的形式即叶绿素 a(C 55 H 72O 5N 4Mg) 和叶绿素 b(C 55H 7O 6N 4Mg),结构见图1。
二者差别仅是 a 中一个甲基被 b 中的甲酰基所取代。
它们都是吡咯衍生物与金属镁的络合物,是植物进行光合作用所必需的催化剂。
植物中叶绿素a 的含量通常是b 的3倍。
尽管叶绿素分子中含有一些极性基团,但分子中大的烷基结构使它易溶于丙酮,乙醇,乙醚,石油醚等有机溶剂。
胡萝卜素( C 40H 56 )是具有长链结构的共轭多烯。
它有三种异构体,即 α-, β - 和γ - 胡萝卜素,其中β - 异构体含量最多,也最重要。
在生物体内,β - 体受酶催化氧化即形成维生素 A 。
目前β - 胡萝卜素已可进行工业生产,可作为维生素 A 使用,也可作为食品工业中的色素。
叶黄素( C40H56O2 )是胡萝卜素的羟基衍生物,它在绿叶中的含量通常是胡萝卜素的两倍。
与β - 胡萝卜素相比,叶黄素较易溶于醇而在石油醚中溶解度较小。
根据这些色素在有机溶剂中的溶解性,可将它们提取出来。
N N NNH 3CCHCH 2RCH 2CH 3CH 3H 3C OCO 2CH 3CH 2CH 2OOCH 3CH 3CH 3CH 3CH 3Mg叶绿素a 和叶绿素b 的结构(叶绿素a :R=CH 3, 叶绿素b :R=CHO )H 3C CH 3RCH 3H 3CH 3CCH 3CH 3CH 3CH 3CH 3β-胡萝卜素和叶黄素的结构(β-胡萝卜素:R =H , 叶黄素: R = OH ) 菠菜中各色素的理化性质绿色植物中的叶绿体色素在把光能转变为化学能的光和作用中起着重要作用。
菠菜色素实验报告

2014年山东英语作文With the rapid development of technology, the educational landscape in Shandong Province has undergone significant changes in 2014. This essay aims to explore the impact of technological advancements on the education system, focusing on how it has transformed teaching methods, student engagement, and the overall learning experience.Firstly, the integration of technology in classrooms has led to a more interactive and dynamic learning environment. Teachers are now able to utilize multimedia tools such as interactive whiteboards and digital projectors to enhance their lessons. These tools not only make the learning process more engaging for students but also allow for a more diverse range of teaching materials to be introduced, including videos, animations, and online resources.Secondly, the advent of online learning platforms has provided students with access to a wealth of knowledge beyond the traditional classroom setting. In 2014, Shandong Province saw a surge in the number of educational websites and online courses available to students. This has facilitated a more self-directed approach to learning, where students can explore subjects of interest at their own pace and according to their individual learning needs.Moreover, the use of technology has also improved administrative efficiency within schools. Digital managementsystems for enrollment, grading, and scheduling have streamlined these processes, allowing educators to focus more on teaching and less on paperwork. This has also led to more accurate record-keeping and better communication between schools, teachers, and parents.However, the integration of technology in education is not without its challenges. One of the major concerns is the digital divide, where students from less affluent backgrounds may not have access to the same level of technology as their peers. This can lead to disparities in educational outcomes and exacerbate existing inequalities.In conclusion, the year 2014 marked a significant milestonein the integration of technology into the educational system of Shandong Province. While there are challenges to overcome, the benefits of technology in enhancing the learning process and improving administrative efficiency are clear. It is crucial for educational policymakers to address the digital divide and ensure that all students, regardless of their socioeconomic background, can reap the benefits of technological advancements in education.。
从菠菜中提取叶绿素实验报告三篇

从菠菜中提取叶绿素实验报告三篇实验报告一:菠菜中提取叶绿素的方法比较1.引言叶绿素是一种重要的植物色素,它在光合作用中承担着捕获光能和转化化学能的重要角色。
菠菜是叶绿素含量较高的植物之一,因此本实验旨在比较不同方法提取菠菜中的叶绿素,探索最有效的提取方式。
2.材料与方法2.1 材料:- 新鲜菠菜叶片- 无水乙醚- 丙酮- 高速离心机- 比色皿2.2 方法:- 方法一:无水乙醚提取法将适量的菠菜叶片放入离心管中,加入适量的无水乙醚,用摇床震动片刻,使叶绿素溶解于乙醚中,然后离心10分钟收集上层液体。
- 方法二:丙酮提取法将适量的菠菜叶片放入离心管中,加入适量的丙酮,用摇床震动片刻,使叶绿素溶解于丙酮中,然后离心10分钟收集上层液体。
- 方法三:乙醇提取法将适量的菠菜叶片放入离心管中,加入适量的乙醇,用摇床震动片刻,使叶绿素溶解于乙醇中,然后离心10分钟收集上层液体。
3.结果在三种提取方法中,通过观察可以发现,方法一和方法二提取的叶绿素溶液呈现绿色,而方法三提取的叶绿素溶液呈现黄绿色。
利用分光光度计测定三个试管中叶绿素溶液的吸光度,发现方法一和方法二提取的叶绿素吸光度较高,而方法三的吸光度较低。
4.讨论方法一使用无水乙醚作为提取溶剂,乙醚能有效溶解叶绿素,并且在离心过程中上层液体的分离效果较好。
方法二使用丙酮作为提取溶剂,丙酮也能有效溶解叶绿素,并且丙酮相对于乙醚来说更易于购买。
方法三使用乙醇作为提取溶剂,乙醇对叶绿素的溶解能力较差,导致提取的叶绿素溶液吸光度较低。
5.结论通过对菠菜中提取叶绿素的实验比较,我们发现使用无水乙醚和丙酮作为提取溶剂的方法能够较好地提取菠菜中的叶绿素,并且吸光度较高。
因此,在菠菜中提取叶绿素的实验中,建议使用无水乙醚或丙酮作为提取溶剂。
实验报告二:叶绿素在光合作用中的作用研究1.引言叶绿素是植物体内最重要的色素之一,它在光合作用中起着关键作用。
本实验旨在研究叶绿素在光合作用中的功能和重要性。
菠菜叶中色素的提取实验报告

菠菜叶中色素的提取实验报告一、实验目的1、了解菠菜叶中所含色素的种类和化学性质。
2、掌握从菠菜叶中提取和分离色素的实验方法。
3、学习使用分光光度计测定色素溶液的吸光度。
二、实验原理菠菜叶中含有多种色素,如叶绿素 a、叶绿素 b、叶黄素和胡萝卜素等。
这些色素在有机溶剂中的溶解度不同,因此可以通过萃取的方法将它们分离出来。
叶绿素 a 和叶绿素 b 为吡咯衍生物,可溶于有机溶剂,如乙醇、丙酮等。
叶绿素 a 为蓝绿色,叶绿素 b 为黄绿色。
叶黄素和胡萝卜素属于类胡萝卜素,叶黄素为黄色,胡萝卜素为橙黄色,它们也能溶于有机溶剂。
根据不同色素在层析液中的溶解度不同,在层析过程中,溶解度大的色素随层析液在滤纸上扩散得快;溶解度小的色素扩散得慢,从而将不同的色素分离开来。
三、实验材料与仪器1、材料:新鲜菠菜叶2、仪器:研钵、漏斗、玻璃棒、分液漏斗、容量瓶、分光光度计、滤纸、脱脂棉等。
3、试剂:无水乙醇、石油醚、丙酮、层析液(石油醚:丙酮=9:1)四、实验步骤1、提取色素称取 5g 新鲜菠菜叶,剪碎后放入研钵中,加入 5mL 无水乙醇、少许碳酸钙和石英砂,充分研磨成匀浆。
将研磨好的匀浆用漏斗过滤到分液漏斗中,用 5mL 无水乙醇冲洗研钵和漏斗,将滤液合并到分液漏斗中。
轻轻振摇分液漏斗,静置分层,放出下层的水相,保留有机相。
2、制备色素溶液将有机相转移到容量瓶中,用无水乙醇定容至 25mL,得到色素提取液。
3、色素的分离取一块干燥的滤纸,剪成 15cm×3cm 的长条,在一端剪去两角,在距离剪角一端 1cm 处用铅笔轻轻画一条横线。
用毛细吸管吸取少量色素提取液,在铅笔线处点样,每次点样后吹干,重复多次,使点样处形成一条细而直的色素线。
将点样好的滤纸放入装有层析液的层析缸中,层析液液面不能超过滤纸的铅笔线。
盖上盖子,进行层析。
当层析液前沿接近滤纸的上端边缘时,取出滤纸,用铅笔标记出色素带的位置。
4、色素的鉴定用分光光度计分别测定叶绿素 a、叶绿素 b、叶黄素和胡萝卜素溶液在不同波长下的吸光度,绘制吸光度波长曲线,确定最大吸收波长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十二- 菠菜色素的提取和分析
菠菜色素的提取和分离
实验目的
1、通过绿色植物色素的提取,学习天然物质的提取方法;
2、通过薄层色谱分析,掌握有机物色谱分析的原理和方法。
二、 实验原理
1 菠菜色素的提取
绿色植物如菠菜叶中含有叶绿素(绿) 、胡萝卜素(橙)和叶黄素(黄)等 多种天然色素。
叶绿素 存在两种结构相似的形式即叶绿素 a (C 55H 72O 5N 4Mg )和叶绿素 b
(C 55H 70O 6N 4Mg ),其差别仅是叶绿素 a 中一个甲基被甲酰基所取代从而形成了叶 绿素 b 。
它们都是吡咯衍生物与金属镁的络合物, 是植物进行光合作用所必需的 催化剂。
植物中叶绿素 a 的含量通常是 b 的 3 倍。
尽管叶绿素分子中含有一些 极性基团,但大的烃基结构使它易溶于醚、石油醚等一些非极性的溶剂。
胡萝卜素( C 40H 56)是具有长链结构的共轭多烯。
它有三种异构体,即 - 胡 萝卜素、β -胡萝卜素和γ - 胡萝卜素,其中β -胡萝卜素含量最多,也最重要。
在生物体内, β- 胡萝卜素受酶催化氧化形成维生素 A 。
目前β -胡萝卜素已可进 行工业生产,可作为维生素 A 使用,也可作为食品工业中的色素。
叶黄素( C 40H 56O 2)是胡萝卜素的羟基衍生物,它在绿叶中的含量通常是胡萝 卜素的两倍。
与胡萝卜素相比,叶黄素较易溶于醇而在石油醚中溶解度较小。
叶绿素 a (R
=
CH )
CH 3 CH 3 CH 3
OO
CH 3 CH 2
CH R
N N
Mg
N
N H 3C
CH 2CH 3 CH 3 CO 2CH 3 2 CH 3
H 3C R
维生素 A
2 薄层色谱原理
常用 TLC 表示,又称薄层层析,属于固液吸附色谱。
样品在薄层板上的吸 附剂(固定相)和溶剂(移动相)之间进行分离。
由于各种化合物的吸附能力 各不相同,在展开剂上移时,它们进行不同程度的解吸,从而达到分离的目的。
3 薄层色谱的用途:
1)化合物的定性检验。
(通过与已知标准物对比的方法进行未知物的鉴定) 在条件完全一致的情况,纯碎的化合物在薄层色谱中呈现一定的移动距 离,称比移值( Rf 值),所以利用薄层色谱法可以鉴定化合物的纯度或确定两种 性质相似的化合物是否为同一物质。
但影响比移值的因素很多,如薄层的厚度, 吸附剂颗粒的大小,酸碱性,活性等级,外界温度和展开剂纯度、组成、挥发 性等。
所以,要获得重现的比移值就比较困难。
为此,在测定某一试样时,最 好用已知样品进行对照。
溶质最高浓度中心至原 点中心的距离 溶剂前沿至原点中心的 距离
2、快速分离少量物质。
(几到几十微克,甚至 0.01 μg )
3、跟踪反应进程。
在进行化学反应时,常利用薄层色谱观察原料斑点的逐步消 失,来判断反应是否完成。
4、化合物纯度的检验(只出现一个斑点,且无拖尾现象,为纯物质。
)
此法特别适用于挥发性较小或在较高温度易发生变化而不能用气相色谱分 析的物质
β-胡萝卜素( R = H )
叶黄素( R = OH ) CH 3 CH 3 H3C CH3 CH 2OH
CH 3
4 薄层色谱的操作步骤
1、吸附剂的选择
薄层色谱的吸附剂最常用的是氧化铝和硅胶。
1)、硅胶:
“硅胶 H ”—不含粘合剂;
“硅胶 G ”—含煅石膏粘合剂;
其颗粒大小一般为 260 目以上。
颗粒太大,展开剂移动速度快,分离效果不好;反之,颗粒太小,溶剂移动太慢,斑点不集中,效果也不理想。
化合物的吸附能力与它们的极性成正比,具有较大极性的化合物吸附较强,因而R f 值较小。
酸和碱 > 醇、胺、硫醇 > 酯、醛、酮 > 芳香族化合物 > 卤代物、醚 > 烯 > 饱和烃
本实验选择的吸附剂为薄层色谱用硅胶 G。
2、薄层板的制备(湿板的制备)
薄层板制备的好坏直接影响色谱的结果。
薄层应尽量均匀且厚度要固定。
否则,在展开时前沿不齐,色谱结果也不易重复。
在烧杯中放入2g 硅胶 G,加
入 5—6ml 0.5% 的羧甲基纤维素钠水溶液,调成糊状。
将配制好的浆料倾注到清洁干燥的载玻片上,拿在手中轻轻的左右摇晃,使其表面均匀平滑,在室温下晾干后进行活化。
本实验用此法制备薄层板 4 片。
3、薄层板的活化将涂布好的薄层板置于室温凉干后,放在烘箱内加热活化,活化条件根据需要而定。
硅胶板一般在烘箱中渐渐升温,维持105—110℃活化 30min 。
氧化
铝板在200℃烘 4h 可得到活性为Ⅱ级的薄板,在 150—160℃烘 4h 可得活性为Ⅲ—Ⅳ级的薄板。
活化后的薄层板放在干燥器内保存待用。
4、点样
先用铅笔在距薄层板一端 1cm 处轻轻划一横线作为起始线,然后用毛细管吸取样品,在起始线上小心点样,斑点直径一般不超过 2mm 。
若因样品溶液太稀,可重复点样,但应待前次点样的溶剂挥发后方可重新点样,以防样点过大,造成拖尾、扩散等现象,而影响分离效果。
若在同一板上点几个样,样点间距
离应为 1。
点样要轻,不可刺破薄层。
5、展开薄层色谱的展开,需要在密闭容器中进行。
为使溶剂蒸气迅速达到平衡,
可在展开槽内衬一滤纸。
在层析缸中加入配好的展开溶剂,使其高度不超过 1cm 将点好的薄层板小心放入层析缸中,点样一端朝下,浸入展开剂中。
盖好瓶盖,观察展开剂前沿上升到一定高度时取出,尽快在板上标上展开剂前沿位置。
晾干,观察斑点位置,计算 Rf 值。
6、显色被分离物质如果是有色组分,展开后薄层色谱板上即呈现出有色斑点。
如果化合物本身无色,则可用碘蒸气熏的方法显色。
还可使用腐蚀性的显色剂如浓硫酸、浓盐酸和浓磷酸等。
对于含有荧光剂的薄层板在紫外光下观察,展开后的有机化合物在亮的荧光背景上呈暗色斑点。
本实验样品本身具有颜色,不必在荧光灯下观察。
三、主要试剂和仪器
1 试剂:硅胶 G, 95% 乙醇 , 石油醚(60—90℃), 丙酮 , 无水 MgSO4, 菠菜
2 仪器:层析板(25mm×75mm), 125ml 广口瓶 , 研钵 , 分液漏斗
四、实验步骤
1 菠菜色素的提取
称取 5g无水的新鲜菠菜叶,用研钵研碎,加入 15 ml 石油醚-乙醇溶剂(3:2)研磨至桨,抽滤,滤液放至分液漏斗中,加入 5ml饱和 NaCl 水溶液,分层,上层再用饱和 NaCl 水溶液洗涤,有机层用无水 MgSO4干燥,滤去 MgSO4后,滤液放入小烧杯中,水浴蒸去溶剂(控制温度(60°-70 ℃),浓缩至 2.5ml 左右为止。
2 薄层层析
取活化后的层析板,点样,小心放入盛有展开剂( 7:3 石油醚- 丙酮)的广口瓶内,样点不能浸到展开剂中,盖好瓶盖,待展开剂上升至规定高度时,取出层析板,在空气中晾干,计算三种色素(叶绿素、叶黄素和胡萝卜素)的 Rf 值。
注:叶绿素会出现两点(叶绿素 a,叶绿素 b)。
叶黄素易溶于醇而在石油醚中溶解度小,从嫩绿叶中得到提取液,叶黄素会显很少。
五、注意事项
注意薄层色谱、柱层析实验操作要点的掌握和应用
六、思考题
1、如何利用 Rf 值来鉴定化合物?
2、薄层色谱法点样应注意些什么?
3、常用的薄层色谱的显色剂是什么?。