福建省莆田市仙游县度尾中学2019-2020学年高二下学期期末考试数学(理)试卷 Word版含答案

合集下载

福建省莆田市2019-2020学年数学高二第二学期期末考试试题含解析

福建省莆田市2019-2020学年数学高二第二学期期末考试试题含解析

福建省莆田市2019-2020学年数学高二第二学期期末考试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.已知复数11iz i+=-,则复数z 的模为( ) A .2 B .2C .1D .0【答案】C 【解析】 【分析】根据复数的除法运算求出z i =,然后再求出||||1z i ==即可. 【详解】由题意得21(1)1(1)(1)i i z i i i i ++===--+, ∴||||1z i ==. 故选C . 【点睛】本题考查复数的除法运算和复数模的求法,解题的关键是正确求出复数z ,属于基础题. 2.函数在上不单调,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】 【分析】 函数在上不单调,即在内有极值点,由,结合二次函数的性质,即可求出实数的取值范围. 【详解】,函数在上不单调,即在内有极值点,因为,且,所以有,即,解得.故答案为D. 【点睛】本题考查了函数的单调性,考查了二次函数的性质,考查了学生分析问题与解决问题的能力,属于中档题.3.目前,国内很多评价机构经过反复调研论证,研制出“增值评价”方式。

下面实例是某市对“增值评价”的简单应用,该市教育评价部门对本市70所高中按照分层抽样的方式抽出7所(其中,“重点高中”3所分别记为,,A B C ,“普通高中”4所分别记为,,,d e f g ),进行跟踪统计分析,将7所高中新生进行了统的入学测试高考后,该市教育评价部门将人学测试成绩与高考成绩的各校平均总分绘制成了雷达图.M 点表示d 学校入学测试平均总分大约520分,N 点表示A 学校高考平均总分大约660分,则下列叙述不正确的是( )A .各校人学统一测试的成绩都在300分以上B .高考平均总分超过600分的学校有4所C .B 学校成绩出现负增幅现象D .“普通高中”学生成绩上升比较明显 【答案】B 【解析】 【分析】依次判断每个选项的正误,得到答案. 【详解】A. 各校人学统一测试的成绩都在300分以上,根据图像知,正确B. 高考平均总分超过600分的学校有4所,根据图像知,只有ABC 三所,错误C. B 学校成绩出现负增幅现象,根据图像,高考成绩低于入学测试,正确D. “普通高中”学生成绩上升比较明显,根据图像,“普通高中”高考成绩都大于入学测试,正确. 故答案选B 【点睛】本题考查了雷达图的知识,意在考查学生的应用能力和解决问题的能力.4.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A 层班级,生物在B 层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有 第一节第二节第三节第四节地理B层2班化学A层3班地理A层1班化学A层4班生物A层1班化学B层2班生物B层2班历史B层1班物理A层1班生物A层3班物理A层2班生物A层4班物理B层2班生物B层1班物理B层1班物理A层4班政治1班物理A层3班政治2班政治3班A.8种B.10种C.12种D.14种【答案】B【解析】【分析】根据表格进行逻辑推理即可得到结果.【详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【点睛】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.5.设地球的半径为,地球上,两地都在北纬的纬度线上去,且其经度差为,则,两地的球面距离是()A.B.C.D.【答案】C【解析】分析:设在北纬纬圆的圆心为,球心为,连结,根据地球纬度的定义,算出小圆半径,由两地经度差为,在中算出,从而得到,利用球面距离的公式即可得到两地球面的距离.详解:设在北纬纬圆的圆心为,球心为,连结,则平面, 在中,,同理,两地经度差为,, 在中,,由此可得是边长为的等边三角形,得,两地球面的距离是,故选C.点睛:本题考查地球上北纬圆上两点球的距离,着重考查了球面距离及相关计算,经纬度等基础知识,考查运算求解能力,考查空间想象能力,属于中档题.6.已知变量x ,y 满足约束条件1031010x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .1B .2C .3D .4【答案】B 【解析】画出二元一次不等式所示的可行域,目标函数为截距型,2y x z =-+,可知截距越大z 值越大,根据图象得出最优解为(1,0),则2z x y =+的最大值为2,选B.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),“≤”取下方,“≥”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. 7.空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r ,OC c =u u u r r,点M 在线段AC 上,且2AM MC =,点N 是OB 的中点,则MN =u u u u r( )A .212323a b c +-r r rB .212323a b c -+r r rC .112323a b c -+-r r rD .111323a b c +-r r r【答案】C 【解析】分析:由空间向量加法法则得到MN MO ON MA AO ON =+=++u u u u v u u u u v u u u v u u u v u u u v u u u v,由此能求出结果.详解:由题空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r ,OC c =u u u r r,点M 在线段AC 上,且2AM MC =,点N 是OB 的中点,则()221,,332MA CA OA OC ON OB ==-=u u u v u u u v u u u v u u u v u u u v u u u v MN MO ON MA AO ON =+=++u u u u v u u u u v u u u v u u u v u u u v u u u v()2132a c a b =--+v v v v 112 .323a b c =-+-r r r故选C.点睛:本题考查向量的求法,考查空间向量加法法则等基础知识,考查运算求解能力,考查数形结合思想,是基础题.8.从2018名学生志愿者中选择50名学生参加活动,若采用下面的方法选取:先用简单随机抽样从2018人中剔除18人,剩下的2000人再按系统抽样的方法抽取50人,则在2018人中,每人入选的概率( ) A .不全相等B .均不相等C .都相等,且为140D .都相等,且为251009【答案】D 【解析】 【分析】根据简单随机抽样与系统抽样方法的定义,结合概率的意义,即可判断出每个人入选的概率. 【详解】在系统抽样中,若所给的总体个数不能被样本容量整除时,则要先剔除几个个体,然后再分组,在剔除过程中,每个个体被剔除的概率相等,所以,每个个体被抽到包括两个过程,一是不被剔除,二是选中,这两个过程是相互独立的, 因此,每个人入选的概率为502520181009=. 故选:D. 【点睛】本题考查简单随机抽样和系统抽样方法的应用,也考查了概率的意义,属于基础题. 9.已知a ,b ,c 均为正实数,则a b ,b c ,ca的值( ) A .都大于1B .都小于1C .至多有一个不小于1D .至少有一个不小于1【答案】D 【解析】分析:对每一个选项逐一判断得解.详解:对于选项A,如果a=1,b=2,则112a b =<,所以选项A 是错误的.对于选项B,如果a=2,b=1,则21a b =>,所以选项B 是错误的.对于选项C,如果a=4,b=2,c=1,则421,2a b ==>2211b c ==>,所以选项C 是错误的.对于选项D,假设1,1,1a b cb c a<<<,则3,3a b c a b c b c a b c a ++<++≥=Q ,显然二者矛盾,所以假设不成立,所以选项D 是正确的.故答案为:D.点睛:(1)本题主要考查反证法,意在考查学生对该知识的掌握水平.(2)三个数,,a b c 至少有一个不小于1的否定是 1.1, 1.a b c <<<10.双曲线()2222100x y a b a b-=>,>的左右焦点分别为F 1,F 2,过F 1的直线交曲线左支于A ,B 两点,△F 2AB 是以A 为直角顶点的直角三角形,且∠AF 2B =30°.若该双曲线的离心率为e ,则e 2=( ) A .1143+ B .1353+ C .1663- D .19103-【答案】D 【解析】 【分析】设22BF m =,根据2F AB ∆是以A 为直角顶点的直角三角形,且230AF B ∠=o,以及双曲线的性质可得212(33),2(23)AF a AF a =-=-,再根据勾股定理求得,a c 的关系式,即可求解.【详解】由题意,设22BF m =,如图所示,因为2F AB ∆是以A 为直角顶点的直角三角形,且230AF B ∠=o, 由212AF AF a -=,所以132AF m a =-, 由212BF BF a -=,所以122BF m a =-,所以11AF BF AB +=,即3222m a m a m -+-=, 所以2(31)m a =-,所以232(31)2(33)AF a a =⋅-=-,12(33)22(23)AF a a a =--=-, 在直角12F AF ∆中,222124AF AF c +=,即222224(33)4(23)4a a c -+-=,整理得22(19103)a c -=,所以22219103c e a==-,故选D.【点睛】本题主要考查了双曲线的定义,以及双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围)..11.函数2()sin ln(1)f x x x =⋅+的部分图像可能是 ( )A .B .C .D .【答案】B 【解析】 【分析】先判断函数奇偶性,再根据sin x 存在多个零点导致()f x 存在多个零点,即可判断出结果. 【详解】∵22()sin()ln(1)(sin ln(1))()f x x x x x f x -=-+=-+=-,∴()f x 为奇函数,且sin x 存在多个零点导致()f x 存在多个零点,故()f x 的图像应为含有多个零点的奇函数图像.故选B. 【点睛】本题主要考查函数图像的识别,熟记函数性质即可,属于常考题型.12.函数()f x lnx ax =-在区间()1,5上是增函数,则实数a 的取值范围是( ) A .(),1-∞ B .(,1]-∞C .1,5⎛⎫-∞ ⎪⎝⎭D .1(]5-∞,【答案】D 【解析】 【分析】求出函数的导数,由题意可得()0f x '≥恒成立,转化求解函数的最值即可. 【详解】由函数()ln f x x ax =-,得1()f x a x'=-, 故据题意可得问题等价于()1,5x ∈时,1()0f x a x'=-≥恒成立, 即1a x ≤恒成立,函数1y x =单调递减,故而15a ≤,故选D.【点睛】本题主要考查函数的导数的应用,函数的单调性以及不等式的解法,函数恒成立的等价转化,属于中档题. 二、填空题(本题包括4个小题,每小题5分,共20分)13.某旋转体的三视图如图所示,则该旋转体的侧面积是________.主视图 左视图 俯视图 10π 【解析】 【分析】根据已知可得该几何体是一个圆锥,求出底面半径和母线长,代入侧面积公式,可得答案. 【详解】解:由已知有可得:该几何体是一个圆锥, 底面直径为2,底面半径r =1, 高为3,故母线长l 223110=+= 故圆锥的侧面积S =πrl 10π=, 10π 【点睛】本题考查的知识点是空间几何体的三视图,圆锥的体积和表面积,难度不大,属于基础题.14.已知曲线C 的方程为0(),F x y =,集合{(,)|(,)0}T x y F x y ==,若对于任意的11(,)x y T ∈,都存在22(,)x y T ∈,使得12120x x y y +=成立,则称曲线C 为∑曲线.下列方程所表示的曲线中,是∑曲线的有__________(写出所有∑曲线的序号)①2212x y +=;②221x y -=;③22y x =;④||1y x =+ 【答案】①③ 【解析】 【分析】将问题转化为:对于曲线C 上任意一点()11,P x y ,在曲线上存在着点()22,Q x y 使得OP OQ ⊥,据此逐项判断曲线是否为∑曲线. 【详解】①2212x y +=的图象既关于x 轴对称,也关于y 轴对称,且图象是封闭图形, 所以对于任意的点()11,P x y ,存在着点()22,Q x y 使得OP OQ ⊥,所以①满足;②221x y -=的图象是双曲线,且双曲线的渐近线斜率为±1,所以渐近线将平面分为四个夹角为90︒的区域,当,P Q 在双曲线同一支上,此时90POQ ∠<︒,当,P Q 不在双曲线同一支上,此时90POQ ∠>︒, 所以90POQ ∠≠︒,OP OQ ⊥不满足,故②不满足;③22y x =的图象是焦点在x 轴上的抛物线,且关于x 轴对称,连接OP ,再过O 点作OP 的垂线,则垂线一定与抛物线交于Q 点,所以90POQ ∠=︒,所以OP OQ ⊥,所以③满足;④取()0,1P ,若OP OQ ⊥,则有20y =,显然不成立,所以此时OP OQ ⊥不成立,所以④不满足. 故答案为:①③. 【点睛】本题考查曲线与方程的新定义问题,难度较难.(1)对于新定义的问题,首先要找到问题的本质:也就是本题所考查的主要知识点,然后再解决问题;(2)对于常见的12120x x y y +=,一定要能将其与向量的数量积为零即垂直关系联系在一起.15.已知函数f(x)=kx 3+3(k-1)x 2-k 2+1(k>0)在(0,4)上是减函数,则实数k 的取值范围是____________ 【答案】1(0,]3. 【解析】分析:先求导,再根据导函数零点分布确定不等式,解不等式得结果.详解:因为2()36(1)0(0,4)f x kx k x x =+-∈'=, ,所以2(1)k x k-=因为函数f(x)=kx 3+3(k-1)x 2-k 2+1(k>0)在(0,4)上是减函数, 所以2(1)1400.3k k k k -≥>∴<≤Q 点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.16.复数z 满足21z i -+=,则z 的最小值是___________.1 【解析】 【分析】点z 对应的点在以()2,1-为圆心,1为半径的圆上,要求||z 的最小值,只要找出圆上的点到原点距离最小的点即可,求出圆心到原点的距离,最短距离要减去半径即可得解. 【详解】解:Q 复数z 满足21z i -+=,∴点z 对应的点在以()2,1-为圆心,1为半径的圆上,要求||z 的最小值,只要找出圆上的点到原点距离最小的点即可,11【点睛】本题考查复数的几何意义,本题解题的关键是看出复数对应的点在圆上,根据圆上到原点的最短距离得到要求的距离,属于基础题.三、解答题(本题包括6个小题,共70分)17.已知数列{}n a 的前n 项和为n S ,且满足13a =,211(2)n n S a n n -=++≥. (1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式并用数学归纳法证明;(2)令11n n n b a a +=⋅,求数列{}n b 的前n 项和n T . 【答案】(1)25a =,37a =,49a =,21n a n =+,N n +∈,见解析;(2)69n n T n =+ 【解析】【分析】 (1)计算2a ,3a ,4a ,猜想可得n a ,然后依据数学归纳法的证明步骤,可得结果.(2)根据(1)得n b ,然后利用裂项相消法,可得结果.【详解】(1)当2n =时,22121S a =++,即238a +=,解得25a =当3n =时,23231S a =++,即33515a ++=,解得37a =当4n =时,24341S a =++,即435724a +++=,解得49a =猜想21n a n =+,下面用数学归纳法证明:当1n =时,12113a =⨯+=,猜想成立假设当()N n k k +=∈时, 猜想成立,即21k a k =+,2(321)22k k k S k k ++==+, 则当1n k =+时,21(1)1k k S a k +=+++,21(1)1k k k S a a k +∴+=+++,21(1)1k k k a a k S +∴=+++-,()22121(1)122(1)1k a k k k k k +=++++-+=++所以猜想成立.综上所述, 对于任意N n +∈,21n a n =+均成立.(2)由(1)得1111(21)(23)22123n b n n n n ⎛⎫==- ⎪++++⎝⎭则数列{}n b 的前n 项和1111111235572123n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦L 111232369n n T n n ⎛⎫=-= ⎪++⎝⎭ 【点睛】本题考查数学归纳法证明方法以及裂项相消法求和,熟练掌握数学归纳法的步骤,同时对常用的求和方法要熟悉,属基础题.18.在直角坐标系xOy 中,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C 的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l 的极坐标方程为ρcos ()4πθ-=.(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)求曲线C 上的点到直线l 的最大距离.【答案】(1)2213x y += (2) 【解析】【分析】【详解】试题分析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l 的普通方程;利用同角三角函数的基本关系,消去θ可得曲线C 的普通方程.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P 到直线l 的距离的最大值.试题解析:⑴由cos 4πρθ⎛⎫-= ⎪⎝⎭()cos sin 4ρθθ+=, ∴:l 40x y +-=由x y sin θθ⎧=⎪⎨=⎪⎩得:C 2213x y += ⑵在:C 2213x y +=上任取一点),sin P θθ,则点P 到直线l 的距离为2sin 432d πθ⎛⎫+- ⎪⎝⎭==≤ ∴当sin =3πθ⎛⎫+ ⎪⎝⎭-1,即56=-θπ时,max d = 考点:1.极坐标方程、参数方程与普通方程的互化,2.点到直线距离公式.19.在平面直角坐标系xOy 中,曲线C的参数方程是,(),,x y sin ααα⎧=⎪⎨=⎪⎩为参数以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,直线l的极坐标方程为()4cos πρθ+=.(Ⅰ)写出曲线C 的普通方程和直线l 的直角坐标方程;;(Ⅱ)已知点A B 、为直线l上的两个动点,且AB =点P 为曲线C 上任意一点,求PAB ∆面积的最大值及此时点P 的直角坐标.【答案】 (Ⅰ)见解析; (Ⅱ)见解析.【解析】【分析】 (Ⅰ)由参数方程利用22cos sin 1αα+=消去α,得到普通方程,由222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩把极坐标化为普通方程。

福建省莆田市仙游华侨中学2019-2020学年高二数学理期末试卷含解析

福建省莆田市仙游华侨中学2019-2020学年高二数学理期末试卷含解析

福建省莆田市仙游华侨中学2019-2020学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 对任意的实数m,直线y=mx+n﹣1与椭圆x2+4y2=1恒有公共点,则n的取值范围是( )A.B.C.D.参考答案:A【考点】椭圆的简单性质.【专题】转化思想;判别式法;圆锥曲线的定义、性质与方程.【分析】直线方程与椭圆方程联立化为(1+4m2)x2+8m(n﹣1)x+4(n﹣1)2﹣1=0,由于直线y=mx+n﹣1与椭圆x2+4y2=1恒有公共点,可得△≥0,解出即可得出.【解答】解:联立,化为(1+4m2)x2+8m(n﹣1)x+4(n﹣1)2﹣1=0,∵直线y=mx+n﹣1与椭圆x2+4y2=1恒有公共点,∴△=64m2(n﹣1)2﹣4(1+4m2)≥0,化为:4n2﹣8n+3≤4m2,由于对于任意的实数m上式恒成立,∴4n2﹣8n+3≤0,解得.∴n的取值范围是.故选:A.【点评】本题考查了直线与椭圆的位置关系、一元二次方程的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.2. 为了从甲乙两人中选一人参加数学竞赛,老师将两人最近的6次数学测试的分数进行统计,甲乙两人的得分情况如茎叶图所示,若甲乙两人的平均成绩分别是,,则下列说法正确的是( )A.,乙比甲成绩稳定,应该选乙参加比赛B.,甲比乙成绩稳定,应该选甲参加比赛C.,甲比乙成绩稳定,应该选甲参加比赛D.,乙比甲成绩稳定,应该选乙参加比赛参考答案:D略3. 设l是直线,α,β是两个不同的平面,则下列说法正确的是( )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥β参考答案:B【考点】空间中直线与直线之间的位置关系.【专题】阅读型;空间位置关系与距离.【分析】由线面平行的性质和面面平行的判定,即可判断A;由线面平行的性质定理和面面垂直的判定定理,即可判断B;由面面垂直的性质和线面的位置关系,即可判断C;由面面垂直的性质定理和线面平行的性质,即可判断D.【解答】解:对于A.若l∥α,l∥β,则α∥β或α,β相交,故A错;对于B.若l∥α,l⊥β,则由线面平行的性质定理,得过l的平面γ∩α=m,即有m∥l,m⊥β,再由面面垂直的判定定理,得α⊥β,故B对;对于C.若α⊥β,l⊥α,则l∥β或l?β,故C错;对于D.若α⊥β,l∥α,若l平行于α,β的交线,则l∥β,故D错.故选B.【点评】本题考查空间直线与平面的位置关系,考查线面平行、垂直的判定和性质,面面垂直的判定和性质,考查空间想象能力,属于中档题和易错题.4. 已知,若是的充分不必要条件,则实数的取值范围为( )A.(-∞,3]B.[2,3]C.(2,3]D.(2,3)参考答案:C略5. 若正数x,y满足,则3x+4y的最小值是()A.24 B.28 C.30 D.25参考答案:D【考点】7C:简单线性规划.【分析】将3x+4y乘以1,利用已知等式代换,展开,利用基本不等式求最小值.【解答】解:正数x,y满足,则(3x+4y)()=13+≥13+2=25,当且仅当时等号成立,所以3x+4y的最小值是25;故选D.6. 已知双曲线以△ABC的顶点B,C为焦点,且经过点A,若△ABC内角的对边分别为a,b,c.且a=4,b=5,c=,则此双曲线的离心率为()A.5﹣B.C.5+D.C【考点】双曲线的简单性质.【分析】由题意,2c′=4,2a′=5﹣,即可求出双曲线的离心率.【解答】解:由题意,2c′=4,2a′=5﹣,∴e==5+,故选C.7. 下列命题中,假命题是()A.?x∈R,3x﹣2>0 B.?x0∈R,tanx0=2C.?x0∈R,lgx0<2 D.?x∈N*,(x﹣2)2>0参考答案:D【考点】命题的真假判断与应用.【分析】①利用指数函数的性质判断.②由于函数y=tanx值域为R,所以tanx=2必有解.③特殊值验证,取x0=10判定为真命题.④特殊值验证,取x=2判定为假命题.【解答】解:①令u=x﹣2,则u∈R,根据指数函数的性质,3u>0,即?x∈R,3x﹣2>0,A 为真命题.②由于函数y=tanx值域为R,所以tanx=2必有解,即?x0∈R,tanx0=2,B为真命题.③根据对数函数的性质,当0<x0<100时,lgx0<2,比如x0=10则lgx0=1<2,C为真命题.④当x=2时,(x﹣2)2=0,?x∈N*,(x﹣2)2>0为假命题故选:D8. 已知△ABC中,AB=,AC=1,且B=30°,则△ABC的面积等于( )D9. 已知点与抛物线的焦点的距离是5,则的值是A.2 B.4C.8 D.16参考答案:B10. 在△ABC中,角A,B,C的对边分别为a,b,c,若,则角B 的值为A. B. C.D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 计算(﹣8﹣7i)×(﹣3i)= .参考答案:﹣21+24i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:原式=24i﹣21,故答案为:﹣21+24i.12. 若两个球的表面积之比是4∶9,则它们的体积之比是。

福建省莆田市仙游县度尾中学2019-2020学年高二期末考试数学(理)试卷

福建省莆田市仙游县度尾中学2019-2020学年高二期末考试数学(理)试卷

理科数学第I 卷(选择题)一、单选题(每题5分,共60分)1.函数1y x x=+的导数是( ) A .11x - B . 211x - C .211x + D .11x+2.已知i 是虚数单位,21iz =+,则复数z 的共轭复数为( )A .1i +B .1i -C .1i --D .1i -+3.设命题p :0x ∀>,sin x x >,则⌝p 为( ) A .0x ∃>,sin x x ≤ B .0x ∀>,sin x x ≤ C .0x ∃≤,sin x x ≤D .0x ∀≤,sin x x ≤4.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10B .20C .40D .805.设随机变量ξ服从正态分布(0,1)N ,若(1)P p ξ>=,则(10)P ξ-<<=( ) A .12p + B .1p -C .12p - D .12p -6.有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X 表示取得次品的次数,则(2)P X ≤=( ) A .38B .1314C .45D .787.袋中有大小完全相同的2个白球和3个黄球,逐个不放回的摸出两球,设“第一次摸得白球”为事件A ,“摸得的两球同色”为事件B ,则()P B A =( ) A .110B .15C .14D .258.直三棱柱ABC —A′B′C′中,AC =BC =AA′,∠ACB =90°,E 为BB′的中点,异面直线CE 与C A '所成角的余弦值是( )A .5 B .55-C .—1010D .10109.已知双曲线222:1y C x b-=的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为M ,2FM =,则双曲线的离心率( ) A .2B .5C .3 D .210.随机变量ζ的分布列如下图,若()0,ξ=E 则()D ξ=( )ξ3-0 3 P13abA .6B .2C .0D .611.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“——”,如图就是一重卦.共有多少种重卦.( )A .12B .16C .32D .6412.已知双曲线22122:1x y C a b -=(0,0)a b >>以椭圆222:143x y C +=的焦点为顶点,左右顶点为焦点,则1C 的渐近线方程为( ) A .30x y ±= B .30x y ±= C .230x y ±= D .320x y ±=第II 卷(非选择题)二、填空题(每题5分,共20分)13.“1m ”是“2m >”的________条件.(选填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)14.复数()()212z m mi m R =-+∈在复平面内的对应点在第三象限,则实数m 的取值范围是________.15.某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法数有__________种(用数字作答).16.动点P 在曲线 y=2+ 1上运动,则点P 与定点(0,1)M -连线的中点N 的轨迹方程为_______.三、解答题(17题10分,其余12分,共70分) 17.已知函数f(x)=- 3a x — 1在1x =- 处取得极值.(1)求实数a 的值;(2)当[2,1]x ∈-时,求函数的最小值.18.如图,抛物线的顶点在原点,圆22(2)4x y -+=的圆心恰是抛物线的焦点.(1)求抛物线的方程;(2)一条直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A 、B 、C 、D 四点,求||||AB CD +的值.19.一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何—个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列及数学期望.20.如图所示,AE ⊥平面ABCD ,四边形AEFB 为矩形,//BC AD ,BA AD ⊥,224AE AD AB BC ====.(1)求证://CF 平面ADE ;(2)求平面CDF 与平面AEFB 所成锐二面角的余弦值.21.已知函数32()f x x bx ax d =+++的图象经过点()0,2P ,且在点()()1,1M f --处的切线方程为670x y -+=. (1)求函数()y f x =的解析式; (2)求函数()y f x =的单调区间22.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>经过点(4,0)A ,其离3(1)求椭圆E 的方程;(2)已知P 是椭圆E 上一点,1F ,2F 为椭圆E 的焦点,且122F PF π∠=,求点P 到y 轴的距离.理科数学答案一、选择(每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BAACCDCDBADA二、填空(每小题5分,共20分)13.必要不充分 14.()1,0- 15.36 16.24y x = 三、解答题(17题10分,其余12分,共70分)17.解:(1)3'2 ()31()33f x x ax f x x a =⇒=---,函数3()3 1 f x x ax =--在1x =-处取得极值,所以有2'3(1()01130)a f a --==⇒-=⇒;(2)由(1)可知:3'2()31()333(1)(1 )f x x x f x x x x =--=-=+-⇒,当(2,1)x ∈--时,'()0f x >,函数()f x 单调递增,当(1,1)x ∈-时,'()0f x <,函数()f x 单调递减,故函数在1x =-处取得极大值,因此3(1)(1) =13(1)1f -=--⨯--,3(2)(2)3(2) 1 3=f -=--⨯---,3(1)131 1=3f =-⨯--,故函数()f x 的最小值为3-.18.解:(1)圆的圆心坐标为(2,0),即抛物线的焦点为(2,0)F ∴4p =∴抛物线方程为(2)由题意知直线AD 的方程为 即代入得=0设1122(,)(,)A x y D x y 、,则126x x +=,126410AD x x p =++=+=∴19.解:(1)由题可知:取出的3个小球所有的结果数3620C =含有编号为4的结果数1221242416C C C C +=所以所求得概率为164205(2)X 所有得可能取值为:3,4,5()3611320C P X === ()12212323369420C C C C C P X +=== ()36251015202C P X C ====所以X 的分布列为所以191345 4.4520202EX =⨯+⨯+⨯= 20. 解:(1)∵四边形ABEF 为矩形 //BF AE ∴ 又BF ⊄平面ADE ,AE ⊂平面ADE //BF ∴平面ADE 又//BC AD , 同理可得://BC 平面ADE 又BF BC B ⋂=,BF ,BC ⊂ 平面BCF ∴平面//BCF 平面ADE又CF 平面BCF //CF ∴平面ADE(2)如图,以A 为坐标原点,建立空间直角坐标系A xyz -,则(2,2,0)C ,(0,4,0)D ,() 2,0,4F(0,4,0)AD ∴=,(2,2,0)CD =-,(0,2,4)CF =-设(,,)x y z =n 是平面CDF 的一个法向量,则 00n CD n CF ⎧⋅=⎨⋅=⎩即020x y y z -=⎧⎨-=⎩令2y =,解得21x z =⎧⎨=⎩ (2,2,1)n ∴=又AD 是平面AEFB 的一个法向量,2cos ,3||n AD n AD n AD ⋅∴==⋅ ∴平面CDF 与平面AEFB 所成锐二面角的余弦值为23.21.解:(1)∵f (x )的图象经过P (0,2),∴d=2, ∴f (x )=x 3+bx 2+a x+2,f'(x )=3x 2+2bx+a . ∵点M (﹣1,f (﹣1))处的切线方程为6x ﹣y+7=0 ∴f'(-1)=3﹣2b+a =6①,还可以得到,f (﹣1)=y=1,即点M (﹣1,1)满足f (x )方程,得到﹣1+b ﹣a+2=1② 由①、②联立得b=a =﹣3 故所求的解析式是f (x )=x 3﹣3x 2﹣3x+2. (2)f'(x )=3x 2﹣6x ﹣3.令3x 2﹣6x ﹣3=0,即x 2﹣2x ﹣1=0.解得x 1=1- ,x 2=1+.当x<1-,或x>1+时,f'(x )>0;当1-<x<1+时,f'(x )<0.故f (x )的单调增区间为(﹣∞,1﹣),(1+,+∞);单调减区间为(1﹣,1+)22.解: (1)因为椭圆2222:1x y E a b+=经过点()4,0A ,所以2161a =,解得4a =.又椭圆E 的离心率3c e a ==,所以23c =. 所以2224b a c =-=. 因此椭圆E 的方程为221164x y +=.(2)方法一:由椭圆E 的方程221164x y +=,知()123,0F -,()22,0F .设(),P x y .因为122F PF π∠=,所以120PF PF ⋅=,所以2212x y +=.由22221,16412x y x y ⎧+=⎪⎨⎪+=⎩解得2323x =.所以x =,即P 到y. 方法二:由椭圆E 的方程221164x y +=,知c =,12F F =12F F =设(),P x y . 因为122F PF π∠=,所以222121248PF PF F F +==.由椭圆的定义可知,1228PF PF a +==, 所以()()222121212216PF PF PF PF PF PF ⋅=+-+=,所以三角形的面积121·42S PF PF ==.又121·2S F F y y ==,所以4y =,所以3y =. 代入221164x y +=得,2323x =. 所以x =,即P 到y.。

2019-2020年高二下学期期末考试数学理试题 含答案

2019-2020年高二下学期期末考试数学理试题 含答案

2019-2020年高二下学期期末考试数学理试题 含答案参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )。

如果事件A 、B 相互独立,那么P (A·B )=P (A )·P (B )。

若(x ,y ),…,(x ,y )为样本点,=+为回归直线,则 =,==∑∑=-=-----ni ini i ix xy y x x121)())((=∑∑=-=----ni i ni iixn x yx n yx 1221,=-。

K=))()()(()(2d b c a d c b a bc ad n ++++-,其中n=a+b+c+d 为样本容量一、选择题共10小题,每小题3分,共30分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 函数f (x )=3x -x 的单调增区间是A. (0,+)B. (-,-1)C. (-1,1)D. (1,+)2. (x+1)的展开式中x 的系数为A. 4B. 6C. 10D. 203. 在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B 。

若C 为线段AB 的中点,则点C 对应的复数是A. 4+8iB. 8+2iC. 4+iD. 2+4i4. 用数字0,1,2,3组成无重复数字的四位数,这样的四位数的个数为A. 24B. 18C. 16D. 125. =A. 1B. e -1C. eD. e+16. 高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计人数后,得到2×2列联表:则随机变量K 的观测值为班组与成绩统计表 优秀 不优秀 总计 甲班 11 34 45 乙班 8 37 45 总计1971 90A. 0.600B. 0.828C. 2.712D. 6.0047. 设随机变量~N (0,1),若P (≥1)=p ,则P (-1<<0)=A. 1-pB. pC. +pD. -P8. 某游戏规则如下:随机地往半径为l的圆内投掷飞标,若飞标到圆心的距离大于,则成绩为及格;若飞标到圆心的距离小于,则成绩为优秀;若飞标到圆心的距离大于且小于,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为A. B. C. D.9. 从甲、乙等5名志愿者中选出4名,分别从事A,B,C,D四项不同的工作,每人承担一项。

2019-2020学年福建省莆田市数学高二第二学期期末考试试题含解析

2019-2020学年福建省莆田市数学高二第二学期期末考试试题含解析

2019-2020学年福建省莆田市数学高二第二学期期末考试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.某体育彩票规定: 从01到36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后再从01到17个号中选出3个连续的号,从19到29个号中选出2 个连续的号,从30到36个号中选出1个号组成一注.若这个人要把这种要求的号全买,至少要花的钱数为( ) A .2000元B .3200 元C .1800元D .2100元2.设集合{}2|log (1)1M x x =-<,{|2}N x x =≥|,则M N ⋃=() A .{|23}x x ≤< B .{|2}x x ≥C .{|1}x x >D .3|}1{x x ≤<3.设(){},|0,01A x y x m y =<<<<,s 为()1ne +的展开式的第一项(e 为自然对数的底数),nm s =,若任取(),a b A ∈,则满足1ab >的概率是( ) A .2eB .1eC .1e e- D .2e e- 4.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元) 8.28.610.011.311.9支出y (万元) 6.27.5 8.0 8.5 9.8根据表中数据可得回归直线方程$$0.76y x a=+,据此估计,该社区一户年收入为20万元家庭的年支出约为( ) A .15.2B .15.4C .15.6D .15.85.曲线sin (02)y x x π=≤≤与x 轴所围成的封闭图形的面积为( ) A .2B .2πC .πD .46.函数()f x 在其定义域内可导,其图象如图所示,则导函数()'y f x =的图象可能为()A .B .C .D .7.函数()y f x =()x R ∈在(]1∞-,上单调递减,且(1)f x +是偶函数,若(22)(2)f x f -> ,则x 的取值范围是( )A .(2,+∞)B .(﹣∞,1)∪(2,+∞)C .(1,2)D .(﹣∞,1)8.在(x -3)10的展开式中,6x 的系数是( ) A .-27510CB .27410CC .-9510CD .9410C9.函数()1ln1x f x sin x -⎛⎫= ⎪+⎝⎭的图象大致为 A . B .C .D .10.已知i 为虚数单位,15zi i =+,则复数z 的虚部为( ) A .1-B .1C .i -D .i11.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共有( ) A .24对B .30对C .48对D .60对12.函数()f x 是定义在R 上的奇函数,当0x >时,()21f x x =+,则()1f -= A .1B .1-C .2D .2-二、填空题(本题包括4个小题,每小题5分,共20分) 13.一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35; ②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为43; ③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为25; ④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627. 其中所有正确结论的序号是________.14.复数z 满足21z i -+=,则z 的最小值是___________.15.设随机变量ξ服从二项分布16,2B ξ⎛⎫ ⎪⎝⎭~ ,则()3P ξ≤等于__________16.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A 的概率分别为56、78、34,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A 的概率为____三、解答题(本题包括6个小题,共70分)17.某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[]50,100,按照区间[)50,60,[)60,70,[)70,80,[)80,90,[]90,100进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;(2)从乙班[)70,80,[)80,90,[]90,100分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自[)80,90发言的人数为随机变量X ,求X 的分布列和期望. 18.已知121211151034.z i z i z zz z =+=-=+,,,求 19.(6分)某手机代工厂对生产线进行升级改造评估,随机抽取了生产线改造前、后100个生产班次的产量进行对比,改造前、后手机产量(单位:百部)的频率分布直方图如下:(1)记A 表示事件:“改造前手机产量低于5000部”,视频率为概率,求事件A 的概率;(2)填写下面22⨯列联表,并根据列联表判断是否有99%的把握认为手机产量与生产线升级改造有关:手机产量5000<部 手机产量5000≥部 改造前 改造后(3)根据手机产量的频率分布直方图,求改造后手机产量的中位数的估计值(精确到0.01).参考公式:随机变量2K 的观测值计算公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.临界值表:20()P K k ≥ 0.1000.050 0.010 0.0010k2.7063.841 6.635 10.82820.(6分)如图,三棱柱ABC-111A B C 中,1CC ⊥平面ABC ,AC ⊥AB ,AB=AC=2,C 1C =4,D 为BC 的中点(I )求证:AC ⊥平面AB 11B A ; (II )求证:1A C ∥平面AD 1B ;(III )求平面1ADB 与平面11ACC A 所成锐二面角的余弦值21.(6分)已知函数32()10f x x mx nx =+++有两个极值点1-和3.(1)求m ,n 的值;(2)若函数()f x 的图象在点(1,(1))P f 的切线为l ,切线l 与x 轴和y 轴分别交于A ,B 两点,点O 为坐标原点,求AOB ∆的面积.22.(8分)选修4-5:不等式选讲 已知函数()2f x x =-(Ⅰ)解不等式()()216f x f x ++≥;(Ⅱ)对()1,0a b a b +=>及x R ∀∈,不等式()()41f x m f x a b---≤+恒成立,求实数m 的取值范围.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.D 【解析】第1步从01到17中选3个连续号有15种选法;第2步从19到29中选2个连续号有10种选法;第3步从30到36中选1个号有7种选法.由分步计数原理可知:满足要求的注数共有151071050⨯⨯=注,故至少要花105022100⨯=,故选D. 2.C 【解析】 【分析】解出集合M 中的不等式即可 【详解】因为{}{}2|log (1)1|13M x x x x =-<=<<,{|2}N x x =≥ 所以M N ⋃={|1}x x > 故选:C 【点睛】本题考查的是解对数不等式及集合的运算,属于基本题. 3.D 【解析】分析:由已知求得m ,画出A 表示的平面区域和满足ab >1表示的平面区域,求出对应的面积比即可得答案.详解: 由题意,s=0n nn C e e =,∴e =,则A={(x ,y )|0<x <m ,0<y <1}={(x ,y )|0<x <e ,0<y <1}, 画出A={(x ,y )|0<x <e ,0<y <1}表示的平面区域, 任取(a ,b )∈A ,则满足ab >1的平面区域为图中阴影部分, 如图所示:计算阴影部分的面积为S 阴影=11(1)edx x-⎰=(x ﹣lnx )1|e=e ﹣1﹣lne+ln1=e ﹣1.所求的概率为P=e-2=S S e阴影矩形, 故答案为:D .点睛:(1)本题主要考查几何概型,考查定积分和二项式定理,意在考查学生对这些知识的掌握水平和分析推理能力.(1)解答本题的关键是利用定积分求阴影部分的面积. 4.C 【解析】 【分析】由于回归直线方程过中心点(,)x y ,所以先求出,x y 的值,代入回归方程中,求出$a,可得回归直线方程,然后令20x =可得结果 【详解】 解:因为1(8.28.610.011.311.9)105x =⨯++++=, 1(6.27.58.08.59.8)85y =⨯++++=所以$80.76100.4a =-⨯=,所以回归直线方程为0.760.4y x =+$所以当20x =时,$0.76200.415.6y =⨯+= 故选: C 【点睛】此题考查线性回归方程,涉及平均值的计算,属于基础题 5.D 【解析】 【分析】曲线sin (02)y x x π=≤≤与x 轴所围成图形的面积,根据正弦函数的对称性,就是求正弦函数sin y x =在[]0,π上的定积分的两倍. 【详解】解:曲线sin (02)y x x π=≤≤与x 轴所围成图形的面积为:[]002sin 2(cos )|2cos (cos0)4xdx x πππ=-=---=⎰.故选:D . 【点睛】本题考查了定积分,考查了微积分基本定理,求解定积分问题,关键是找出被积函数的原函数,属于基础题. 6.C 【解析】 【分析】函数的单调性确定()f x '的符号,即可求解,得到答案. 【详解】由函数()f x 的图象可知,函数()f x 在自变量逐渐增大的过程中,函数先递增,然后递减,再递增,当0x >时,函数()f x 单调递增,所以导数()f x '的符号是正,负,正,正,只有选项C 符合题意. 故选:C . 【点睛】本题主要考查了函数的单调性与导数符号之间的关系,其中解答中由()f x 的图象看函数的单调性,得出导函数()f x '的符号是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 7.B 【解析】 【分析】根据题意分析()f x 的图像关于直线1x =对称,即可得到()f x 的单调区间,利用对称性以及单调性即可得到x 的取值范围。

2019-2020学年高二(下)期末数学试卷(理科)带答案

2019-2020学年高二(下)期末数学试卷(理科)带答案

2019-2020学年高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)命题“∃x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.∃x0∈(0,+∞),lnx0≠x0﹣1 B.∃x0∉(0,+∞),lnx0=x0﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣12.(5分)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.(5分)数列{a n}、{b n}满足b n=2an(n∈N*),则“数列{a n}是等差数列”是“数列{b n}是等比数列”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也必要条件4.(5分)图中共顶点的椭圆①、②与双曲线③、④的离心率分别为a1、a2、a3、a4,其大小关系为()A.a1<a2<a3<a4,B.a2<a1<a3<a4,C.a1<a2<a4<a3,D.a2<a1<a4<a35.(5分)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C 的方程是()A.B.C.D.6.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m 7.(5分)在三角形ABC中,如果(a+b+c)(b+c﹣a)=3bc,那么A等于()A.30°B.60°C.120° D.150°8.(5分)正三棱柱ABC﹣A1B1C1的棱长都为2,E,F,G为AB,AA1,A1C1的中点,则B1F 与面GEF成角的正弦值()A.B.C.D.9.(5分)如图,已知双曲线=1(a>0,b>0)上有一点A,它关于原点的对称点为B,点F为双曲线的右焦点,且满足AF⊥BF,设∠ABF=α,且α∈[,],则双曲线离心率e的取值范围为()A.[,2+]B.[,]C.[,]D.[,+1] 10.(5分)设实数x,y满足,则xy的最大值为()A.B.C.12 D.1611.(5分)下列命题中,正确命题的个数是()①命题“∃x∈R,使得x3+1<0”的否定是““∀x∈R,都有x3+1>0”.②双曲线﹣=1(a>0,a>0)中,F为右焦点,A为左顶点,点B(0,b)且=0,则此双曲线的离心率为.③在△ABC中,若角A、B、C的对边为a、b、c,若cos2B+cosB+cos(A﹣C)=1,则a、c、b成等比数列.④已知,是夹角为120°的单位向量,则向量λ+与﹣2垂直的充要条件是λ=.A.1 个B.2 个C.3 个D.4 个12.(5分)设x∈R,对于使﹣x2+2x≤M成立的所有常数M中,我们把M的最小值1叫做﹣x2+2x的上确界.若a,b∈R+,且a+b=1,则的上确界为()A.﹣5 B.﹣4 C.D.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)若命题“∃x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值范围为.14.(5分)已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,共面,则λ=.15.(5分)等差数列{a n},{b n}的前n项和分别为S n、T n,若=,则=.16.(5分)已知a>b,且ab=1,则的最小值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.18.(12分)已知命题p:“存在”,命题q:“曲线表示焦点在x轴上的椭圆”,命题s:“曲线表示双曲线”(1)若“p且q”是真命题,求m的取值范围;(2)若q是s的必要不充分条件,求t的取值范围.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知抛物线C的顶点为坐标原点,焦点为F(0,1),(1)求抛物线C的方程;(2)过点F作直线l交抛物线于A,B两点,若直线AO,BO分别与直线y=x﹣2交于M,N两点,求|MN|的取值范围.21.(12分)设S n是数列[a n}的前n项和,.(1)求{a n}的通项;(2)设b n=,求数列{b n}的前n项和T n.22.(12分)已知双曲线x2﹣y2=1的左、右顶点分别为A1、A2,动直线l:y=kx+m 与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围,并求x2﹣x1的最小值;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1•k2是定值吗?证明你的结论.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)命题“∃x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.∃x0∈(0,+∞),lnx0≠x0﹣1 B.∃x0∉(0,+∞),lnx0=x0﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣1【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀x∈(0,+∞),lnx≠x﹣1,故选:C【点评】本题主要考查含有量词的命题的否定,比较基础.2.(5分)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【分析】由条件利用正弦定理可得sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A=,由此可得△ABC的形状.【解答】解:△ABC的内角A,B,C所对的边分别为a,b,c,∵bcosC+ccosB=asinA,则由正弦定理可得sinBcosC+sinCcosB=sinAsinA,即sin(B+C)=sinAsinA,可得sinA=1,故A=,故三角形为直角三角形,故选B.【点评】本题主要考查正弦定理以及两角和的正弦公式、诱导公式的应用,根据三角函数的值求角,属于中档题.3.(5分)数列{a n}、{b n}满足b n=2an(n∈N*),则“数列{a n}是等差数列”是“数列{b n}是等比数列”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也必要条件【分析】根据充分条件和必要条件的定义结合等比数列和等差数列的定义进行判断即可.【解答】解:若数列{a n}是等差数列,设公差为d,则当n≥2时,=为非零常数,则数列{b n}是等比数列,若数列{b n}是等比数列,设公比为q,则当n≥2时,===q,则a n﹣a n﹣1=2q为常数,则数列{a n}是等差数列,则“数列{a n}是等差数列”是“数列{b n}是等比数列”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,根据等比数列和等差数列的定义是解决本题的关键.4.(5分)图中共顶点的椭圆①、②与双曲线③、④的离心率分别为a1、a2、a3、a4,其大小关系为()A.a1<a2<a3<a4,B.a2<a1<a3<a4,C.a1<a2<a4<a3,D.a2<a1<a4<a3【分析】先根据椭圆越扁离心率越大判断a1、a2的大小,再由双曲线开口越大离心率越大判断a3、a4的大小,最后根据椭圆离心率大于0小于1并且抛物线离心率大于1可得到最后答案.【解答】解:根据椭圆越扁离心率越大可得到0<a1<a2<1根据双曲线开口越大离心率越大得到1<a3<a4∴可得到a1<a2<a3<a4故选A.【点评】本题主要考查椭圆和双曲线的离心率大小的判断.考查对基础知识的理解和记忆.5.(5分)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C 的方程是()A.B.C.D.【分析】由已知可知椭圆的焦点在x轴上,由焦点坐标得到c,再由离心率求出a,由b2=a2﹣c2求出b2,则椭圆的方程可求.【解答】解:由题意设椭圆的方程为.因为椭圆C的右焦点为F(1,0),所以c=1,又离心率等于,即,所以a=2,则b2=a2﹣c2=3.所以椭圆的方程为.故选D.【点评】本题考查了椭圆的标准方程,考查了椭圆的简单性质,属中档题.6.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.故选:B.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.7.(5分)在三角形ABC中,如果(a+b+c)(b+c﹣a)=3bc,那么A等于()A.30°B.60°C.120° D.150°【分析】利用余弦定理表示出cosA,将已知的等式整理后代入求出cosA的值,由A的范围,利用特殊角的三角函数值即可求出A的度数.【解答】解:由(a+b+c)(b+c﹣a)=3bc,变形得:(b+c)2﹣a2=3bc,整理得:b2+c2﹣a2=bc,∴由余弦定理得:cosA==,又A为三角形的内角,则A=60°.故选B【点评】此题考查了余弦定理,利用了整体代入的思想,余弦定理很好的建立了三角形的边角关系,熟练掌握余弦定理是解本题的关键.8.(5分)正三棱柱ABC ﹣A 1B 1C 1的棱长都为2,E ,F ,G 为 AB ,AA 1,A 1C 1的中点,则B 1F 与面GEF 成角的正弦值( )A .B .C .D .【分析】利用等体积,计算B 1到平面EFG 距离,再利用正弦函数,可求B 1F 与面GEF 成角的正弦值.【解答】解:取A 1B 1中点M ,连接EM ,则EM ∥AA 1,EM ⊥平面ABC ,连接GM ∵G 为A 1C 1的中点,棱长为∴GM=B 1C 1=1,A 1G ═A 1F=1,FG=,FE=,GE=在平面EFG 上作FN ⊥GE ,则∵△GFE 是等腰三角形,∴FN=,∴S △GEF =GE ×FN=, S △EFB1=S 正方形ABB1A1﹣S △A1B1F ﹣S △BB1E ﹣S △AFE =,作GH ⊥A 1B 1,GH=,∴V 三棱锥G ﹣FEB1=S △EFB1×GH=,设B 1到平面EFG 距离为h ,则V 三棱锥B1﹣EFG =S △GEF =, ∵V 三棱锥G ﹣FEB1=V 三棱锥B1﹣EFG , ∴,∴h= 设B 1F 与平面GEF 成角为θ,∵B 1F=∴sinθ==∴B1F与面GEF所成的角的正弦值为.故选A.【点评】本题考查线面角,考查三棱锥的体积计算,考查转化思想,解题的关键是利用等体积计算点到面的距离.9.(5分)如图,已知双曲线=1(a>0,b>0)上有一点A,它关于原点的对称点为B,点F为双曲线的右焦点,且满足AF⊥BF,设∠ABF=α,且α∈[,],则双曲线离心率e的取值范围为()A.[,2+]B.[,]C.[,]D.[,+1]【分析】利用S△ABF =2S△AOF,先求出e2=,再根据α∈[,],即可求出双曲线离心率的取值范围.【解答】解:设左焦点为F',令|AF|=r1,|AF'|=r2,则|BF|=|F'A|=r2,∴r2﹣r1=2a,∵点A关于原点O的对称点为B,AF⊥BF,∴|OA|=|OB|=|OF|=c,∴r22+r12═4c2,∴r1r2=2(c2﹣a2)∵S△ABF =2S△AOF,∴r1r2═2•c2sin2α,∴r1r2═2c2sin2α∴c2sin2α=c2﹣a2∴e2=,∵α∈[,],∴sin2α∈[,],∴e2=∈[2,(+1)2]∴e∈[,+1].故选:B.【点评】本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要认真审题,注意三角函数性质的灵活运用.10.(5分)设实数x,y满足,则xy的最大值为()A.B.C.12 D.16【分析】作出不等式组对应的平面区域,利用基本不等式进行求解即可.【解答】解:作出不等式组对应的平面区域如图;由图象知y≤10﹣2x,则xy≤x(10﹣2x)=2x(5﹣x))≤2()2=,当且仅当x=,y=5时,取等号,经检验(,5)在可行域内,故xy的最大值为,故选:A【点评】本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.11.(5分)下列命题中,正确命题的个数是()①命题“∃x∈R,使得x3+1<0”的否定是““∀x∈R,都有x3+1>0”.②双曲线﹣=1(a>0,a>0)中,F为右焦点,A为左顶点,点B(0,b)且=0,则此双曲线的离心率为.③在△ABC中,若角A、B、C的对边为a、b、c,若cos2B+cosB+cos(A﹣C)=1,则a、c、b成等比数列.④已知,是夹角为120°的单位向量,则向量λ+与﹣2垂直的充要条件是λ=.A.1 个B.2 个C.3 个D.4 个【分析】①利用命题的否定,即可判断其真假;②利用双曲线的离心率的性质可判断其正误,③将cosB=﹣cos(A+C)代入已知,整理可得sinAsinC=sin2B,再利用正弦定理可判断③的正误;④利用向量的坐标运算与向量垂直的性质可判断其正误.【解答】解:①命题“∃x∈R,使得x3+1<0”的否定是““∃x0∈R,使得+1≥0”,故①错误;②,依题意,F(c,0),A(﹣a,0),∵点B(0,b),∴=(a,b),=(c,﹣b),∵•=0,∴ac﹣b2=0,而b2=c2﹣a2,∴c2﹣ac﹣a2=0,两端同除以a2得:e2﹣e﹣1=0,解得e=或e=(舍去),故②正确;③,在△ABC中,∵A+B+C=180°,∴cosB=﹣cos(A+C),∴原式化为:cos2B﹣cos(A+C)+cos(A﹣C)=1,∴cos(A﹣C)﹣cos(A+C)=1﹣cos2B,∵cos(A﹣C)﹣cos(A+C)=2sinAsinC,1﹣cos2B=2sin2B,∴sinAsinC=sin2B,由正弦定理得:b2=ac,故③a、c、b成等比数列错误;④,∵,是夹角为120°的单位向量,∴(λ+)⊥(﹣2)⇔(λ+)•(﹣2)=0⇔λ﹣2+(1﹣2λ)•=0⇔λ﹣2+(1﹣2λ)×1×1×(﹣)=0⇔2λ﹣2﹣=0,∴λ=.故④正确;综上所述,正确命题的个数是2个.故选B.【点评】本题考查命题的真假判断与应用,着重考查命题的否定,向量的坐标运算,考查余弦定理与正弦定理的综合应用,考查双曲线的性质,综合性强,属于难题.12.(5分)设x∈R,对于使﹣x2+2x≤M成立的所有常数M中,我们把M的最小值1叫做﹣x2+2x的上确界.若a,b∈R+,且a+b=1,则的上确界为()A.﹣5 B.﹣4 C.D.【分析】由题意可知,求的是的最小值,并且a,b>0,a+b=1,由此想到利用1的整体代换构造积为定值.【解答】解:∵=+=++≥+2=,(当且仅当=,即a=,b=时取到等号)∴≤﹣(当且仅当=,即a=,b=时取到上确界)故选:D.【点评】这是一个常见的利用基本不等式求最值的问题,主要是利用题设构造积为定值的技巧.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)若命题“∃x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值范围为﹣1≤a≤3.【分析】先求出命题的否定,再用恒成立来求解【解答】解:命题“∃x∈R,使x2+(a﹣1)x+1<0”的否定是:““∀x∈R,使x2+(a﹣1)x+1≥0”即:△=(a﹣1)2﹣4≤0,∴﹣1≤a≤3故答案是﹣1≤a≤3【点评】本题通过逻辑用语来考查函数中的恒成立问题.14.(5分)已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,共面,则λ=3.【分析】由于向量,共面,利用向量共面定理可得:存在唯一一对实数m,n使得,解出即可.【解答】解:∵向量,共面,∴存在唯一一对实数m,n使得,∴,解得.故答案为:3.【点评】本题考查了向量共面定理,属于基础题.15.(5分)等差数列{a n},{b n}的前n项和分别为S n、T n,若=,则=.【分析】本题考查的知识点是等差数列的性质及等差数列的前n项和,由等差数列中S2n=(2n﹣1)•a n,我们可得,,则=,代入﹣1若=,即可得到答案.=(2n﹣1)•a n,【解答】解:∵在等差数列中S2n﹣1∴,,则=,又∵=,∴=即=故答案为:【点评】在等差数列中,S2n=(2n﹣1)•a n,即中间项的值,等于所有项值的﹣1平均数,这是等差数列常用性质之一,希望大家牢固掌握.16.(5分)已知a>b,且ab=1,则的最小值是2.【分析】将条件进行整理,然后利用基本不等式的解法即可得到结论.【解答】解:∵ab=1,a>b,∴==a﹣b+,当且仅当a﹣b=,即a﹣b=时取等号,故的最小值是2,故答案为:2【点评】本题主要考查基本不等式的应用,将条件转化为基本不等式的形式是解决本题的关键.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.【分析】(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC 的面积.【解答】解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S=bcsinA=.△ABC【点评】此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.18.(12分)已知命题p:“存在”,命题q:“曲线表示焦点在x轴上的椭圆”,命题s:“曲线表示双曲线”(1)若“p且q”是真命题,求m的取值范围;(2)若q是s的必要不充分条件,求t的取值范围.【分析】(1)若“p且q”是真命题,则p,q同时为真命题,建立条件关系,即可求m的取值范围;(2)根据q是s的必要不充分条件,建立条件关系,即可求t的取值范围.【解答】解:(1)若p为真:…(1分)解得m≤﹣1或m≥3…(2分)若q为真:则…(3分)解得﹣4<m<﹣2或m>4…(4分)若“p且q”是真命题,则…(6分)解得﹣4<m<﹣2或m>4…(7分)(2)若s为真,则(m﹣t)(m﹣t﹣1)<0,即t<m<t+1…(8分)由q是s的必要不充分条件,则可得{m|t<m<t+1}⊊{m|﹣4<m<﹣2或m>4}…(9分)即或t≥4…(11分)解得﹣4≤t≤﹣3或t≥4…(12分)【点评】本题主要考查充分条件和必要条件的应用,利用数轴是解决本题的关键,考查学生的推理能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知抛物线C的顶点为坐标原点,焦点为F(0,1),(1)求抛物线C的方程;(2)过点F作直线l交抛物线于A,B两点,若直线AO,BO分别与直线y=x﹣2交于M,N两点,求|MN|的取值范围.【分析】(1)设抛物线的方程为x2=2py,由题意可得p=2,进而得到抛物线的方程;(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,代入抛物线方程,运用韦达定理,求得M,N的横坐标,运用弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可设抛物线的方程为x2=2py,由焦点为F(0,1),可得=1,即p=2,则抛物线的方程为x2=4y;(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,代入x2=4y,得x2﹣4kx﹣4=0,x1+x2=4k,x1x2=﹣4,,由y=x﹣2和y=x联立,得,同理,所以=,令4k﹣3=t,t≠0,则,则,则所求范围为.【点评】本题考查抛物线的方程的求法,注意运用待定系数法,考查直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查化简整理的能力,属于中档题.21.(12分)设S n是数列[a n}的前n项和,.(1)求{a n}的通项;(2)设b n=,求数列{b n}的前n项和T n.(1)由条件可得n≥2时,,整理可得,【分析】故数列{}是以2为公差的等差数列,其首项为,由此求得s n.再由求出{a n}的通项公式.(2)由(1)知,,用裂项法求出数列{b n}的前n项和T n.【解答】解:(1)∵,∴n≥2时,,展开化简整理得,S n﹣S n =2S n﹣1S n,∴,∴数列{}是以2为公差﹣1的等差数列,其首项为.∴,.由已知条件可得.(2)由于,∴数列{b n}的前n项和,∴.【点评】本题主要考查根据递推关系求数列的通项公式,等差关系的确定,用裂项法对数列进行求和,属于中档题.22.(12分)已知双曲线x2﹣y2=1的左、右顶点分别为A1、A2,动直线l:y=kx+m 与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围,并求x2﹣x1的最小值;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1•k2是定值吗?证明你的结论.【分析】(1)由l与圆相切,知m2=1+k2,由,得(1﹣k2)x2﹣2mkx﹣(m2+1)=0,所以由此能求出k的取值范围和x2﹣x1的最小值.(2)由已知可得A1,A2的坐标分别为(﹣1,0),(1,0),,=.由此能证明k1•k2是定值.【解答】解:(1)∵l与圆相切,∴∴m2=1+k2(2分)由,得(1﹣k2)x2﹣2mkx﹣(m2+1)=0,∴,∴k2<1,∴﹣1<k<1,故k 的取值范围为(﹣1,1).(5分)由于,∵0≤k2<1∴当k2=0时,x2﹣x1取最小值.(7分)(2)由已知可得A1,A2的坐标分别为(﹣1,0),(1,0),∴,∴=(10分)====,由m2﹣k2=1,∴为定值.(14分)【点评】本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,双曲线的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.。

2019-2020学年福建省莆田市数学高二下期末考试试题含解析

2019-2020学年福建省莆田市数学高二(下)期末考试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.已知直线l 倾斜角是arctan 2π-,在y 轴上截距是2,则直线l 的参数方程可以是( )A .22x t y t =+⎧⎨=-⎩B .2x ty t =+⎧⎨=-⎩C .22x ty t =⎧⎨=-⎩D .22x ty t =⎧⎨=-⎩2.已知抛物线22(0)y px p =f ,过其焦点且斜率为1的直线交抛物线于,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 A .1x = B .1x =- C .2x =D .2x =-3.已知函数1()1x xf x e e x -=+-+,则关于x 的不等式(21)()f x f x -<解集为() A .1(,1)3B .1(,)(1,)3-∞⋃+∞ C .(1,)+∞D .(,1)-∞4.在三棱锥S ABC -中,2SB SC AB BC AC =====,二面角S BC A --的大小为60o ,则三棱锥S ABC -外接球的表面积是( )A .143πB .163πC .409πD .529π5.用数学归纳法证明4221232n n n ++++⋅⋅⋅+=,则当1n k =+时左端应在n k =的基础上( )A .增加一项B .增加2k 项C .增加2k 项D .增加21k +项6.在2310(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含2x 项的系数为( ) A .45B .55C .120D .1657.已知x ,y 满足不等式组{2,2y xx y x ≤+≥≤则z="2x" +y 的最大值与最小值的比值为A .12B .43C .32D .28.以(1,3)A ,(5,1)B -为端点的线段的垂直平分线方程是 A .38=0+x y -B .3=+0+4x yC .36=0+x y -D .3=+0+3x y9.已知(0,)x ∈+∞有下列各式:12x x +≥,2244322x x x x x +=++≥,3327274333x x x x x x +=+++≥成立,观察上面各式,按此规律若45ax x+≥,则正数a =( )A .34B .45C .44D .5510.已知椭圆的左、右焦点分别为,点在上,且的周长为,则的值是 A .B .C .D .11.在(x -3)10的展开式中,6x 的系数是( ) A .-27510C B .27410CC .-9510CD .9410C 12.已知圆,平面区域,若圆心,且圆C 与x 轴相切,则圆心与点连线斜率的取值范围是( ) A .B .C .D .二、填空题(本题包括4个小题,每小题5分,共20分) 13.设集合A =1|2164x x N ⎧⎫∈≤≤⎨⎬⎩⎭,B ={x|y =ln(x 2-3x)},则A∩B 中元素的个数是________. 14.已知函数()22xsin x tanx,x 0f x e ,x 0-⎧-<=⎨≥⎩,则25πf f 4⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=______. 15.已知33210n n A A =,那么n =__________.16.已知函数()f x 的导函数为'()f x ,且满足()2'()ln f x xf e x =+,则()f e =__________.三、解答题(本题包括6个小题,共70分)17.为了调查患胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人.(1)根据以上数据列出22⨯列联表;(2)能否在犯错误的概率不超过0.01的前提下认为“40岁以上的人患胃病与否和生活规律有关系?”附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.050 0.010 0.0010k 3.841 6.635 10.82818.选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 1cos θρθ=-.点E 的直角坐标为(2,,直线l 与曲线C 交于A B 、两点.(Ⅰ)写出点E 的极坐标和曲线C 的普通方程;(Ⅱ)当tan α=E 到两点A B 、的距离之积.19.(6分)现计划用两张铁丝网在一片空地上围成一个梯形养鸡场ABCD ,AB CD ∥,AD BC =,已知AB 、BC 两段是由长为50m 的铁丝网折成,AD 、DC 两段是由长为90m 的铁丝网折成.设上底AB 的长为m x ,所围成的梯形面积为2m S .(1)求S 关于x 的函数解析式,并求x 的取值范围; (2)当x 为何值时,养鸡场的面积最大?最大面积为多少?20.(6分)已知复数212121(10),(25)(0),z a i z a i a z z R =+-=->+?. (1)求实数a 的值; (2)若2,||2z zz C ?=,求||z 的取值范围.21.(6分)选修4-5:不等式选讲 已知函数()23f x x x =-++. (1)求不等式()15f x ≤的解集;(2)若2()x a f x -+≤对x ∈R 恒成立,求a 的取值范围.22.(8分)设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列. (Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.D 【解析】 【分析】由倾斜角求得斜率,由斜截式得直线方程,再将四个选项中的参数方程化为普通方程,比较可得答案.【详解】因为直线l 倾斜角是arctan 2π-,所以直线l 的斜率tan(tan 2)tan arctan 22k arc π=-=-=-, 所以直线l 的斜截式方程为:22y x =-+,由22x ty t=+⎧⎨=-⎩消去t 得24y x =-+,故A 不正确;由2x t y t=+⎧⎨=-⎩消去t 得2y x =-+,故B 不正确; 由22x t y t=⎧⎨=-⎩消去t 得122y x =-+,故C 不正确;由22x ty t=⎧⎨=-⎩消去t 得22y x =-+,故D 正确; 故选:D. 【点睛】本题考查了直线方程的斜截式,参数方程化普通方程,属于基础题. 2.B 【解析】∵y 2=2px 的焦点坐标为,02p ⎛⎫⎪⎝⎭, ∴过焦点且斜率为1的直线方程为y=x-2p ,即x=y+2p,将其代入y 2=2px 得y 2=2py+p 2,即y 2-2py-p 2=0.设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=2p,∴122y y +=p=2,∴抛物线的方程为y 2=4x,其准线方程为x=-1.故选B. 3.A 【解析】 【分析】由题可得()f x 为偶函数,利用导数可得()f x 的单调区间,利用函数的奇偶性和单调性转化不等式求解即可。

福建省莆田市县中学2019-2020学年高二数学理下学期期末试题含解析

福建省莆田市县中学2019-2020学年高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 数列{a n}满足a1=1,a n+1=2a n+1(n∈N+),那么a4的值为()A.4 B.8 C.15 D.31参考答案:C【考点】数列递推式.【分析】由数列{a n}满足a1=1,a n+1=2a n+1(n∈N+),分别令n=1,2,3,能够依次求出a2,a3和a4.【解答】解:∵数列{a n}满足a1=1,a n+1=2a n+1(n∈N+),∴a2=2a1+1=2+1=3,a3=2a2+1=6+1=7,a4=2a3+1=14+1=15.故选C.2. 若,则的值等于()A. 0B. -32C.32 D. -1参考答案:A略3. 设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )A. B. C. D.B略4. 复数对应的点在()A.第一象限B. 第二象限C. 第三象限 D. 第四象限参考答案:D5. 下列命题中,正确的命题是( )(A) 分别在两个不同平面内的两条直线一定是异面直线;(B) 直线在内,直线不在内,则是异面直线;(C) 在空间中,经过直线外一点,有且只有一条直线和这条直线平行;(D) 垂直于同一条直线的两条直线平行.参考答案:C6. 设P为曲线C:上的点,且曲线C在点P处切线倾斜角的取值范围为,则点P横坐标的取值范围为()A.B.C. D.参考答案:A7. 设点P对应的复数为﹣3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为()A.(,)B.(,) C.(3,)D.(﹣3,)A【考点】Q6:极坐标刻画点的位置.【分析】先求出点P的直角坐标,P到原点的距离r,根据点P的位置和极角的定义求出极角,从而得到点P的极坐标.【解答】解:∵点P对应的复数为﹣3+3i,则点P的直角坐标为(﹣3,3),点P到原点的距离r=3,且点P第二象限的平分线上,故极角等于,故点P的极坐标为(,),故选 A.【点评】本题考查把直角坐标化为极坐标的方法,复数与复平面内对应点间的关系,求点P的极角是解题的难点.8. 如图是函数的导函数的图象,则下面判断正确的是A.在区间上是增函数B.在上是减函数C.在上是增函数D.当时,取极大值参考答案:C略9. 为调查某地中学生平均每人每天参加体育锻炼时间(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上.有10000名中学生参加了此项活动,下图(见下页)是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A.0.36 B.0.18 C.0.62 D.0.38参考答案:D略10. 4.已知函数,则()A.2 B.4 C.5 D.6参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 一个球与正四面体的各个棱都相切,且球的表面积为8 π,则正四面体的棱长为。

福建省莆田市2019-2020学年高二第二学期期末数学考试试题

同步练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知f(x)是定义在R 上的以3为周期的偶函数,若f(1)<1,f(5)=231a a -+,则实数a 的取值范围为( ) A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)2.在等比数列{}n a 中,若22a =,334a =,则115721a a a a +=+A .12B .23C .32D .23.设01a b <<<,b x a =,a y b =,log b z a =,则( ) A .x y z <<B .y x z <<C .z x y <<D .z y x <<4.已知双曲线2222:1(0,0)x y C a b a b-=>>的一个焦点坐标为(4,0),且双曲线的两条渐近线互相垂直,则该双曲线的方程为( )A .22188x y -=B .2211616x y -=C .22188y x -=D .22188x y -=或22188y x -=5.如图是由正方体与三棱锥组合而成的几何体的三视图,则该几何体的表面积为()A .B .C .D .6.函数,,且,,恒成立,则实数的取值范围是( ) A .B .C .D .7.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大 22 10 32 课外阅读量一般 8 20 28 总计303060由以上数据,计算得到2K 的观测值9.643k ≈,根据临界值表,以下说法正确的是( ) P(K 2≥k 0) 0.50 0.40 0.25 0.15 0.10 0.05 0.05 0.010 0.005 k 00.4550.7081.3232.0722.7063.8415.0246.6357.879A .在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B .在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C .在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D .在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关8.在边长为1的正ABC ∆中, D , E 是边BC 的两个三等分点(D 靠近于点B ),AD AE ⋅等于( ) A .16B .29C .1318D .139.若a ,b ,c 满足23a =,2log 5b =,32c =.则() A .c a b <<B .b c a <<C .a b c <<D .c b a <<10.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )A .B .C .D .11.函数f(x)=3sin(2x -6π)在区间[0,2π]上的值域为( ) A .[32-,32] B .[32-,3] C .[3333] D .[33,3] 12.设α,β是两个不重合的平面,l ,m 是空间两条不重合的直线,下列命题不正确...的是()A .若l α⊥,l β⊥,则αβ∥B .若l α⊥,m α⊥,则l mC .若l α⊥,l β∥,则αβ⊥D .若l α⊥,αβ⊥,则l β∥二、填空题:本题共4小题13.某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线2222x y 1a b-=的离心率e 5>的概率是______.14.函数()()24f x x a a R x =+-∈在区间[]1,6上的最大值为()M a ,则()M a 的最小值为______. 15.若随机变量()2~3,X N σ,且(03)0.35P X <<=,则(6)P X >=_______.16.在北纬60圈上有甲、乙两地,若它们在纬度圈上的弧长等于2Rπ(R 为地球半径),则这两地间的球面距离为_______ .三、解答题:解答应写出文字说明、证明过程或演算步骤。

福建省莆田市2019-2020学年新高考高二数学下学期期末考试试题

同步测试一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若函数()()()1cos23sin cos 412f x x a x x a x =+-+-在,02π⎡⎤-⎢⎥⎣⎦上单调递增,则实数a 的取值范围为( ) A .1,17⎡⎤⎢⎥⎣⎦B .11,7⎡⎤-⎢⎥⎣⎦C .][1,1,7⎛⎫-∞-⋃+∞ ⎪⎝⎭D .[)1,+∞ 2.若函数12log ,01()(1)(3),1x x f x x x x x ≤⎧⎪=⎨⎪---⎩<>,函数()()g x f x kx =-有3个零点,则k 的取值范围是() A .(0,1)B.(0,6-C.(0,6+D.(6-+3.已知奇函数()f x 在R 上是单调函数,函数()f x '是其导函数,当0x >时,1()ln ()f x x f x x'<-,则使()0f x >成立的x 的取值范围是() A .(,0)-∞B .(1,0)-C .(0,1)D .(0,)+∞4.若0b ≠,则“,,a b c成等比数列”是“b = )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin 2sin 0b A B b +==,,则ca的值为( ) A .1BCD6.在正方体1111ABCD A B C D -中,1BB 与平面1ACD 所成角的正弦值为( ) ABC .35D .257.中国古典数学有完整的理论体系,其代表我作有《周髀算经》《九章算术》《孙子算经》《数书九章》等,有5位年轻人计划阅读这4本古典数学著作,要求每部古典数学著作至少有1人阅读,则不同的阅读方案的总数是( ) A .480B .240C .180D .1208.已知函数()e 2x f x x =+-的零点为a ,函数()ln g x x =的零点为b ,则下列不等式中成立的是( )A .()()()f a f a b f b <+<B .()()()f a b f a f b +<<C .()()()f a f b f a b <<+D .()()()f b f a b f a <+<9.用反证法证明:“实数,,x yz 中至少有一个不大于0”时,反设正确的是( ) A .,,x y z 中有一个大于0 B .,,x y z 都不大于0 C .,,x y z 都大于0D .,,x y z 中有一个不大于010.已知随机变量()23X N σ~,,且()4025P X >=.,则()2P X ≥=( ) A .1.25B .1.3C .1.75D .1.6511.(山西省榆社中学高三诊断性模拟考试)设n S 为数列{}n a 的前n 项和,已知112a =,112n n n n n a a ++=+,则100S =A .1004922- B .994922-C .1005122-D .995122-12.已知复数32i4iz x +=-,若z ∈R ,则实数x 的值为( ) A .6-B .6C .83D .83-二、填空题:本题共4小题13.如图,在长方形OABC 内任取一点(,)P x y ,则点P 落在阴影部分BCD 内的概率为________.14.在复平面上,复数z 对应的点为(2,1)A -,则|1|z +=________. 15.集合A ,B 满足{}1,2,3,4,5,6,7,8A B ⋃=,AB =∅,若A ,B 中的元素个数分别不是A ,B 中的元素,则满足条件的集合A 的个数为____.(用数字作答) 16.复数12iiz +=(i 是虚数单位)的虚部是_______. 三、解答题:解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理科数学试题第Ⅰ卷一、选择题(每题5分,共60分)1、已知复数231iz i-=+(i 为虚数单位),则z 在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2、甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A .甲被录用了B .乙被录用了C .丙被录用了D .无法确定谁被录用了3、下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y bx a =+必过(,)x y ;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0 B .1 C. 2 D .34、已知双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为34y x =±,且其右焦点为(5,0),则双曲线C 的方程为( )A .221916x y -= B .221169x y -= C .22134x y -= D .22143x y -= 5、曲线x x y +=ln 在点(1,)1(f )处的切线方程为( )A .22y x =-+B .1y x =-+C .1y x =-D .12-=x y 6、四个旅行团选择四个景点游览,其中恰有一个景点没有旅行团游览的情况有( )种 A .36 B .72 C .144 D .2887、10个人排队,其中甲、乙、丙、丁4人两两不相邻的排法( )A.4755A A 种B.44771010A A A -种C.4666A A 种D.4766A A 种8、双曲线22221x y a b-=的一条渐近线与直线210x y +-=垂直,则双曲线的离心率为( )A.5 B. 5 C. 31+ D. 31+9、一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A ,“第2次拿出的是白球”为事件B ,则()|P B A 是( )A .58 B .516 C .47 D .51410、已知随机变量ξ服从二项分布14,3B ξ⎛⎫~ ⎪⎝⎭,则()3P ξ==( ).A.3281 B. 1681 C. 2481 D. 88111、在52)1(xx +的展开式中x 的系数为( )A.5B.10C.20D.4012、已知R 上可导函数()f x 的图象如图所示,则不等式()()223'0x x f x -->的解集为( )A. ()()(),11,13,-∞-⋃-⋃+∞B. ()(),21,2-∞-⋃C. ()()(),11,02,-∞-⋃-⋃+∞D. ()(),21,-∞-⋃+∞第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,共20分)13、定积分⎰e x x1d 1的值为 . 14、已知随机变量X 服从正态分布()22,N σ,且()020.3P X ≤≤=,则(4)P X >= .15、已知抛物线24y x =,焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF的斜率为PAF ∆的面积为 . 16、下列命题(i 为虚数单位)中正确的是①已知R b a ∈,且b a =,则i b a b a )()(++-为纯虚数; ②当z 是非零实数时,21≥+zz 恒成立; ③复数3)1(i z -=的实部和虚部都是-2; ④如果i i a +-<+22,则实数a 的取值范围是11<<-a ;⑤复数i z -=1,则i z z 21231+=+.其中正确的命题的序号是 . 三、解答题(写出必要的文字说明和解题步骤)17、(10分)设函数3()3(0)f x x ax b a =-+≠,曲线()f x 在点()2,(2)f 处与直线8y =相切.(1)求,a b 的值; (2)求函数()f x 的单调区间.18、(12分)某种产品的广告费支出x 与销售额y (单位:万元)之间有如下对应数据:(Ⅰ)求回归直线方程;(Ⅱ)试预测广告费支出为10万元时,销售额多大? 参考数据:521145i i x ==∑52113500ii y==∑ 511380i i i x y ==∑ b ^ =∑ni =1x i y i -n x —y —∑n i =1x 2i -n (x —)2,a ^=y —-b ^x — 19、(12分)《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4(I )请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;(II )已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X ,求X 的分布列及数学期望.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++20、(12分)已知抛物线C :2y =2px (p>0)的准线方程为x=-12,F 为抛物线的焦点(I )求抛物线C 的方程;(II )若P 是抛物线C 上一点,点A 的坐标为(72,2),求PA PF+的最小值;(III )若过点F 且斜率为1的直线与抛物线C 交于M ,N 两点,求线段MN 的中点坐标。

21、(12分)设函数f(x)=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (Ⅰ)求a ,b 的值;(Ⅱ)若对于任意的x∈[0,3],都有f(x)<c 2成立,求c 的取值范围.22、(12分)在直角坐标系xoy 中,直线l 过点()0,1P 且斜率为1,以O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 2cos ρθθ=+. (Ⅰ)求直线l 的参数方程与曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 的交点为A 、B ,求PA PB +的值.答案1. C2.A3. C4.B5.D6.C7.D8.B9.C 10.D 11.B12.A13、【答案】1 .14、【答案】0.2 15、【答案】16、【答案】②③④17、【答案】(1)4,24a b ==;(2)单调增区间为:(,2),(2,)-∞-+∞,减区间为(2,2)-. 试题分析:(1)由已知可知本小题利用导数的几何意义可求解,求出导函数'()f x 后,题意说明'(2)0f =且(2)8f =,联立方程组可解得,a b ;(2)解不等式'()0f x >可得增区间,解不等式'()0f x <可得减区间.试题解析:(1)∵2()33f x x a '=-.又∵曲线()f x 在点(2,(2))f 处与直线8y =相切,∴(2)3(4)0(2)868f a f a b '=-=⎧⎨=-+=⎩,∴4,24a b ==.(2)∵4a =,∴)4(3)(2'-=x x f 令)4(3)(2'-=x x f 2,0>>x 或2x <-; 令2()3(4)022f x x x =-<⇒-<<,所以,()f x 的单调增区间为:(,2),(2,)-∞-+∞, 减区间为(2,2)-.考点:导数的几何意义,导数与函数的单调性. 18、【答案】(Ⅰ)解:2+4+5+6+825=555x ==,30+40+60+50+70250=5055y ==又已知521145ii x ==∑ ,511380i i i x y ==∑于是可得:5152215138055506.51455555i ii i i x y x yb x x==--⨯⨯===-⨯⨯-∑∑,50 6.5517.5a y bx =-=-⨯=因此,所求回归直线方程为: 6.517.5y x =+(Ⅱ)解: 根据上面求得的回归直线方程,当广告费支出为10万元时,6.51017.5=82.5y =⨯+ (万元) 即这种产品的销售收入大约为82. 5万元.19、【答案】(Ⅰ)有99.9%的把握认为喜欢《最强大脑》与性别有关;(II )见解析 试题分析:(Ⅰ)根据已知条件计算出2×2列联表中各个数据,求出K 2,可得答案; (II )X 的可能取值为0,1,2,分别求出相应的概率,由此能求出X 的分布列和EX . 【详解】由列联表中的数据,得到22100(45251515)14.06310.82860406040K ⨯-⨯=≈>⨯⨯⨯因此,有99.9%的把握认为喜欢《最强大脑》与性别有关. (II )X 的可能取值为0,1,2,P (X =0)2225110C C ==,P (X =1)=11232535C C C =,P (X =2)=2325310C C =,EX =1336012105105⨯+⨯+⨯=. 【点睛】本题考查独立检验、离散型随机变量的分布列、数学期望等基础知识,属于基础题.20、【答案】(Ⅰ)22y x =(II )4(III )线段MN 中点的坐标为(312,)试题分析:(I )由准线方程122p x =-=-求得p ,可得抛物线标准方程. (II )把PF 转化为P 到准线的距离PB ,可得,,B P A 三点共线时得所求最小值. (III )写出直线MN 方程,代入抛物线方程后用韦达定理可得中点坐标.【详解】(I )∵准线方程x=-12,得p =1, ∴抛物线C 的方程为22y x =(II )过点P 作准线的垂线,垂足 为B ,则PB =PF要使PA +PF 的最小,则P ,A ,B 三点共线 此时PA +PF =72+12=4· (III )直线MN 的方程为y=x-12· 设M (11,x y ),N (22,x y ),把y=x-12代入抛物线方程22y x =,得2x -3x+14=0∵△=9-4×1×14=8>0∴1x +2x =3,122x x+=32线段MN 中点的横坐标为32,纵坐标为31122-=线段MN 中点的坐标为(312,) 【点睛】本题考查抛物线的标准方程与几何性质.解题时注意抛物线上的点到焦点的距离常常转化为这点到准线的距离.21、【答案】(Ⅰ)3, 4.a b =-=(Ⅱ)322[0,3],()29128x g x x x x c c ∈=-+<-令恒成立。

相关文档
最新文档