高一上学期期中考试数学试卷含答案(新课标)

合集下载

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷含答案

2024年高一第一学期期中试卷数学(答案在最后)一、选择题(共10小题,每小题4分,共40分)1.已知集合{}31M x x =-<<,{}14N x x =-≤<,则M N = ()A.{}31x x -<< B.{}3x x >- C.{}11x x -≤< D.{}4x x <2.设命题p : n ∃∈N ,225n n >+,则p 的否定是()A. n ∀∈N ,225n n >+ B. n ∀∈N ,225n n ≤+C.n ∃∈N ,225n n ≤+ D.n ∃∈N ,N 225n n <+3.下列各组函数中,两个函数相同的是()A.3y =和y x=B.2y =和y x=C.y =和2y =D.y =和2x y x=4.下列函数在区间()0,+∞上为增函数的是()A.2xy = B.()21y x =- C.1y x-= D.3xy -=5.若实数a ,b 满足a b >,则下列不等式成立的是()A.a b> B.a c b c+>+ C.22a b > D.22ac bc>6.“4a ≥”是“二次函数()2f x x ax a =-+有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.在下列区间中,一定包含函数()25xf x x =+-零点的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,48.已知函数()1,01,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是()A.()1,2 B.(),2-∞- C.()(),12,-∞+∞ D.(][),12,-∞+∞ 9.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()21210f x f x x x -<-,且()30f =,则不等式()0f x >的解集是()A.()(),30,3-∞-B.()()3,03,-+∞C.()3,3- D.()(),33,-∞-+∞ 10.现实生活中,空旷田野间两根电线杆之间的电线与峡谷上空横跨深涧的观光索道的钢索有相似的曲线形态,这类曲线在数学上常被称为悬链线.在合适的坐标系中,这类曲线可用函数()()2e 0,e 2.71828ex xa bf x ab +=≠=⋅⋅⋅来表示.下列结论正确的是()A.若0ab >,则()f x 为奇函数B.若0ab >,则()f x 有最小值C.若0ab <,则()f x 为增函数D.若0ab <,则()f x 存在零点二、填空题(共5小题,每小题5分,共25分)11.函数()f x =的定义域为__________.12.已知函数()()1104f x x x x=++>,则当且仅当x =_________时,()f x 有最小值________.13.已知集合{}2,0A a =,{}3,9B a =-,若满足{}9A B = ,则实数a 的值为________.14.已知函数()y f x =在R 上是奇函数,当0x ≤时,()21xf x =-,则()1f =________;当0x >时,()f x =________.15.已知非空集合A ,B 满足以下四个条件:①{}1,2,3,4,5,6A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么集合A 的元素是__________;(ⅱ)有序集合对(),A B 的个数是__________.三、解答题(共6小题,第16题9分,第17-19题6分,第20题7分,第21题6分)16.已知集合{}14A x x =-≤≤,{}11B x a x a =-≤≤+.(1)若4a =,求A B ;(2)若A B A = ,求a 的取值范围.17.解下列关于x 的不等式:(1)2112x x +≤-(2)213x -≥(3)()()2220ax a x a +--≥∈R 18.已知函数()22xxf x a -=⋅-是定义在R 上的奇函数.(1)求a 的值,并用定义法证明()f x 在R 上单调递增;(2)解关于x 的不等式()()23540f x x f x -+->.19.某工厂要建造一个长方体的无盖贮水池,其容积为34800m ,深为3m ,如果池底造价为每平方米150元,池壁每平方米造价为120元,怎么设计水池能使总造价最低?最低造价是多少?20.已知函数()()21f x mx m x m =--+.(1)若不等式()0f x >的解集为R ,求m 的取值范围;(2)若不等式()0f x ≤对一切()0,x ∈+∞恒成立,求m 的取值范围;21.设k 是正整数,集合A 至少有两个元素,且* N A ⊆.如果对于A 中的任意两个不同的元素x ,y ,都有x y k -≠,则称A 具有性质()P k .(1)试判断集合{}1,2,3,4B =和{}1,4,7,10C =是否具有性质()2P ?并说明理由;(2)若集合{}{}1212,,,1,2,,20A a a a =⋅⋅⋅⊆⋅⋅⋅,求证:A 不可能具有性质()3P ;(3)若集合{}1,2,,2023A ⊆⋅⋅⋅,且同时具有性质()4P 和()7P ,求集合A 中元素个数的最大值.高一第一学期期中试卷数学参考答案与试题解析一、选择题(共10小题)CBAABABDCD二、共填空题(共5小题)11.[)1,+∞12.12;213.-314.12;()12xf x -=-15.5;10三、解答题(共6小题)17.(1){}23A B x x =≤≤ .(2)a 的取值范围是7,2⎛⎤-∞ ⎥⎝⎦.16.(1)()3,2-;(2)(][),12,-∞-+∞ (3)综上所述:当0a =时,不等式解集为(],1-∞-;当0a >时,不等式解集为(]2,1,a ⎡⎫-∞-+∞⎪⎢⎣⎭;当20a -<<时,不等式解集为2,1a⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式解集为{}1-;当2a <-时,不等式解集为21,a⎡⎤-⎢⎥⎣⎦.18.(1)1a =,证明略(2)()()()()()2235403544f x x f x f x x f x f x -+->⇒->--=-∴23542x x x x ->-⇒>或23x <-.19.水池总造价()()16001502331207201600150x f x xy x y x ⎛⎫=⨯++⨯=+⨯+⨯ ⎪⎝⎭72024000057600240000297600≥+=+=元.当且仅当40x m =,40y m =时取等号.∴设计水池底面为边长为40m 的正方形能使总造价最低,最低造价是297600元.20.(1)m 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭;(2)m 的取值范围为(],1-∞-;21.(1)集合B 不具有性质()2P ,集合C 具有性质()2P (2)证明:将集合{}1,2,,20⋅⋅⋅中的元素分为如下11个集合,{1,4},{2,5},{3,6},{7,10},{8,11}.{9,12},{13,16},{14,17},{15,18},{19},{20},所以从集合{}1,2,,20⋅⋅⋅中取12个元素,则前9个集合至少要选10个元素,所以必有2个元素取自前9个集合中的同一集合,即存在两个元素其差为3,所以A 不可能具有性质()3P ;(3)先说明连续11项中集合A 中最多选取5项,以1,2,3……,11为例.构造抽屉{1,8},{2,9},{3,10},{4,11},{5},{6},{7}.①5,6,7同时选,因为具有性质()4P 和()7P ,所以选5则不选1,9;选6则不选2,10;选7则不选3,11;则只剩4,8.故1,2,3……,11中属于集合A 的元素个数不超过5个.②5,6,7选2个,若只选5,6,则1,2,9,10,7不可选,又{4,11}只能选一个元素,3,8可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选5,7,则只能从2,4,8,10中选,但4,8不能同时选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选6,7,则2,3,10,11,5不可选,又{1,8}只能选一个元素,4,9可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.③5,6,7中只选1个,又四个集合{1,8},{2,9},{3,10},{4,11}每个集合至多选1个元素,故1,2,3……,11中属于集合A 的元素个数不超过5个.由上述①②③可知,连续11项自然数中属于集合A 的元素至多只有5个,如取1,4,6,7,9.因为2023=183×11+10,则把每11个连续自然数分组,前183组每组至多选取5项;从2014开始,最后10个数至多选取5项,故集合A 的元素最多有184×5=920个.给出如下选取方法:从1,2,3……,11中选取1,4,6,7,9;然后在这5个数的基础上每次累加11,构造183次.此时集合A的元素为:1,4,6,7,9;12,15,17,18,20;23,26,28,29,31;……;2014,2017,2019,2020,2022,共920个元素.经检验可得该集合符合要求,故集合A的元素最多有920个.。

2024-2025学年度第一学期高一期中考试题数学试卷参考答案(评分标准)

2024-2025学年度第一学期高一期中考试题数学试卷参考答案(评分标准)

哈工大附中2024-2025学年度第一学期期中试题高一学年 数学试卷参考答案一、单选题CCDD CBCB二、多选题9.AC. 10.BC.11.ABD.三、填空题12.2.13. 14..四、解答题15.(13分)已知集合,或.(1)求;(2)若,实数的取值范围.【答案】(1)或,;(2).【详解】(1)∵,或,∴,.......................3又,∴; .......................3(2),且,则需,解得,故实数的取值范围为. ......................716.(15分)求值:(1)(2)求值:.(3)已知,,求【详解】(1); ......................5(2);......................5(3)由,,则,,则,,所以.......................517.(15分)已知二次函数满足,且.(1)求的解析式;(2)当时,函数的图象恒在函数的图象下方,试确定实数的取值范围.224x x ---23{|42}A x x =-<<{|5B x x =<-1}x >11{|}C x m x m =-≤≤+(),R A B A C B ⋂ B C φ⋂=m {|5x x <-}4x >-{|41}x x -<≤[4,0]-{|42}A x x =-<<{|5B x x =<-1}x >{|12A B x x ⋂=<<}{|51}R C B x x =-≤≤(){|41}R A C B x x ⋂=-<≤B C =∅ C φ≠1511m m -≥-⎧⎨+≤⎩40m m ≥-⎧⎨≤⎩m [4,0]-()20π2-+-()92log 43lg5lg2lg50++⨯102m =105n =1125m n+()20π2-+-+131(244=++-()92log 43lg5lg2lg50++⨯3log 223(lg5l )lg 2(2lg 5g 2)++=+2222lg g (lg52l 5(lg ))2=+++22(lg 5lg 2)3=++=102m =105n =lg 2m =lg 5n =21log 10m =51log 10n =52log 10log 01112510102025m n ==+++=()f x ()()12f x f x x +-=()01f =()f x 11,2x ⎡⎤∈-⎢⎥⎣⎦()y f x =2y x m =+m【答案】(1)(2)【详解】(1)设,∵,∴, (1)又,∴,∴, (2)∴,∴, ......................2∴; (2)(2)当时,的图象恒在图象下方, ∴时,恒成立,即恒成立, ......................2令,,对称轴为,故函数在上单调递减, . (2)所以当时,, ......................2故只要,即,所以实数的范围......................218.(17分)已知函数(,且).(1)若点在函数的图象上,求实数的值;(2)已知,函数,.若的最大值为8,求实数的值.【答案】(1);(2).【详解】(1)依题意,,即,而,且,解得,所以. (5)(2)依题意,,,, ......................4令,有 ,函数是关于t 的开口向上,对称轴为 的二次函数,......................4显然,且,因此函数在时取得最大值,则,又,解得,所以. (4)19.(17分)如图,某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形和构成的十字形地域.四个小矩形、、、与小正方形面积之和为,()21f x x x =-+()5,+∞()()20f x ax bx c a =++≠()01f =1c =()()12f x f x x +-=()()()22112a x b x c ax bx c x ++++-++=22ax a b x ++=220a a b =⎧⎨+=⎩11a b =⎧⎨=-⎩()21f x x x =-+11,2x ⎡⎤∈-⎢⎥⎣⎦()21y f x x x ==-+2y x m =+11,2x ⎡⎤∈-⎢⎥⎣⎦212x x x m -+<+2310x x m -+-<()231g x x x m =-+-11,2x ⎡⎤∈-⎢⎥⎣⎦32x =()g x 11,2⎡⎤-⎢⎥⎣⎦11,2x ⎡⎤∈-⎢⎥⎣⎦()()max 11315g x g m m =-=++-=-50m -<5m >m ()5,+∞()log a f x x =0a >1a ≠()16,2P ()f x a 1a >()28x x g x f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1[,8]2x ∈()g x a 4a =2a =(16)2f =2log 16216a a =⇔=0a >1a ≠4a =4a =1a >()log log (log log 2)(log 3log 2)28a a a a a a x x g x x x =⋅=--1[,8]2x ∈log a t x =[]log 2,3log 2a a t ∈-()()()log 23log 2a a h t t t =--2log 2a t =log 22log 23log 2a a a -<<log 22log 23log 22log 2a a a a -->-()h t log 2a t =-()28log 2a ()28log 28a =1a >2a =2a =ABCD EFGH AMQD MNFE BCPN PQHG MNPQ 2400m且.计划在正方形上建一座花坛,造价为元;在四个矩形(图中阴影部分)上铺花岗岩地坪,造价为元;在四个空角(图中四个三角形)上铺草坪,造价为元.设长为(单位:).(1)用表示的长度,并写出的取值范围;(2)用表示花坛与地坪的造价之和;(3)设总造价为元,当长为何值时,总造价最低?并求出最低总造价.【答案】(1),(2)(3)当时,总造价最小为元【详解】(1)由题意:矩形的面积为,因此, (3)因为,所以. (2)(2). (5)(3)由题意可得:,() ......................3由基本不等式,当且仅当,即时,等号成立,所以当最小,最小值为元. ......................43AM ME NB ==MNPQ 10002/m 4002/m 2002/m AD x m x AM x x ()C x AD 24004x AM x-=020x <<2600160000y x =+AD =240000AMQD 203408x -()234008x AM x -=⋅0AM >020x <<2221000400(400)600160000y x x x =+⨯-=+222216914001000400(400)2009642x y x x x ⎛⎫-=+⨯-+⨯⨯⨯⨯ ⎪⎝⎭2225400001001400004x x ⎛⎫=++ ⎪⎝⎭020x <<100140000240000y ≥⨯=2225400004x x =x =x =y 240000。

2023-2024学年浙江省温州市部分重点中学高一(上)期中数学试卷【答案版】

2023-2024学年浙江省温州市部分重点中学高一(上)期中数学试卷【答案版】

2023-2024学年浙江省温州市部分重点中学高一(上)期中数学试卷一、选择题1.已知集合A ={x |2x ﹣7>0},B ={2,3,4,5},则A ∩B =( ) A .{3}B .{4,5}C .{3,4}D .{3,4,5}2.若a ,b 为实数,则“a 2+b 2=0”是“ab =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数f (x )={2x −1,x ≥1|x +1|,x <1,若f (a )=2,则a 的所有可能值为( )A .32B .1,32C .−3,32D .−3,1,324.若幂函数f (x )的图象经过点(√2,12),则下列判断正确的是( ) A .f (x )在(0,+∞)上为增函数 B .方程f (x )=4的实根为±2 C .f (x )的值域为(0,1)D .f (x )为偶函数5.若正数x ,y 满足xy =2,则3x •9y 的最小值为( ) A .27B .81C .6D .96.若不等式ax 2﹣x ﹣c >0的解集为{x |﹣3<x <2},则函数y =ax 2+x ﹣a 的零点为( ) A .(3,0)和(﹣2,0) B .(﹣3,0)和(2,0)C .2和﹣3D .﹣2和37.已知f (x )={x 2−2tx +t 2,x ≤0x +1x+t ,x >0,若f (0)是f (x )的最小值,则t 的取值范围为( ) A .[﹣1,2] B .[﹣1,0] C .[1,2] D .[0,2]8.实数a ,b ,c 满足a 2=2a +c ﹣b ﹣1且a +b 2+1=0,则下列关系成立的是( ) A .b >a ≥c B .c >a >bC .b >c ≥aD .c >b >a二、多项选择题9.下列命题为真命题的为( ) A .∀x ∈R ,x 2+x +1>0B .当ac >0时,∃x ∈R ,ax 2+bx ﹣c =0C .|x ﹣y |=|x |+|y |成立的充要条件是xy ≥0D .设a ,b ∈R ,则“a ≠0”是“ab ≠0”的必要不充分条件10.已知x ,y 是正数,且2x +y =1,下列叙述正确的是( ) A .2xy 最大值为14B .4x 2+y 2的最小值为12C .x (x +y )最大值为14D .1x+1y最小值为3+2√211.下列说法正确的是( )A .函数f (x )的值域是[﹣2,2],则函数f (x +1)的值域为[﹣3,1]B .既是奇函数又是偶函数的函数只有一个C .若A ∪B =B ,则A ∩B =AD .函数f (x )的定义域是[﹣2,2],则函数f (x +1)的定义域为[﹣3,1]12.数学上,高斯符号(Gauss mark )是指对取整符号和取小符号的统称,用于数论等领域.定义在数学特别是数论领域中,有时需要略去一个实数的小数部分只研究它的整数部分,或需要略去整数部分研究小数部分,因而引入高斯符号.设x ∈R ,用[x ]表示不超过x 的最大整数.比如: [1]=1,[0]=0,[﹣1]=﹣1,[﹣1.2]=﹣2,[1.3]=1…,已知函数f(x)=[x]x(x >0),则下列说法不正确的是( )A .f (x )的值域为[0,1)B .f (x )在(1,+∞)为减函数C .方程f(x)=12无实根D .方程f(x)=712仅有一个实根 三、填空题13.函数f(x)=√−x 2+2x +3的定义域为 .14.已知函数f (x )=mx 2+nx +2(m ,n ∈R )是定义在[2m ,m +3]上的偶函数,则函数g (x )=f (x )+2x 在[﹣2,2]上的最小值为 .15.股票是股份公司发给股东证明其所入股份的一种有价证券,它可以作为买卖对象和抵押品,是资金市场主要的长期信用工具之一.股票在公开市场交易时可涨可跌,在我国上海证券交易所交易的主板股票每个交易日上涨和下跌都不超过10%,当日上涨10%称为涨停,当日下跌10%称为跌停.某日贵州茅台每股的价格是1500元,若贵州茅台在1500元的价格上先涨停2天再跌停2天,则4天后每股的价格是 元.16.设y =f (x )是定义在R 上的函数,对任意的x ∈R ,恒有f (x )+f (﹣x )=x 2成立,g(x)=f(x)−x 22,若y =f (x )在(﹣∞,0]上单调递增,且f (2﹣a )﹣f (a )≥2﹣2a ,则实数a 的取值范围是 . 四、解答题17.(1)计算:(235)0+2−2×(214)−12−(0.01)0.5;(2)若实数a满足a 12+a−12=3,求a+a﹣1的值.18.已知函数f(x)=x+4x.(1)证明:f(x)在[2,+∞)为增函数;(2)求f(x)在[1,4]上的值域.19.在①A∪B=B;②“x∈A”是“x∈B”的充分不必要条件;③A∩B=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合A={x|a﹣1≤x≤2a+1},B={x|﹣1≤x≤3}.(1)当a=2时,求A∪B;A∩(∁R B);(2)若______,求实数a的取值范围.20.设函数f(x)=a•2x﹣2﹣x(a∈R).(1)若函数y=f(x)为奇函数,求方程f(x)+32=0的实根;(2)若函数h(x)=f(x)+4x+2﹣x在x∈[0,1]的最大值为﹣2,求实数a的值.21.美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的A,B两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产A芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B芯片的毛收入y(千万元)与投入的资金x(千万元)的函数关系为y=kx a(x>0),其图像如图所示.(1)试分别求出生产A,B两种芯片的毛收入y(千万元)与投入资金x(千万元)的函数关系式;(2)现在公司准备投入40千万元资金同时生产A,B两种芯片,求可以获得的最大利润是多少.22.若函数y=f(x)自变量的取值区间为[a,b]时,函数值的取值区间恰为[2b ,2a],就称区间[a,b]为y=f(x)的一个“和谐区间”.已知函数g(x)是定义在R上的奇函数,当x∈(0,+∞)时,g(x)=﹣x+3.(1)求g(x)的解析式;(2)求函数g(x)在(0,+∞)内的“和谐区间”;(3)若以函数g(x)在定义域内所有“和谐区间”上的图象作为函数y=h(x)的图象,是否存在实数m,使集合{(x,y)|y=h(x)}∩{(x,y)|y=x2+m}恰含有2个元素.若存在,求出实数m的取值集合;若不存在,说明理由.2023-2024学年浙江省温州市部分重点中学高一(上)期中数学试卷参考答案与试题解析一、选择题1.已知集合A ={x |2x ﹣7>0},B ={2,3,4,5},则A ∩B =( ) A .{3}B .{4,5}C .{3,4}D .{3,4,5}解:A ={x |2x ﹣7>0}={x|x >72},B ={2,3,4,5},则A ∩B ={4,5}. 故选:B .2.若a ,b 为实数,则“a 2+b 2=0”是“ab =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:由a 2+b 2=0,可得a =0,b =0, 由ab =0,可得a =0或b =0,故由a 2+b 2=0可推出ab =0,所以“a 2+b 2=0”是“ab =0”的充分条件, 由ab =0推不出a 2+b 2=0,所以“a 2+b 2=0”是“ab =0”的不必要条件, 综上,“a 2+b 2=0”是“ab =0”的充分不必要条件, 故选:A . 3.已知函数f (x )={2x −1,x ≥1|x +1|,x <1,若f (a )=2,则a 的所有可能值为( )A .32B .1,32C .−3,32D .−3,1,32解:当a ≥1时,则有2a ﹣1=2,解得a =32; 当a <1时,则有|a +1|=2,解得a =﹣3, 综上,a =32或a =﹣3. 故选:C .4.若幂函数f (x )的图象经过点(√2,12),则下列判断正确的是( )A .f (x )在(0,+∞)上为增函数B .方程f (x )=4的实根为±2C .f (x )的值域为(0,1)D .f (x )为偶函数解:由题意可设,幂函数f (x )=x α,f (x )的图象经过点(√2,12),则√2α=12,解得α=﹣2, 故f (x )=x ﹣2,f (x )在(0,+∞)上为减函数,故A 错误; f (x )=4,则x ﹣2=4,解得x =±12,故B 错误;f (x )的值域为(0,+∞),故C 错误;f (﹣x )=f (x )=x ﹣2,故f (x )为偶函数,故D 正确.故选:D .5.若正数x ,y 满足xy =2,则3x •9y 的最小值为( ) A .27B .81C .6D .9解:因为正数x ,y 满足xy =2,所以x +2y ≥2√2xy =4,当且仅当x =2y 且xy =2,即y =1,x =2时取等号, 则3x •9y =3x +2y ≥34=81. 故选:B .6.若不等式ax 2﹣x ﹣c >0的解集为{x |﹣3<x <2},则函数y =ax 2+x ﹣a 的零点为( ) A .(3,0)和(﹣2,0) B .(﹣3,0)和(2,0)C .2和﹣3D .﹣2和3解:不等式ax 2﹣x ﹣c >0的解集为{x |﹣3<x <2}, 所以﹣3和2是方程ax 2﹣x ﹣c =0的解,由根与系数的关系知,{−3+2=1a −3×2=−c a ,解得a =﹣1,c =﹣6;所以函数y =ax 2+x ﹣c 可化为y =﹣x 2+x +6, 令y =0,得x 2﹣x ﹣6=0,解得x =3或x =﹣2, 所以函数y =ax 2+x ﹣a 的零点为﹣2和3. 故选:D .7.已知f (x )={x 2−2tx +t 2,x ≤0x +1x +t ,x >0,若f (0)是f (x )的最小值,则t 的取值范围为( ) A .[﹣1,2]B .[﹣1,0]C .[1,2]D .[0,2]解:法一:排除法.当t=0时,结论成立,排除C;当t=﹣1时,f(0)不是最小值,排除A、B,选D.法二:直接法.由于当x>0时,f(x)=x+1x+t在x=1时取得最小值为2+t,由题意当x≤0时,f(x)=(x﹣t)2,若t≥0,此时最小值为f(0)=t2,故t2≤t+2,即t2﹣t﹣2≤0,解得﹣1≤t≤2,此时0≤t≤2,若t<0,则f(t)<f(0),条件不成立,故选:D.8.实数a,b,c满足a2=2a+c﹣b﹣1且a+b2+1=0,则下列关系成立的是()A.b>a≥c B.c>a>b C.b>c≥a D.c>b>a解:∵a+b2+1=0,∴a≠1,∵实数a,b,c满足a2=2a+c﹣b﹣1,∴(a﹣1)2=c﹣b>0,∴c>b,∵a+b2+1=0,∴a=﹣b2﹣1,∴b﹣a=b+b2+1=(b+12)2+34>0,∴b>a,∴c>b>a.故选:D.二、多项选择题9.下列命题为真命题的为()A.∀x∈R,x2+x+1>0B.当ac>0时,∃x∈R,ax2+bx﹣c=0C.|x﹣y|=|x|+|y|成立的充要条件是xy≥0D.设a,b∈R,则“a≠0”是“ab≠0”的必要不充分条件解:对于A:∀x∈R,x2+x+1=(x+12)2+34>0,故A正确;对于B:当ac>0时,ax2+bx﹣c=0,由于Δ=b2﹣4ac大于0也可以等于0,故∃x∈R,ax2+bx﹣c=0有解,故B正确;对于C :|x ﹣y |=|x |+|y |成立的充要条件是xy ≤0,故C 错误;对于D :设a ,b ∈R ,当a ≠0时,当b =0时,ab =0,反之成立,故“a ≠0”是“ab ≠0”的必要不充分条件,故D 正确. 故选:ABD .10.已知x ,y 是正数,且2x +y =1,下列叙述正确的是( ) A .2xy 最大值为14B .4x 2+y 2的最小值为12C .x (x +y )最大值为14D .1x+1y最小值为3+2√2解:因为x ,y 是正数,且2x +y =1,所以2xy ≤(2x+y 2)2=14,当且仅当2x =y =12时取等号,A 正确;4x 2+y 2=(2x +y )2﹣4xy =1﹣4xy ≥1−12=12,当且仅当2x =y =12时取等号,此时4x 2+y 2取得最小值12,B 正确; x (x +y )≤(x+x+y 2)2=14,当且仅当x =x +y ,即y =0时取等号,根据题意显然y =0不成立,即等号不能取得,x (x +y )没有最大值,C 错误;1x+1y=2x+y x+2x+y y =3+y x +2xy ≥3+2√2,当且仅当y x =2xy且2x +y =1,即x =1−√22,y =√2−1时取等号,此时1x+1y取得最小值3+2√2,D 正确.故选:ABD .11.下列说法正确的是( )A .函数f (x )的值域是[﹣2,2],则函数f (x +1)的值域为[﹣3,1]B .既是奇函数又是偶函数的函数只有一个C .若A ∪B =B ,则A ∩B =AD .函数f (x )的定义域是[﹣2,2],则函数f (x +1)的定义域为[﹣3,1]解:对于A ,函数f (x )的值域是[﹣2,2],则函数f (x +1)的值域为[﹣2,2],故A 错误;对于B ,既是奇函数又是偶函数的函数不只有一个,如x ∈(﹣1,1)时,f (x )=0满足f (﹣x )=f (x ),也满足f (﹣x )=﹣f (x ),即f (x )既是奇函数又是偶函数;又f (x )=√1−x 2+√x 2−1的定义域为{﹣1,1},值域为{0},满足f (﹣x )=f (x ),也满足f (﹣x )=﹣f (x ),即f (x )既是奇函数又是偶函数,故B 错误; 对于C ,若A ∪B =B ,则A ⊆B ,因此A ∩B =A ,故C 正确对于D ,函数f (x )的定义域是[﹣2,2],即﹣2≤x ≤2,由﹣2≤x +1≤2,得﹣3≤x ≤1,即函数f (x +1)的定义域为[﹣3,1],故D 正确. 故选:CD .12.数学上,高斯符号(Gauss mark )是指对取整符号和取小符号的统称,用于数论等领域.定义在数学特别是数论领域中,有时需要略去一个实数的小数部分只研究它的整数部分,或需要略去整数部分研究小数部分,因而引入高斯符号.设x ∈R ,用[x ]表示不超过x 的最大整数.比如: [1]=1,[0]=0,[﹣1]=﹣1,[﹣1.2]=﹣2,[1.3]=1…,已知函数f(x)=[x]x(x >0),则下列说法不正确的是( )A .f (x )的值域为[0,1)B .f (x )在(1,+∞)为减函数C .方程f(x)=12无实根D .方程f(x)=712仅有一个实根 解:由高斯函数的定义可得:当0<x <1时,[x ]=0,则f (x )=[x]x =0, 当1≤x <2时,[x ]=1,则f (x )=[x]x =1x ; 当2≤x <3时,[x ]=2,则f (x )=[x]x =2x ; 当3≤x <4时,[x ]=3,则f (x )=[x]x =3x ; 当4≤x <5时,[x ]=4,则f (x )=[x]x =4x , 绘制函数图象如图所示:对于A ,由图可知,f (x )在(0,+∞)上的值域为(12,1]∪{0},不正确;对于B ,当x ≥1时,f (x )的每段函数都是单调递减,但是f (x )在(1,+∞)不是减函数,不正确; 对于C ,由选项A 知,f (x )在(0,+∞)上的值域为(12,1]∪{0},所以方程f(x)=12无实根,正确; 对于D ,当1≤x <2时,f(x)=712,即1x =712,解得x =127∈[1,2),当2≤x <3时,f(x)=712,即2x=712,解得x =247∉[2,3),结合函数f (x )图象知,方程f(x)=712仅有一个实根127,故正确. 故选:AB . 三、填空题13.函数f(x)=√−x 2+2x +3的定义域为 [﹣1,3] . 解:f(x)=√−x 2+2x +3, 令﹣x 2+2x +3≥0,解得﹣1≤x ≤3, 故函数f (x )的定义域为[﹣1,3]. 故答案为:[﹣1,3].14.已知函数f (x )=mx 2+nx +2(m ,n ∈R )是定义在[2m ,m +3]上的偶函数,则函数g (x )=f (x )+2x 在[﹣2,2]上的最小值为 ﹣6 .解:因为函数f (x )=mx 2+nx +2(m ,n ∈R )是定义在[2m ,m +3]上的偶函数, 故,即,则{2nx =0m =−1解得{n =0m =−1,所以g (x )=f (x )+2x =﹣x 2+2x +2=3﹣(x ﹣1)2,x ∈[﹣2,2],所以g (﹣2)=﹣(﹣2)2+2×(﹣2)+2=﹣6,g (2)=﹣22+2×2+2=2, 则g (x )min =﹣6, 故答案为:﹣6.15.股票是股份公司发给股东证明其所入股份的一种有价证券,它可以作为买卖对象和抵押品,是资金市场主要的长期信用工具之一.股票在公开市场交易时可涨可跌,在我国上海证券交易所交易的主板股票每个交易日上涨和下跌都不超过10%,当日上涨10%称为涨停,当日下跌10%称为跌停.某日贵州茅台每股的价格是1500元,若贵州茅台在1500元的价格上先涨停2天再跌停2天,则4天后每股的价格是 1470.15 元.解:由题意可知,四天后的价格为1500×(1+10%)2×(1﹣10%)2=1470.15元. 故答案为:1470.15.16.设y =f (x )是定义在R 上的函数,对任意的x ∈R ,恒有f (x )+f (﹣x )=x 2成立,g(x)=f(x)−x 22,若y =f (x )在(﹣∞,0]上单调递增,且f (2﹣a )﹣f (a )≥2﹣2a ,则实数a 的取值范围是 (﹣∞,1] .解:由f (x )+f (﹣x )=x 2,g(x)=f(x)−x 22, 可得g (x )+g (﹣x )=f (x )−x 22+f (﹣x )−x 22=x 2﹣x 2=0,所以g(x)为奇函数,由于y=f(x)在(﹣∞,0]上单调递增,y=−x22在(﹣∞,0]上单调递增,所以g(x)在(﹣∞,0]上单调递增,从而g(x)在R上单调递增,由于f(2﹣a)﹣f(a)≥2﹣2a,则f(2﹣a)−(2−a)22≥f(a)−a22,即g(2﹣a)≥g(a),所以2﹣a≥a,故a≤1.故答案为:(﹣∞,1].四、解答题17.(1)计算:(235)0+2−2×(214)−12−(0.01)0.5;(2)若实数a满足a 12+a−12=3,求a+a﹣1的值.解:(1):(235)0+2−2×(214)−12−(0.01)0.5=1+14×(94)−12−0.1=1+14×23−110=1615;(2)a 12+a−12=3,两边同时平方可得,a+a﹣1+2=9,故a+a﹣1=7.18.已知函数f(x)=x+4x.(1)证明:f(x)在[2,+∞)为增函数;(2)求f(x)在[1,4]上的值域.(1)证明:在[2,+∞)上任取x1,x2,且x1<x2,f(x1)−f(x2)=x1+4x1−(x2+4x2)=(x1−x2)⋅x1x2−4x1x2,∵x1<x2,∴x1﹣x2<0,x1∈[2,+∞),x2∈[2,+∞),∴x1x2﹣4>0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故f(x)在[2,+∞)上是增函数;(2)解:由(1)知:f(x)在[1,2]上是减函数,在(2,4)上是增函数,当x=2时,有最小值4;当x=1时,f(1)=5,当x=4时,f(4)=5,∴函数的最大值为5,∴函数的值域为[4,5].19.在①A∪B=B;②“x∈A”是“x∈B”的充分不必要条件;③A∩B=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合A ={x |a ﹣1≤x ≤2a +1},B ={x |﹣1≤x ≤3}.(1)当a =2时,求A ∪B ;A ∩(∁R B );(2)若______,求实数a 的取值范围.解:(1)当a =2时,集合A ={x |1≤x ≤5},B ={x |﹣1≤x ≤3},∴∁R B ={x |x >3或x <﹣1},所以A ∪B ={x |﹣1≤x ≤5};A ∩(∁R B )={x |3<x ≤5}.(2)若选择①,A ∪B =B ,则A ⊆B ,当A =∅时,a ﹣1>2a +1解得a <﹣2,当A ≠∅,又A ⊆B ,B ={x |﹣1≤x ≤3},所以{a −1≤2a +1a −1≥−12a +1≤3,解得0≤a ≤1,所以实数a 的取值范围是(﹣∞,﹣2)∪[0,1].若选择②,x ∈A 是x ∈B 的充分不必要条件,则A ⫋B ,当A =∅时,a ﹣1>2a +1解得a <﹣2,当A ≠∅,又A ⫋B ,B ={x |﹣1≤x ≤3},则{a −1≤2a +1a −1≥−12a +1<3或{a −1≤2a +1a −1>−12a +1≤3,解得0≤a ≤1,所以实数a 的取值范围是(﹣∞,﹣2)∪[0,1].若选择③,A ∩B =∅,当A =∅时,a ﹣1>2a +1解得a <﹣2,当A ≠∅,又A ∩B =∅,则{a −1≤2a +1a −1>3或2a +1<−1,解得a >4,或﹣2≤a <﹣1, 所以实数a 的取值范围是(﹣∞,﹣1)∪(4,+∞).20.设函数f (x )=a •2x ﹣2﹣x (a ∈R ). (1)若函数y =f (x )为奇函数,求方程f(x)+32=0的实根;(2)若函数h (x )=f (x )+4x +2﹣x 在x ∈[0,1]的最大值为﹣2,求实数a 的值.解:(1)∵f (x )为奇函数,∴f (﹣x )+f (x )=0,∴a •2﹣x ﹣2x +a •2x ﹣2﹣x =0, ∴(a ﹣1)•(2﹣x +2x )=0,得a =1.由f(x)+32=0,得2x ﹣2﹣x +32=0, ∴(2x +2)•(2•2x ﹣1)=0,又2x >0, ∴2•2x ﹣1=0,即x =﹣1,∴方程f(x)+32=0的实根为x =﹣1.(2)由h (x )=f (x )+4x +2﹣x ,得h (x )=a •2x ﹣2﹣x +4x +2﹣x ,x ∈[0,1], 令2x =t ∈[1,2],函数h (x )化为y =t 2+at ,t ∈[1,2],对称轴t =−a 2,当−a 2≤32,即a ≥﹣3时,y max =4+2a =﹣2,得a =﹣3;当−a 2>32,即a <﹣3时,y max =1+a =﹣2,得a =﹣3(舍).综上:实数a 的值为﹣3.21.美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的A ,B 两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产A 芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B 芯片的毛收入y (千万元)与投入的资金x (千万元)的函数关系为y =kx a (x >0),其图像如图所示.(1)试分别求出生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式;(2)现在公司准备投入40千万元资金同时生产A ,B 两种芯片,求可以获得的最大利润是多少.解:(1)∵生产A 芯片的毛收入与投入的资金成正比,∴可设y =mx (m >0),∵当x =1时,y =0.25,∴m =0.25,即y =0.25x ,∴生产A 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =0.25x ,∵生产B 芯片的函数y =kx a (x >0)图象过点(1,1),(4,2),∴{k =1k ⋅4a =2,解得{k =1a =12,∴y =x 12,即生产B 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =√x (x >0). 综上所述,生产A 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =0.25x , 生产B 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =√x (x >0).(2)设投入x 千万元生产B 芯片,则投入(40﹣x )千万元生产A 芯片,则公司所获利润f (x )=0.25(40−x)+√x −2=−14(√x −2)2+9,故当√x =2,即x =4千万元时,公司所获利润最大,最大利润为9千万元.22.若函数y =f (x )自变量的取值区间为[a ,b ]时,函数值的取值区间恰为[2b ,2a ],就称区间[a ,b ]为y =f (x )的一个“和谐区间”.已知函数g (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,g (x )=﹣x +3.(1)求g (x )的解析式;(2)求函数g (x )在(0,+∞)内的“和谐区间”;(3)若以函数g (x )在定义域内所有“和谐区间”上的图象作为函数y =h (x )的图象,是否存在实数m ,使集合{(x ,y )|y =h (x )}∩{(x ,y )|y =x 2+m }恰含有2个元素.若存在,求出实数m 的取值集合;若不存在,说明理由.解:(1)因为g (x )为R 上的奇函数,∴g (0)=0,又当x ∈(0,+∞)时,g (x )=﹣x +3,所以,当x ∈(﹣∞,0)时,g (x )=﹣g (﹣x )=﹣(x +3)=﹣x ﹣3,∴g(x)={−x −3,x <00,x =0−x +3,x >0;(2)设0<a <b ,∵g (x )在(0,+∞)上递单调递减,∴{2b =g(b)=−b +32a =g(a)=−a +3,即a ,b 是方程2x =−x +3的两个不等正根. ∵0<a <b ,∴{a =1b =2, ∴g (x )在(0,+∞)内的“和谐区间”为[1,2];(3)设[a ,b ]为g (x )的一个“和谐区间”,则{a <b 2b <2a,∴a ,b 同号.当a <b <0时,同理可求g (x )在(﹣∞,0)内的“和谐区间”为[﹣2,﹣1].∴ℎ(x)={−x +3,x ∈[1,2]−x −3,x ∈[−2,−1], 依题意,抛物线y =x 2+m 与函数h (x )的图象有两个交点时,一个交点在第一象限,一个交点在第三象限.因此m 应当使方程x 2+m =﹣x +3在[1,2]内恰有一个实数根,并且使方程x 2+m =﹣x ﹣3,在[﹣2,﹣1]内恰有一个实数.由方程x 2+m =﹣x +3,即x 2+x +m ﹣3=0在[1,2]内恰有一根,令F (x )=x 2+x +m ﹣3,则{F(1)=m −1≤0F(2)=m +3≥0,解得﹣3≤m ≤1; 由方程x 2+m =﹣x ﹣3,即x 2+x +m +3=0在[﹣2,﹣1]内恰有一根,令G (x )=x 2+x +m +3,则{G(−1)=m +3≤0G(−2)=m +5≥0,解得﹣5≤m ≤﹣3. 综上可知,实数m 的取值集合为{﹣3}.。

2023~2024学年第一学期高一期中考试数学试题[含答案]

2023~2024学年第一学期高一期中考试数学试题[含答案]


上单调递增,
f x f 1 1
min
,C 正确;
D
选项,令
2x2
3x
0
,解得
x
3 2

0(舍去),
f x

的图象与 x 轴只有 1 个交点,D 错误.
故选:ABC
11.
已知关于 x 的不等式
ax²
2bx
3c
0
x
的解集为
|
3
x
1 ,则下列结论正确的是(
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分又不必要条件
【答案】C
【解析】
【分析】利用充分、必要条件的定义即可判断.
【详解】由 a b 得不到 ac2 bc2 ,如 c 0 ,故充分性不成立,
反之,由 ac2 bc2 可以得到 a b ,故必要性成立,
则“ a b ”是“ ac2 bc2 ”的必要不充分条件.
若 m 2 ,则 f (x) x2 ,函数 f (x) 在 (0, ) 上为增函数,不符合题意,舍去;
若m
1 ,则
f
(x)
1 x
,函数
f
(x) 在 (0, ) 上为减函数,符合题意;
所以实数 m 的值是 1.
故选:B.
4. 已知 a, b, c 是实数,则“ a b ”是“ ac2 bc2 ”的( )

2
x
5
0
【答案】C
【解析】
【分析】“存在一个符合”的否定为“任一个都不符合”
【详解】命题
p: x R
3x2
,使得
2
x
5
0

2023-2024学年度上学期高一数学期中考试[含答案]

2023-2024学年度上学期高一数学期中考试[含答案]

又 f (x) 是奇函数,所以 0 x 2 时, f (x) 0 , x 2 时, f (x) 0 ,且 f (0) f (2) 0 ,
不等式
xf
x
0
x
f
0
x
0

x
f
0 (x)
0

x
0
,所以 0
x
2 或 2
x
0

综上 2 x 2 .
故选:D.a 23 , b 45 , c 253 ,则
【解析】
【分析】根据交集含义即可得到答案.
A B 1, 0,1
【详解】根据交集含义即可得到

故选:B.
2. 命题: x R, x | x | 0 的否定为( )
A. x R, x | x | 0
B. x R, x | x | 0
C. x R, x | x | 0
D. x R, x | x | 0
【详解】因为
f
2x
1
x2
1 t
,令
2x
1,
x
t
1 2

f
(t)
t
1 2 2
1
,即
f
(x)
x 12 2
1

所以 f (3) 2 .
故选:B
6.
若定义在 R 的奇函数
f
x
,若
x
0

f
x
x 2
xf
,则满足
x 0 的 x 的取值范围是(

, 20, 2
A. 【答案】D 【解析】
, 2 2, , 20, 2
对于 C,
y∣y∣ x2 1, x R

高一数学上学期期中考试试卷含答案(共5套,新课标版)

高一第一学期数学期中考试试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =,集合{}1,2M =,{}3,4N =,则()UM N =( )A.{}5B.{}1,2C.{}3,4D.{}1,2,3,42.函数y = ) A.[)1,+∞B.[]0,2C.()0,+∞D.[)0,+∞3.点()sin913,cos913A ︒︒位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.若实数a ,b 满足2a b +=,则33a b +的最小值是( )A.18B.6C.D.5.已知0a b >>,则“0m >”是“m m a b >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件6.函数()22log 4y x =-的单调增区间是( ) A.()0,+∞B.()2,+∞C.(),0-∞D.(),2-∞-7.教室通风的目的是通过空气的流动,排出室内的污浊空气和致病微生物,降低室内二氧化碳和致病微生物的浓度,送进室外的新鲜空气,按照国家标准,教室内空气中二氧化碳日平均最高容许浓度应小于等于0.1%,经测定,刚下课时,某班教室空气中含有0.2%的二氧化碳,若开窗通风后教室内二氧化碳的浓度为%y ,且y 随时间t (单位:分钟)的变化规律可以用函数100.05()-=+∈ty eR λλ描述,则该教室内的二氧化碳浓度达到国家标准至少需要的时间为( )(参考数据ln20.7,ln3 1.1≈≈)A .7分钟B .9分钟C .11分钟D .14分钟 8.设0.3log 0.2a =,3log 2b =,0.30.6c =,则( ) A.c b a >>B.b c a >>C.a c b >>D.a b c >>二、多项选择题(共4小题,各题均有多个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分).9.下列说法正确的是( )A .如果α是第一象限的角,则α-是第四象限的角B .如果α,β是第一象限的角,且αβ<则sin sin αβ<C .若圆心角为3π的扇形的弧长为π,则该扇形面积为23πD .若圆心角为23π的扇形的弦长为83π10.若角α的终边上有一点()(),20P a a a ≠,则2sin cos αα-的值可以是( )A .BC .D 11.下列结论正确的是( )A.“0x ∃<,2310x x -+≥”的否定是“0x ∀<,2310x x -+<”B.函数()f x 在(],0-∞单调递增,在()0,+∞单调递增,则()f x 在R 上是增函数C.函数()f x 是R 上的增函数,若()()()()1212f x f x f x f x +≥-+-成立,则120x x +≥D.函数()f x 定义域为R ,且对,a b R ∀∈,()()()f a b f a f b +=+恒成立,则()f x 为奇函数12.函数()()()2,142,1x a x f x x a x a x ⎧-<⎪=⎨--≥⎪⎩恰有2个零点的充分条件是( )A.(]1,2B.()3,+∞C.1,12⎛⎫⎪⎝⎭D.10,2⎛⎤ ⎥⎝⎦三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()()222x x f x x a -=⋅-是奇函数,则a =________________.14.在平面直角坐标系中,若角α的终边经过点4π4πsin ,cos 33P ⎛⎫ ⎪⎝⎭,则()cos πα+=_________.15.若cos cos 7x π=,则x 的取值组成的集合为_____________________..16.设函数()()213,1,2, 1.xax a x a x f x x ⎧-++<=⎨≥⎩的最小值为2,则实数a 的取值范围是____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)如图,在平面直角坐标系中,锐角α和钝角β的顶点与原点重合,始边与x 轴的正半轴重合,终边分别与单位圆交于,A B 两点,且OA OB ⊥. (1)求()()sin cos 23cos sin 2ππαβππβα⎛⎫++ ⎪⎝⎭⎛⎫-+ ⎪⎝⎭的值;(2)若点A 的横坐标为35,求2sin cos αβ的值.18.(本小题满分12分)已知集合{}23=<->或A x x x ,{}123,=-≤≤+∈B x m x m m R . (1)若2=m ,求A B 和()R A B ;(2)若=∅A B ,求实数m 的取值范围.19.(本小题满分12分)已知函数()2=-mf x x x ,且112⎛⎫=- ⎪⎝⎭f . (1)求m 的值;(2)判定()f x 的奇偶性,并给予证明;(3)判断()f x 在(0,)+∞上的单调性,并给予证明.20.(本小题满分12分)已知2()3=+-f x x x a .(1)若()0<f x 的解集为{}4-<<x x b ,求实数a ,b 的值; (2)解关于x 的不等式()2>+f x ax a .21.(本小题满分12分)市场上有一种新型的强力洗衣液,特点是去污速度快,已知每投放(14,)≤≤∈a a a R 个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为()=⋅y a f x ,其中161(04)8()15(410)2⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩x xf x x x ,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(1)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(2)若第一次投放2个单位的洗衣液,6分钟后再投放2个单位的洗衣液,问能否使接下来的4分钟内持续有效去污?说明理由.22.(本小题满分12分)已知函数2()21(0)g x ax ax b a =-++>在区间[2,3]上有最大值4和最小值1,设()()g x f x x=. (1)求a ,b 的值(2)若不等式()22log 2log 0f x k x -⋅≥在[]2,4x ∈上有解,求实数k 的取值范围;(3)若()2213021xx f k k -+⋅-=-有三个不同的实数解,求实数k 的取值范围.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.8.C 【解析】依题意可知0=t 时,0.2=y ,即0.050.2,0.15+==λλ,所以100.050.15=+t y e ,由100.050.150.1=+≤t y e ,得1013≤t e ,两边取以e 为底的对数得1ln ln3 1.1,11103-≤=-≈-≥t t ,所以至少需要11分钟,故选:C . 二、多项选择题(共4小题,每小题均有两个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分).三、填空题:本题共4小题,每小题5分,共20分. 13.1 14.15. {|2,}7k k Z πααπ=±∈16.[1,)+∞四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)∵2πβα=+,∴sin sin cos 2πβαα⎛⎫=+= ⎪⎝⎭,cos cos sin 2πβαα⎛⎫=+=- ⎪⎝⎭, ∴()()sin cos sin sin sin cos 213cos cos sin cos cos sin 2ππαβαβααπαβααπβα⎛⎫++ ⎪⎝⎭==-=-⎛⎫-+ ⎪⎝⎭. .........................5分(2)∵点A 的横坐标为35,∴3cos 5α=,4sin 5α, 4cos cos sin 25πβαα⎛⎫=+=-=- ⎪⎝⎭,∴44322sin cos 25525αβ⎛⎫=⨯⨯-=- ⎪⎝⎭. ........................ 10分18.【解析】(1)若2=m ,则{}17=≤≤B x x ,......................... 1分 所以{}21=<-≥或AB x x x , ......................... 3分因为{}23=-≤≤RA x x ,所以(){}13=≤≤R AB x x . ......................... 6分(2)因为=∅A B ,当=∅B 时,123->+m m ,解得4<-m ,满足≠∅AB ; ......................... 8分当≠∅B 时,12312233-≤+⎧⎪-≥-⎨⎪+≤⎩m m m m ,解得10-≤≤m , ......................... 11分综上所述:实数m 的取值范围是4<-m 或10-≤≤m . ......................... 12分19.(1)因为11112112222⎛⎫⎛⎫⎛⎫=⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭m mf ,所以1=-m ; ......................... 3分(2)由(1)可得1()2=-f x x x,因为()f x 的定义域为{}0≠x x , 又111()222()⎛⎫⎛⎫-=---=-+=--=- ⎪ ⎪⎝⎭⎝⎭f x x x x f x x x x ,所以()f x 是奇函数; ......................... 7分 (3)函数()f x 在(0,)+∞上为增函数,理由如下: 任取120>>x x , 则()()()()()1212121212121212122111222-+⎛⎫--=---=-+= ⎪⎝⎭x x x x x xf x f x x x x x x x x x x x ....................10分 因为120>>x x ,所以12120,0->>x x x x ,所以()()12>f x f x ,所以()f x 在(0,)+∞上为单调增函数. ......................... 12分 20.【详解】(1)因为()0>f x 的解集为{}4-<<x x b ,所以4=-x 为方程()0=f x 的根,所以2(4)3(4)0-+⨯--=a ,解得4=a . ......................... 3分 所以由2()340=+-<f x x x ,解得{}41-<<x x ,所以1=b . ......................... 6分 (2)()2>+f x ax a 等价于2(3)30+-->x a x a ,整理得:(3)()0+->x x a . ...................... 7分当3>-a 时,解不等式得3<-x 或>x a ; 当3=-a 时,解得3≠-x ;当3<-a 时,解得<x a 或3>-x ; ......................... 11分综上,当3>-a 时,不等式的解集为(,3)(,)-∞-+∞a ;当3=-a 时,不等式的解集为{}3≠-x x ; 当3<-a 时,不等式的解集为(,)(3,)-∞-+∞a . 12分21.【解析】(1)因为4=a ,所以644,048202,410⎧-≤≤⎪=-⎨⎪-<≤⎩x y x x x . ......................... 1分则当04x ≤≤时,由64448-≥-x,解得0≥x ,所以此时04x ≤≤. ......................... 4分 当410<≤x 时,由2024-≥x ,解得8≤x ,所以此时48<≤x . ......................... 5分 综上,得08≤≤x ,若一次投放4个单位的洗衣液,则有效去污时间可达8分钟. ........................ 6分(2)假设要使接下来的4分钟内持续有效去污,则: 当610≤≤x时,11616251(14)4428(6)14⎡⎤⎛⎫=⨯-+-=-+--≥-- ⎪⎢⎥---⎝⎭⎣⎦a y x a x a a x x ....... 8分当且仅当14-=x 时等号取到.(因为14≤≤a ,所以[6,10]∈x 能取到) 所以y有最小值4--a.令44--≥a ,解得244-≤≤a , ......................... 10分所以a的最小值为24 1.42-≈<.即要使得接下来的4分钟内持续有效去污,6分钟后至少需要再投放1.4个单位的洗衣液.所以,若第一次投放2个单位的洗衣液,6分钟后再投放2个单位的洗衣液,能使接下来的4分钟内持续有效去污. ......................... 12分22. (1)由题意2()(1)1g x a x b a =-++-,又0a >,∴()g x 在[2,3]上单调递增,∴(2)4411(3)9614g a a b g a a b =-++=⎧⎨=-++=⎩,解得10a b =⎧⎨=⎩. ......................... 3分(2)由(1)2()21g x x x =-+,()1()2g x f x x x x==+-, [2,4]x ∈时,2log [1,2]x ∈,令2log t x =,则()20f t kt -≥在[1,2]上有解,......................... 4分1()2220f t kt t kt t -=+--≥,∵[1,2]t ∈,∴22121211k t t t ⎛⎫≤+-=- ⎪⎝⎭, [1,2]t ∈,则11,12t ⎡⎤∈⎢⎥⎣⎦,∴211t ⎛⎫- ⎪⎝⎭的最大值为14, ......................... 6分 ∴124k ≤,即18k ≤. ∴k 的取值范围是1,8⎛⎤-∞ ⎥⎝⎦. ......................... 7分(3)原方程化为221(32)21(21)0x x k k --+-++=,令21xt =-,则(0,)t ∈+∞,2(32)(21)0t k t k -+++=有两个实数解12,t t ,作出函数21xt =-的图象,如图 ......................... 9分原方程有三个不同的实数解,则101t <<,21t >,或101t <<,21t =,记2()(32)(21)0h t t k t k =-+++=, ......................... 10分则210(1)0k h k +>⎧⎨=-<⎩,解得0k >,或210(1)032012k h k k ⎧⎪+>⎪=-=⎨⎪+⎪<<⎩,无解. 综上k 的取值范围是(0,)+∞. ......................... 12分高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。

高一上学期期中考试数学试卷含答案(新课标)

2022-2023学年广东高一上学期数学期中考试试题一.选择题(共8小题,满分40分,每小题5分)1.(5分)如图,U 是全集,M 、P 是U 的子集,则阴影部分所表示的集合是( )A .()U MPB .M PC .()U M PD .()()U U M P2.(5分)函数1()x f x -=的定义域为( ) A .(1,)+∞B .[1,)+∞C .[1,2)D .[1,2)(2⋃,)+∞3.(5分)已知集合{2A =-,1},{|2}B x ax ==,若A B B =,则实数a 值集合为( )A .{1}-B .{2}C .{1-,2}D .{1-,0,2}4.(5分)函数()f x 为R 上奇函数,且()1(0)f x x x =>,则当0x <时,()(f x = ) A .1xB .1x --C 1x -D 1x -5.(5分)下列命题中为假命题的是( ) A .x R ∃∈,21x <B .22a b =是a b =的必要不充分条件C .集合2{(,)|}x y y x =与集合2{|}y y x =表示同一集合D .设全集为R ,若A B ⊆,则()()R R B A ⊆ 6.(5分)函数2y x x =+-( ) A .[0,)+∞B .[2,)+∞C .[4,)+∞D .[2)+∞7.(5分)已知()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数,则满足(1)f a f ->(2)的实数a 的取值范围是( ) A .(-∞,3] B .(1,3)-C .(1,)-+∞D .(1,3)8.(5分)已知函数2(1)2,0()2,0a x a x f x x x x -+<⎧=⎨-⎩有最小值,则a 的取值范围是( )A .1[2-,1)B .1(2-,1)C .1[2-,1]D .1(2-,1]二.多选题(共4小题,满分20分,每小题5分) 9.(5分)若110a b<<,则下列不等式中,错误的有( ) A .a b ab +< B .||||a b > C .a b < D .2b a a b+ 10.(5分)下列说法正确的有( ) A .函数1()f x x=在其定义域内是减函数 B .命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++” C .两个三角形全等是两个三角形相似的必要条件 D .若()y f x =为奇函数,则()y xf x =为偶函数11.(5分)若0a >,0b >,2a b +=,则下列不等式对一切满足条件的a ,b 恒成立的是( ) A .1abB .2a b+ C .222a b + D .112a b+ 12.(5分)数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数“,下列说法正确的是( )A .对于任意一个圆,其“优美函数“有无数个B .3()f x x =可以是某个圆的“优美函数”C .,0(),0x x f x x x =--<⎪⎩可以同时是无数个圆的“优美函数”D .函数()y f x =是“优美函数”的充要条件为函数()y f x =的图象是中心对称图形三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中m ,0n >,则11m n+的最小值为 . 14.(5分)已知2(2)f x x x =+,则f (1)= ;()f x 的解析式为 .15.(5分)定义在[1-,1]上的函数()y f x =是增函数,且是奇函数,若(1)(45)0f a f a -+->,求实数a 的取值范围是 .16.(5分)已知函数()(||2)f x x x =-,4()1xg x x =+,对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立,则实数a 的取值范围为 . 四.解答题(共6小题,满分70分) 17.(10分)已知函数()f x =的定义域是集合A ,集合{|1B x x =或3}x .(1)求AB ,AB ;(2)若全集U R =,求()U A B .18.(12分)已知命题:P x R ∃∈,使240x x m -+=为假命题. (1)求实数m 的取值集合B ;(2)设{|34}A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.19.(12分)已知0a >,0b >,31a b +=. (1)求13a b+的最小值; (2)若2297m a b ab >++恒成立,求实数m 的取值范围.20.(12分)已知函数()f x 是定义域为R 的偶函数,当0x 时,2()2f x x x =-(如图). (1)请补充完整函数()f x 的图象; (2)求出函数()f x 的解析式; (3)求不等式()3f x 的解集;(4)若函数()y f x =与y m =有两个交点,直接写出实数m 的取值范围.21.(12分)已知函数2()1x af x x +=+. (1)若1a =时,判断并证明函数()f x 在[2,3]上的单调性,并求函数()f x 在[2,3]上的最大值和最小值; (2)探究:是否存在实数a ,使得函数()f x 为奇函数?若存在,求出a 的值;若不存在,说明理由.22.(12分)已知函数1()2f x x x=+-. (1)若不等式(2)20x x f k -在[1-,1]上有解,求k 的取值范围; (2)若方程2(|21|)30|21|x x kf k -+-=-有三个不同的实数解,求实数k 的取值范围.答案及解析2022-2023学年广东高一上学期数学期中检测仿真卷(1)一.选择题(共8小题,满分40分,每小题5分)1.(5分)如图,U 是全集,M 、P 是U 的子集,则阴影部分所表示的集合是( )A .()U MPB .M PC .()U M PD .()()U U M P【答案】A【详解】由已知中阴影部分在集合M 中,而不在集合P 中, 故阴影部分所表示的元素属于M ,不属于P (属于P 的补集), 即()U C P M ,故选:A .2.(5分)函数1()x f x -=的定义域为( ) A .(1,)+∞ B .[1,)+∞ C .[1,2)D .[1,2)(2⋃,)+∞【答案】D 【详解】由题意得:1020x x -⎧⎨-≠⎩,解得:1x 且2x ≠, 故函数的定义域是[1,2)(2⋃,)+∞, 故选:D .3.(5分)已知集合{2A =-,1},{|2}B x ax ==,若A B B =,则实数a 值集合为( )A .{1}-B .{2}C .{1-,2}D .{1-,0,2}【答案】D 【详解】AB B B A =⇒⊆,{2A =-,1}的子集有φ,{2}-,{1},{2-,1},当B φ=时,显然有0a =;当{2}B =-时,221a a -=⇒=-;当{1}B =时,122a a ⋅=⇒=;当{2B =-,1},不存在a ,符合题意,∴实数a 值集合为{1-,0,2},故选:D .4.(5分)函数()f x 为R 上奇函数,且()1(0)f x x =>,则当0x <时,()(f x = )A .1B .1C 1D 1【答案】B【详解】函数()f x 为R 上奇函数,可得()()f x f x -=-,又()1(0)f x x >, 则当0x <时,0x ->,()()1)1f x f x =--=-=.即0x <时,()1f x =. 故选:B .5.(5分)下列命题中为假命题的是( ) A .x R ∃∈,21x <B .22a b =是a b =的必要不充分条件C .集合2{(,)|}x y y x =与集合2{|}y y x =表示同一集合D .设全集为R ,若A B ⊆,则()()R R B A ⊆ 【答案】C【详解】A .x R ∃∈,取12x =,则2114x =<,因此是真命题; B .由22a b a b =⇒=,反之不成立,例如取1a =,1b =-,满足22a b =,但是a b ≠,因此22a b =是a b=的必要不充分条件,因此是真命题;C .集合2{(,)|}x y y x =表示点的集合,而集合2{|}y y x =表示数的集合,它们不表示表示同一集合,因此是假命题;D .全集为R ,若A B ⊆,则()()R R B A ⊆,是真命题.故选:C .6.(5分)函数y x =+( )A .[0,)+∞B .[2,)+∞C .[4,)+∞D .)+∞【答案】B【详解】函数的定义域为[2,)+∞, 又函数为单调增函数, 当2x =时,取得最小值为2.∴值域是[2,)+∞.故选:B .7.(5分)已知()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数,则满足(1)f a f ->(2)的实数a 的取值范围是( ) A .(-∞,3] B .(1,3)- C .(1,)-+∞ D .(1,3)【答案】B【详解】根据题意,()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数, 则(1)f a f ->(2)(|1|)f a f ⇒->(2)|1|2a ⇒-<, 解可得:13a -<<,即a 的取值范围为(1,3)-, 故选:B .8.(5分)已知函数2(1)2,0()2,0a x a x f x x x x -+<⎧=⎨-⎩有最小值,则a 的取值范围是( )A .1[2-,1)B .1(2-,1)C .1[2-,1]D .1(2-,1]【答案】C【详解】当0x 时,2()(1)1f x x =--, 此时()min f x f =(1)1=-, 而当0x <时,①1a =时,()2f x =为常函数,此时在R 上满足函数()f x 有最小值为1-, ②1a ≠时,函数()f x 此时为单调的一次函数,要满足在R 上有最小值, 只需10(1)021a a a -<⎧⎨-⨯+-⎩,解得112a -<,综上,满足题意的实数a 的取值范围为:112a -, 故选:C .二.多选题(共4小题,满分20分,每小题5分) 9.(5分)若110a b<<,则下列不等式中,错误的有( ) A .a b ab +< B .||||a b > C .a b < D .2b a a b+ 【答案】BCD 【详解】由110a b<<,得0b a <<,则0a b ab +<<,选项A 正确,选项C 错误; 根据0b a <<可得||||b a >,所以选项B 错误; 由0b a <<,得0b a >,0a b >,则22b a b a a b a b +⋅=,当且仅当b aa b=时等号成立,又a b ≠, 所以b aa b+不能取得最小值2,选项D 错误. 故选:BCD .10.(5分)下列说法正确的有( ) A .函数1()f x x=在其定义域内是减函数 B .命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++” C .两个三角形全等是两个三角形相似的必要条件 D .若()y f x =为奇函数,则()y xf x =为偶函数 【答案】BD【详解】对于A :函数1()f x x=的定义域为(-∞,0)(0⋃,)+∞,所以函数在(0,)+∞和(,0)-∞上都为单调递减函数,故A 错误;对于B :命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++”故B 正确;对于C :两个三角形全等,则两个三角形必相似,但是两个三角形相似,则这两个三角形不一定全等,则两个三角形全等是两个三角形相似的充分不必要条件,故C 错误;对于D :若()y f x =为奇函数,且函数y x =也为奇函数,则函数则()y xf x =为偶函数,故D 正确. 故选:BD .11.(5分)若0a >,0b >,2a b +=,则下列不等式对一切满足条件的a ,b 恒成立的是( )A .1abB 2bC .222a b +D .112a b+ 【答案】ACD【详解】对于命题1ab :由221a b ab ab =+⇒,A 正确;对于命题2a b +:令1a =,1b =时候不成立,B 错误;对于命题222222:()2422a b a b a b ab ab ++=+-=-,C 正确; 对于命题111122:2a b a b a b ab ab+++==,D 正确. 故选:ACD .12.(5分)数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数“,下列说法正确的是( )A .对于任意一个圆,其“优美函数“有无数个B .3()f x x =可以是某个圆的“优美函数”C .,0(),0x x f x x x =--<⎪⎩可以同时是无数个圆的“优美函数”D .函数()y f x =是“优美函数”的充要条件为函数()y f x =的图象是中心对称图形 【答案】ABC【详解】根据题意,依次分析选项:对于A :对于任意一个圆,任意的一条直径均可以平分周长和面积,故圆的“优美函数”有无数个,A 正确;对于B :由于3()f x x =的图象关于原点对称,而单位圆也关于原点对称,故3()f x x =可以是单位圆的“优美函数”, B 正确;对于C ,,0(),0x x f x x x =--<⎪⎩为奇函数,且经过原点,若圆的圆心在坐标原点,则()f x 是这个圆的“优美函数”, C 正确,对于D :函数图象是中心对称图形的函数一定是“优美函数”,但反之“优美函数”不一定是中心对称的函数,如图,故D 错误;故选:ABC .三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中m ,0n >,则11m n+的最小值为 . 【答案】4【详解】函数1(0,1)x y a a a -=>≠的图象恒过定点A , 可得(1,1)A ,点A 在一次函数y mx n =+的图象上, 1m n ∴+=,m ,0n >,12m n ∴+=mn ,14mn ∴, 111()4m n m n mn mn +∴+==(当且仅当12n =,12m =时等号成立), 故答案为:4.14.(5分)已知2(2)f x x x =+,则f (1)= ;()f x 的解析式为 . 【答案】34;211()42f x x x =+ 【详解】由21x =,得12x =,f ∴(1)2113()224=+=; 令2x t =,得2t x =,2211()()2242t t f t t t ∴=+=+, 211()42f x x x ∴=+. 故答案为:34;211()42f x x x =+. 15.(5分)定义在[1-,1]上的函数()y f x =是增函数,且是奇函数,若(1)(45)0f a f a -+->,求实数a 的取值范围是 .【答案】6(5,3]2【详解】由题意,(1)(45)0f a f a -+->,即(1)(45)f a f a ->--, 而又函数()y f x =为奇函数,所以(1)(54)f a f a ->-. 又函数()y f x =在[1-,1]上是增函数, 有1111451154a a a a --⎧⎪--⎨⎪->-⎩⇒0231265a a a ⎧⎪⎪⎪⎨⎪⎪>⎪⎩⇒6352a < 所以,a 的取值范围是6(5,3]2.故答案为:6(5,3]2.16.(5分)已知函数()(||2)f x x x =-,4()1xg x x =+,对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立,则实数a 的取值范围为 . 【答案】1[,3]3【详解】函数()(||2)f x x x =-,4()1xg x x =+, 因为44()411x g x x x ==-++在(1,)a -上单调递增, 所以()g x g <(a )41aa =+, 又222,0()(||2)2,0x x x f x x x x x x ⎧-=-=⎨--<⎩,因为(1)1f -=,由221x x -=,1x =±①当11a -<<+()f x f <(1)1=,因为对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立, 所以411aa +,解得13a ,故1123a <+ ②当12a +时,()f x f <(a )22a a =-,因为对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立, 所以2421aa aa -+,可得260a a --,解得23a -, 故123a .综上所述,实数a 的取值范围为1[,3]3.故答案为:1[,3]3.四.解答题(共6小题,满分70分) 17.(10分)已知函数()f x =的定义域是集合A ,集合{|1B x x =或3}x .(1)求AB ,AB ;(2)若全集U R =,求()U A B .【答案】(1){|41AB x x =-<或34}x <;AB R =;(2)(){|4U A B x x =-或4}x【详解】(1)因为函数()f x =的定义域是2{|160}{|44}A x x x x =->=-<<,集合{|1B x x =或3}x , 所以{|41AB x x =-<或34}x <;A B R =;(2)因为全集U R =,所以{|4UA x x =-或4}x ,所以(){|4U A B x x =-或4}x .18.(12分)已知命题:P x R ∃∈,使240x x m -+=为假命题. (1)求实数m 的取值集合B ;(2)设{|34}A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 【答案】(1)(4,)B =+∞;(2)4[3,2)【详解】(1)由题意,得关于x 的方程240x x m -+=无实数根, 所以△1640m =-<,解得4m >, 即(4,)B =+∞;(2)因为{|34}A x a x a =<<+为非空集合, 所以34a a <+,即2a <,因为x A ∈是x B ∈的充分不必要条件,所以A 是B 的真子集,则2a <且34a , 即423a <, 综上所述,实数a 的取值范围为4[3,2).19.(12分)已知0a >,0b >,31a b +=. (1)求13a b+的最小值; (2)若2297m a b ab >++恒成立,求实数m 的取值范围. 【答案】(1)16;(2)13(12,)+∞【详解】(1)0a >,0b >,且31a b +=,∴1313333(3)()1010216a b a b a b a b b a b +=++=+++=,当且仅当33a b b a =,即14a b ==时,等号成立, ∴13a b+的最小值为16. (2)2297m a b ab >++恒成立,22(97)max m a b ab ∴>++,222197(3)133a b ab a b ab a b ++=++=+⨯⋅,2(3)1344a b a b +⋅=,当且仅当3a b =,即12a =,16b =时,等号成立,2211139713412a b ab ∴+++⨯=,1312m ∴>, 即实数m 的取值范围为13(12,)+∞.20.(12分)已知函数()f x 是定义域为R 的偶函数,当0x 时,2()2f x x x =-(如图). (1)请补充完整函数()f x 的图象; (2)求出函数()f x 的解析式; (3)求不等式()3f x 的解集;(4)若函数()y f x =与y m =有两个交点,直接写出实数m 的取值范围.【答案】(1)见解析;(2)2220()20x xx f x x xx ⎧-=⎨+<⎩(3)(x ∈-∞,3][3-,)+∞;(4)0m >或1m =-【详解】(1)完整图:(2)0x <,顶点(1,1)--,过点(0,0),(2,0)- 顶点式:2()(1)1f x a x =+-代入(0,0),(2,0)-, 得1a =,2()2f x x x ∴=+, ∴2220()20x xx f x x xx ⎧-=⎨+<⎩, (3)()3f x ,当0x 时,2233x x x -⇒, 当0x <时,由对称性3x ⇒-, (x ∴∈-∞,3][3-,)+∞,(4)由图可知,0m >或1m =-. 21.(12分)已知函数2()1x af x x +=+. (1)若1a =时,判断并证明函数()f x 在[2,3]上的单调性,并求函数()f x 在[2,3]上的最大值和最小值; (2)探究:是否存在实数a ,使得函数()f x 为奇函数?若存在,求出a 的值;若不存在,说明理由. 【答案】(1)最大值为f (2)35=,最小值为f (3)25=;(2)见解析【详解】(1)21()1x f x x +=+在[2,3]上单调递减.证明:令12121212221211,[2,3],,()()11x x x x x x f x f x x x ++∀∈<-=-++ 2112212212()(1)(1)(1)x x x x x x x x -++-=++,因为1223x x <,所以210x x ->,124x x >,124x x +>,121210x x x x ++->, 所以12()()f x f x >,所以()f x 在[2,3]上单调递减;()f x 在[2,3]的最大值为f (2)35=,最小值为f (3)25=;(2)若()f x 为奇函数,且x R ∈,则(0)00f a =⇒=. 下面证明:因为2()1x f x x =+,所以2()()1xf x f x x --==-+, 所以存在0a =.22.(12分)已知函数1()2f x x x=+-. (1)若不等式(2)20x x f k -在[1-,1]上有解,求k 的取值范围; (2)若方程2(|21|)30|21|x x kf k -+-=-有三个不同的实数解,求实数k 的取值范围.【答案】(1)1k ;(2)0k > 【详解】(1)()211222201222x x x xx k k =+--⋅⇒-+原式, 11,222x t ⎡⎤=∈⎢⎥⎣⎦令,则221k t t -+, 令2()21g t t t =-+,()[0g t ∈,1],()k g t 有解,()max k g t ∴,1k ∴.(2)12212302121x x x kk -+-+-=--原式可化为,令|21|(0)x t t =->,12230kt k t t+-+-=原式可化为2(32)210t k t k ⇒-+++=,若原方程有三个不同的实数解,等价于方程2(32)210t k t k -+++=的两根分别位于(0,1)和(1,)+∞之间, 令2()(32)21g t t k t k =-+++, 只需1(0)02(1)00g k g k ⎧>>-⎧⎪⇒⎨⎨<⎩⎪>⎩,0k ∴>.。

高一上学期期中考试数学试卷含答案(新课标)

高一第一学期期中考试数学试卷本试题满分150分,考试时间为120分钟注意事项:1.答题前,考生务必将自己的姓名和座位号填写在答题卡上。

2.第Ⅰ卷为选择题12小题,每小题5分,共60分。

选出每小题答案后,把答案填写在答题卡相应位置上,在试卷上作答无效。

3. 第Ⅱ卷为非选择题,共90分。

用黑色签字笔将答案写在答题卡上各题的答题区域。

在试卷上作答无效。

第Ⅰ卷 选择题(共60分)一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.已知集合{}2,1,0,1-=U ,集合{}1,0,1-=A ,集合{}2,1-=B 则()B C A U ⋂=( )A .{}1-B .{}2,1 C .{}1,0 D .{}2,1- 2.命题“[)4,,22≤+∞∈∀x x ”的否定为( ) A .()4,2,200≥∞-∈∃x x B .[)4,,2200>+∞∈∃x x C .[)4,,2200<+∞∈∃x x D .[)4,,2200≥+∞∈∃x x3.已知:1,p x >-1:1,q x>则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.下列四组函数中,()f x 与()g x 不相等的是( )A .()f x x =与()g x =B .()21f x x =+与()21g t t =+C .()x f x x =与()1,01,0x g x x >⎧=⎨-<⎩D .()f x =与()g x =5.若()0,4,x ∈则()4x x -的最大值是( )A .4B .1C .0D .不存在6.下列不等式成立的是( )A .若a <b <0,则a 2<b 2B .()()334.13.1-<-C .若a >b ,则ac 2>bc 2D .若a >b >0,m >0,则b b m a a m +<+ 7.下列函数中,在区间()0,+∞上单调递增且是奇函数的是( )A .x y -=B .2x y =C .xx y 1-= D .x y = 8.已知()f x 是定义在[]1,1-上的减函数,且(23)(2)f a f a -<-,则实数a 的取值范围是( )A .(]2,1B .(]3,1C .(]4,1D .()+∞,1二、 多项选择题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,全部选对得5分,部分选对得2分,有选错的得0分,请把答案填涂在答题卡相应位置上)9.若集合{}2,1,0,1-=M ,集合{}1,0,1-=N ,则正确的是( )A .N x M x ∉∈∃,B .M x N x ∈∈∀,C .{}1,0,1-=⋂N MD .{}2,1,0,1-=⋃N M10.下列说法正确的是( )A .若正实数y x ,满足,1=+y x 则411≥+yx B .若1=+b a ,则ab 有最大值41 C .若ab =4,则a +b ≥4D .R a ∈∃,使得不等式21≤+aa 成立 11.著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一,以其命名的函数1()0x f x x ⎧=⎨⎩,为有理数,为无理数,称为狄利克雷函数,则关于)(x f ,下列说法正确的是( ) A .)(x f 的定义域是RB .)(x f 的值域是[]1,0C .1))((,=∈∀x f f R xD .任意一个非零有理数T ,)()(x f T x f =+对任意R x ∈恒成立12.已知关于x 的不等式02>++c bx ax 的解集为()(),,32,+∞⋃-∞-则( ) A .0<aB .不等式0>-c bx 的解集为{}6|<x xC .024<++c b aD .不等式02≥+-a bx cx 的解集为⎪⎭⎫ ⎝⎛-21,31 第Ⅱ卷 非选择题,共90分三、填空题(本大题共4小题,每小题5分,共计20分.把答案填写在答题卡相应位置上)13.函数21)(-+=x x x f 的定义域为___________. 14.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 15.已知函数⎩⎨⎧≥-<-=1,21,1)(2x ax x x ax x f 满足R x x ∈∀21,且21x x ≠,有0)()(2121>--x x x f x f , 则实数a 的取值范围是__________.(用集合或区间表示)16.已知函数{}1,m ax )(2+=x x x f ,其中R x ∈,则=)2(f ____,)(x f 的最小值为_____.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(1)解关于x 的不等式0652≤-+-x x (结果用集合或区间表示);(2)若不等式a x x ≤-+-652的解集为R ,求实数a 的取值范围.18.(本小题满分12分)已知集合A ={}123x m x m -≤≤+, .(1)当m =1时,求AB ,(RC A)B ; (2)若A B =A ,求实数m 的取值范围.试从以下两个条件中任选一个补充在上面的问题中,并完成解答.① 函数2()4f x x =-+的定义域为集合B ;② 不等式2x ≤的解集为B .注:如果选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)已知函数)(x f 是定义在R 上的奇函数,当0>x 时,32)(2--=x x x f(1) 求))1((f f 的值;(2) 求函数)(x f 的解析式;(3) 把函数图象补充完整,并写出函数)(x f 的单调递增区间.20.(本小题满分12分)某工厂的固定成本为4万元,该工厂每生产100台某产品的生产成本为1万元, 设生产该产品x (百台),其总成本为()g x 万元(总成本=固定成本+生产成本),并且销售收入()r x 满足⎩⎨⎧>≤<-+-=7,5.1370,5.1075.0)(2x x x x x r ,假设该产品产销平衡, (利润=收入-成本),根据上述统计数据规律求:(1) 求利润f (x )的表达式;(2) 工厂生产多少台产品时盈利最大?最大利润是多少?21.(本小题满分12分) 已知函数xa x x f +=2)(,且2)1(=f (1)求实数a 的值;(2)判断函数)(x f 在[)+∞,1上的单调性,并用定义证明;(3)求函数)(x f 在[)3,1上的值域.22.(本小题满分12分)已知函数12)(2+-=ax x x f ,k x x g +=2)(,其中R k a ∈,(1)若函数)(x f 是偶函数,求实数a 的值;(2)若函数)(x f 在[]2,1上具有单调性,求实数a 的取值范围;(3)当a =1时,若在区间[]4,1上,函数)(x g y =的图象恒在函数)(x f y =的图象上方, 试确定实数k 的取值范围.参考答案选择题:(每小题4分,共48分)1—8:BCAB DDBD9、CD 10、ABC 11、ABC 12、BCD填空题:(每小题4分,共16分)13、),2()2,1[+∞- 14、01,2≠+-∈∀x x R x 15、]4,0[ 16、223+ 解答题:(17、18题8分,19、20题10分,共36分)17、解:(1)由042<-x ,得2<x ∴}2|{<=x x A ………………………………………………………2分 ∴}20|{<<=x x B A ………………………………………………………4分(2) }2|{<=x x A∴=A C U }2|{≥x x ………………………………………………………6分 ∴B A C U )(=}0|{>x x ………………………………………………………8分18、解:设每个区域的长为xm ,宽为ym ,由题意得0>x ,0>y ,12=xy ,……………………2分则彩带总长xy y x l 24264≥+==12242⨯=224 ………………5分当且仅当y x 64=,即23=x 且22=y 等号成立。

2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={﹣1,0,1},集合N ={x ∈R |x 2=2x },则M ∩N =( ) A .{0,1}B .{﹣1,0}C .{0}D .∅2.已知命题p :∃x ∈R ,4x >x 4,则¬p 是( ) A .∃x ∈R ,4x ≤x 4 B .∀x ∈R ,4x <x 4C .∀x ∈R ,4x >x 4D .∀x ∈R ,4x ≤x 43.若α是β的必要不充分条件,γ是β的充要条件,则γ是α的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知幂函数f (x )=x α(α∈Z ),具有如下性质:f 2(1)+f 2(﹣1)=2[f (1)+f (﹣1)﹣1],则f (x )是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .是非奇非偶函数5.函数f(x)={x +3,x ≤0√x ,x >0,且f (a ﹣3)=f (a +2)(a ∈R ),则f (a )=( )A .2B .1C .√2D .06.已知实数a ,b ,c 满足3×2a ﹣2b +1=0,且a =c +x 2﹣x +1(x ∈R ),则a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .a >c >bD .c >b >a7.水池有两个相同的进水口和一个出水口,每个口进出的速度如图甲乙所示.某天零点到六点该水池的蓄水量如图丙所示(至少打开一个水口).给出以下三个论断:①零点到三点只进水不出水;②三点到四点不进水只出水;③四点到六点不进水也不出水.其中正确论断的序号是( )A .①②B .②③C .①③D .①8.设函数f(x)=√ax 2+bx +c (a ,b ,c ∈R ,且a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a =( ) A .﹣4B .﹣5C .﹣6D .﹣8二、选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022-2023学年广东高一上学期数学期中考试试题一.选择题(共8小题,满分40分,每小题5分)1.(5分)如图,U 是全集,M 、P 是U 的子集,则阴影部分所表示的集合是( )A .()U MPB .M PC .()U M PD .()()U U M P2.(5分)函数1()x f x -=的定义域为( ) A .(1,)+∞B .[1,)+∞C .[1,2)D .[1,2)(2⋃,)+∞3.(5分)已知集合{2A =-,1},{|2}B x ax ==,若A B B =,则实数a 值集合为( )A .{1}-B .{2}C .{1-,2}D .{1-,0,2}4.(5分)函数()f x 为R 上奇函数,且()1(0)f x x x =>,则当0x <时,()(f x = ) A .1xB .1x --C 1x -D 1x -5.(5分)下列命题中为假命题的是( ) A .x R ∃∈,21x <B .22a b =是a b =的必要不充分条件C .集合2{(,)|}x y y x =与集合2{|}y y x =表示同一集合D .设全集为R ,若A B ⊆,则()()R R B A ⊆ 6.(5分)函数2y x x =+-( ) A .[0,)+∞B .[2,)+∞C .[4,)+∞D .[2)+∞7.(5分)已知()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数,则满足(1)f a f ->(2)的实数a 的取值范围是( ) A .(-∞,3] B .(1,3)-C .(1,)-+∞D .(1,3)8.(5分)已知函数2(1)2,0()2,0a x a x f x x x x -+<⎧=⎨-⎩有最小值,则a 的取值范围是( )A .1[2-,1)B .1(2-,1)C .1[2-,1]D .1(2-,1]二.多选题(共4小题,满分20分,每小题5分) 9.(5分)若110a b<<,则下列不等式中,错误的有( ) A .a b ab +< B .||||a b > C .a b < D .2b a a b+ 10.(5分)下列说法正确的有( ) A .函数1()f x x=在其定义域内是减函数 B .命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++” C .两个三角形全等是两个三角形相似的必要条件 D .若()y f x =为奇函数,则()y xf x =为偶函数11.(5分)若0a >,0b >,2a b +=,则下列不等式对一切满足条件的a ,b 恒成立的是( ) A .1abB .2a b+ C .222a b + D .112a b+ 12.(5分)数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数“,下列说法正确的是( )A .对于任意一个圆,其“优美函数“有无数个B .3()f x x =可以是某个圆的“优美函数”C .,0(),0x x f x x x =--<⎪⎩可以同时是无数个圆的“优美函数”D .函数()y f x =是“优美函数”的充要条件为函数()y f x =的图象是中心对称图形三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中m ,0n >,则11m n+的最小值为 . 14.(5分)已知2(2)f x x x =+,则f (1)= ;()f x 的解析式为 .15.(5分)定义在[1-,1]上的函数()y f x =是增函数,且是奇函数,若(1)(45)0f a f a -+->,求实数a 的取值范围是 .16.(5分)已知函数()(||2)f x x x =-,4()1xg x x =+,对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立,则实数a 的取值范围为 . 四.解答题(共6小题,满分70分) 17.(10分)已知函数()f x =的定义域是集合A ,集合{|1B x x =或3}x .(1)求AB ,AB ;(2)若全集U R =,求()U A B .18.(12分)已知命题:P x R ∃∈,使240x x m -+=为假命题. (1)求实数m 的取值集合B ;(2)设{|34}A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.19.(12分)已知0a >,0b >,31a b +=. (1)求13a b+的最小值; (2)若2297m a b ab >++恒成立,求实数m 的取值范围.20.(12分)已知函数()f x 是定义域为R 的偶函数,当0x 时,2()2f x x x =-(如图). (1)请补充完整函数()f x 的图象; (2)求出函数()f x 的解析式; (3)求不等式()3f x 的解集;(4)若函数()y f x =与y m =有两个交点,直接写出实数m 的取值范围.21.(12分)已知函数2()1x af x x +=+. (1)若1a =时,判断并证明函数()f x 在[2,3]上的单调性,并求函数()f x 在[2,3]上的最大值和最小值; (2)探究:是否存在实数a ,使得函数()f x 为奇函数?若存在,求出a 的值;若不存在,说明理由.22.(12分)已知函数1()2f x x x=+-. (1)若不等式(2)20x x f k -在[1-,1]上有解,求k 的取值范围; (2)若方程2(|21|)30|21|x x kf k -+-=-有三个不同的实数解,求实数k 的取值范围.答案及解析2022-2023学年广东高一上学期数学期中检测仿真卷(1)一.选择题(共8小题,满分40分,每小题5分)1.(5分)如图,U 是全集,M 、P 是U 的子集,则阴影部分所表示的集合是( )A .()U MPB .M PC .()U M PD .()()U U M P【答案】A【详解】由已知中阴影部分在集合M 中,而不在集合P 中, 故阴影部分所表示的元素属于M ,不属于P (属于P 的补集), 即()U C P M ,故选:A .2.(5分)函数1()x f x -=的定义域为( ) A .(1,)+∞ B .[1,)+∞ C .[1,2)D .[1,2)(2⋃,)+∞【答案】D 【详解】由题意得:1020x x -⎧⎨-≠⎩,解得:1x 且2x ≠, 故函数的定义域是[1,2)(2⋃,)+∞, 故选:D .3.(5分)已知集合{2A =-,1},{|2}B x ax ==,若A B B =,则实数a 值集合为( )A .{1}-B .{2}C .{1-,2}D .{1-,0,2}【答案】D 【详解】AB B B A =⇒⊆,{2A =-,1}的子集有φ,{2}-,{1},{2-,1},当B φ=时,显然有0a =;当{2}B =-时,221a a -=⇒=-;当{1}B =时,122a a ⋅=⇒=;当{2B =-,1},不存在a ,符合题意,∴实数a 值集合为{1-,0,2},故选:D .4.(5分)函数()f x 为R 上奇函数,且()1(0)f x x =>,则当0x <时,()(f x = )A .1B .1C 1D 1【答案】B【详解】函数()f x 为R 上奇函数,可得()()f x f x -=-,又()1(0)f x x >, 则当0x <时,0x ->,()()1)1f x f x =--=-=.即0x <时,()1f x =. 故选:B .5.(5分)下列命题中为假命题的是( ) A .x R ∃∈,21x <B .22a b =是a b =的必要不充分条件C .集合2{(,)|}x y y x =与集合2{|}y y x =表示同一集合D .设全集为R ,若A B ⊆,则()()R R B A ⊆ 【答案】C【详解】A .x R ∃∈,取12x =,则2114x =<,因此是真命题; B .由22a b a b =⇒=,反之不成立,例如取1a =,1b =-,满足22a b =,但是a b ≠,因此22a b =是a b=的必要不充分条件,因此是真命题;C .集合2{(,)|}x y y x =表示点的集合,而集合2{|}y y x =表示数的集合,它们不表示表示同一集合,因此是假命题;D .全集为R ,若A B ⊆,则()()R R B A ⊆,是真命题.故选:C .6.(5分)函数y x =+( )A .[0,)+∞B .[2,)+∞C .[4,)+∞D .)+∞【答案】B【详解】函数的定义域为[2,)+∞, 又函数为单调增函数, 当2x =时,取得最小值为2.∴值域是[2,)+∞.故选:B .7.(5分)已知()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数,则满足(1)f a f ->(2)的实数a 的取值范围是( ) A .(-∞,3] B .(1,3)- C .(1,)-+∞ D .(1,3)【答案】B【详解】根据题意,()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数, 则(1)f a f ->(2)(|1|)f a f ⇒->(2)|1|2a ⇒-<, 解可得:13a -<<,即a 的取值范围为(1,3)-, 故选:B .8.(5分)已知函数2(1)2,0()2,0a x a x f x x x x -+<⎧=⎨-⎩有最小值,则a 的取值范围是( )A .1[2-,1)B .1(2-,1)C .1[2-,1]D .1(2-,1]【答案】C【详解】当0x 时,2()(1)1f x x =--, 此时()min f x f =(1)1=-, 而当0x <时,①1a =时,()2f x =为常函数,此时在R 上满足函数()f x 有最小值为1-, ②1a ≠时,函数()f x 此时为单调的一次函数,要满足在R 上有最小值, 只需10(1)021a a a -<⎧⎨-⨯+-⎩,解得112a -<,综上,满足题意的实数a 的取值范围为:112a -, 故选:C .二.多选题(共4小题,满分20分,每小题5分) 9.(5分)若110a b<<,则下列不等式中,错误的有( ) A .a b ab +< B .||||a b > C .a b < D .2b a a b+ 【答案】BCD 【详解】由110a b<<,得0b a <<,则0a b ab +<<,选项A 正确,选项C 错误; 根据0b a <<可得||||b a >,所以选项B 错误; 由0b a <<,得0b a >,0a b >,则22b a b a a b a b +⋅=,当且仅当b aa b=时等号成立,又a b ≠, 所以b aa b+不能取得最小值2,选项D 错误. 故选:BCD .10.(5分)下列说法正确的有( ) A .函数1()f x x=在其定义域内是减函数 B .命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++” C .两个三角形全等是两个三角形相似的必要条件 D .若()y f x =为奇函数,则()y xf x =为偶函数 【答案】BD【详解】对于A :函数1()f x x=的定义域为(-∞,0)(0⋃,)+∞,所以函数在(0,)+∞和(,0)-∞上都为单调递减函数,故A 错误;对于B :命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++”故B 正确;对于C :两个三角形全等,则两个三角形必相似,但是两个三角形相似,则这两个三角形不一定全等,则两个三角形全等是两个三角形相似的充分不必要条件,故C 错误;对于D :若()y f x =为奇函数,且函数y x =也为奇函数,则函数则()y xf x =为偶函数,故D 正确. 故选:BD .11.(5分)若0a >,0b >,2a b +=,则下列不等式对一切满足条件的a ,b 恒成立的是( )A .1abB 2bC .222a b +D .112a b+ 【答案】ACD【详解】对于命题1ab :由221a b ab ab =+⇒,A 正确;对于命题2a b +:令1a =,1b =时候不成立,B 错误;对于命题222222:()2422a b a b a b ab ab ++=+-=-,C 正确; 对于命题111122:2a b a b a b ab ab+++==,D 正确. 故选:ACD .12.(5分)数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数“,下列说法正确的是( )A .对于任意一个圆,其“优美函数“有无数个B .3()f x x =可以是某个圆的“优美函数”C .,0(),0x x f x x x =--<⎪⎩可以同时是无数个圆的“优美函数”D .函数()y f x =是“优美函数”的充要条件为函数()y f x =的图象是中心对称图形 【答案】ABC【详解】根据题意,依次分析选项:对于A :对于任意一个圆,任意的一条直径均可以平分周长和面积,故圆的“优美函数”有无数个,A 正确;对于B :由于3()f x x =的图象关于原点对称,而单位圆也关于原点对称,故3()f x x =可以是单位圆的“优美函数”, B 正确;对于C ,,0(),0x x f x x x =--<⎪⎩为奇函数,且经过原点,若圆的圆心在坐标原点,则()f x 是这个圆的“优美函数”, C 正确,对于D :函数图象是中心对称图形的函数一定是“优美函数”,但反之“优美函数”不一定是中心对称的函数,如图,故D 错误;故选:ABC .三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中m ,0n >,则11m n+的最小值为 . 【答案】4【详解】函数1(0,1)x y a a a -=>≠的图象恒过定点A , 可得(1,1)A ,点A 在一次函数y mx n =+的图象上, 1m n ∴+=,m ,0n >,12m n ∴+=mn ,14mn ∴, 111()4m n m n mn mn +∴+==(当且仅当12n =,12m =时等号成立), 故答案为:4.14.(5分)已知2(2)f x x x =+,则f (1)= ;()f x 的解析式为 . 【答案】34;211()42f x x x =+ 【详解】由21x =,得12x =,f ∴(1)2113()224=+=; 令2x t =,得2t x =,2211()()2242t t f t t t ∴=+=+, 211()42f x x x ∴=+. 故答案为:34;211()42f x x x =+. 15.(5分)定义在[1-,1]上的函数()y f x =是增函数,且是奇函数,若(1)(45)0f a f a -+->,求实数a 的取值范围是 .【答案】6(5,3]2【详解】由题意,(1)(45)0f a f a -+->,即(1)(45)f a f a ->--, 而又函数()y f x =为奇函数,所以(1)(54)f a f a ->-. 又函数()y f x =在[1-,1]上是增函数, 有1111451154a a a a --⎧⎪--⎨⎪->-⎩⇒0231265a a a ⎧⎪⎪⎪⎨⎪⎪>⎪⎩⇒6352a < 所以,a 的取值范围是6(5,3]2.故答案为:6(5,3]2.16.(5分)已知函数()(||2)f x x x =-,4()1xg x x =+,对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立,则实数a 的取值范围为 . 【答案】1[,3]3【详解】函数()(||2)f x x x =-,4()1xg x x =+, 因为44()411x g x x x ==-++在(1,)a -上单调递增, 所以()g x g <(a )41aa =+, 又222,0()(||2)2,0x x x f x x x x x x ⎧-=-=⎨--<⎩,因为(1)1f -=,由221x x -=,1x =±①当11a -<<+()f x f <(1)1=,因为对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立, 所以411aa +,解得13a ,故1123a <+ ②当12a +时,()f x f <(a )22a a =-,因为对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立, 所以2421aa aa -+,可得260a a --,解得23a -, 故123a .综上所述,实数a 的取值范围为1[,3]3.故答案为:1[,3]3.四.解答题(共6小题,满分70分) 17.(10分)已知函数()f x =的定义域是集合A ,集合{|1B x x =或3}x .(1)求AB ,AB ;(2)若全集U R =,求()U A B .【答案】(1){|41AB x x =-<或34}x <;AB R =;(2)(){|4U A B x x =-或4}x【详解】(1)因为函数()f x =的定义域是2{|160}{|44}A x x x x =->=-<<,集合{|1B x x =或3}x , 所以{|41AB x x =-<或34}x <;A B R =;(2)因为全集U R =,所以{|4UA x x =-或4}x ,所以(){|4U A B x x =-或4}x .18.(12分)已知命题:P x R ∃∈,使240x x m -+=为假命题. (1)求实数m 的取值集合B ;(2)设{|34}A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 【答案】(1)(4,)B =+∞;(2)4[3,2)【详解】(1)由题意,得关于x 的方程240x x m -+=无实数根, 所以△1640m =-<,解得4m >, 即(4,)B =+∞;(2)因为{|34}A x a x a =<<+为非空集合, 所以34a a <+,即2a <,因为x A ∈是x B ∈的充分不必要条件,所以A 是B 的真子集,则2a <且34a , 即423a <, 综上所述,实数a 的取值范围为4[3,2).19.(12分)已知0a >,0b >,31a b +=. (1)求13a b+的最小值; (2)若2297m a b ab >++恒成立,求实数m 的取值范围. 【答案】(1)16;(2)13(12,)+∞【详解】(1)0a >,0b >,且31a b +=,∴1313333(3)()1010216a b a b a b a b b a b +=++=+++=,当且仅当33a b b a =,即14a b ==时,等号成立, ∴13a b+的最小值为16. (2)2297m a b ab >++恒成立,22(97)max m a b ab ∴>++,222197(3)133a b ab a b ab a b ++=++=+⨯⋅,2(3)1344a b a b +⋅=,当且仅当3a b =,即12a =,16b =时,等号成立,2211139713412a b ab ∴+++⨯=,1312m ∴>, 即实数m 的取值范围为13(12,)+∞.20.(12分)已知函数()f x 是定义域为R 的偶函数,当0x 时,2()2f x x x =-(如图). (1)请补充完整函数()f x 的图象; (2)求出函数()f x 的解析式; (3)求不等式()3f x 的解集;(4)若函数()y f x =与y m =有两个交点,直接写出实数m 的取值范围.【答案】(1)见解析;(2)2220()20x xx f x x xx ⎧-=⎨+<⎩(3)(x ∈-∞,3][3-,)+∞;(4)0m >或1m =-【详解】(1)完整图:(2)0x <,顶点(1,1)--,过点(0,0),(2,0)- 顶点式:2()(1)1f x a x =+-代入(0,0),(2,0)-, 得1a =,2()2f x x x ∴=+, ∴2220()20x xx f x x xx ⎧-=⎨+<⎩, (3)()3f x ,当0x 时,2233x x x -⇒, 当0x <时,由对称性3x ⇒-, (x ∴∈-∞,3][3-,)+∞,(4)由图可知,0m >或1m =-. 21.(12分)已知函数2()1x af x x +=+. (1)若1a =时,判断并证明函数()f x 在[2,3]上的单调性,并求函数()f x 在[2,3]上的最大值和最小值; (2)探究:是否存在实数a ,使得函数()f x 为奇函数?若存在,求出a 的值;若不存在,说明理由. 【答案】(1)最大值为f (2)35=,最小值为f (3)25=;(2)见解析【详解】(1)21()1x f x x +=+在[2,3]上单调递减.证明:令12121212221211,[2,3],,()()11x x x x x x f x f x x x ++∀∈<-=-++ 2112212212()(1)(1)(1)x x x x x x x x -++-=++,因为1223x x <,所以210x x ->,124x x >,124x x +>,121210x x x x ++->, 所以12()()f x f x >,所以()f x 在[2,3]上单调递减;()f x 在[2,3]的最大值为f (2)35=,最小值为f (3)25=;(2)若()f x 为奇函数,且x R ∈,则(0)00f a =⇒=. 下面证明:因为2()1x f x x =+,所以2()()1xf x f x x --==-+, 所以存在0a =.22.(12分)已知函数1()2f x x x=+-. (1)若不等式(2)20x x f k -在[1-,1]上有解,求k 的取值范围; (2)若方程2(|21|)30|21|x x kf k -+-=-有三个不同的实数解,求实数k 的取值范围.【答案】(1)1k ;(2)0k > 【详解】(1)()211222201222x x x xx k k =+--⋅⇒-+原式, 11,222x t ⎡⎤=∈⎢⎥⎣⎦令,则221k t t -+, 令2()21g t t t =-+,()[0g t ∈,1],()k g t 有解,()max k g t ∴,1k ∴.(2)12212302121x x x kk -+-+-=--原式可化为,令|21|(0)x t t =->,12230kt k t t+-+-=原式可化为2(32)210t k t k ⇒-+++=,若原方程有三个不同的实数解,等价于方程2(32)210t k t k -+++=的两根分别位于(0,1)和(1,)+∞之间, 令2()(32)21g t t k t k =-+++, 只需1(0)02(1)00g k g k ⎧>>-⎧⎪⇒⎨⎨<⎩⎪>⎩,0k ∴>.。

相关文档
最新文档