高中数学-高一下期中考试题
广东省深圳市新安中学(集团)高中部2023-2024学年高一下学期期中考试数学试题

新安中学(集团)高中部2023-2024学年第二学期期中考试题高一年级数学2024年4月命题人甘玉梅本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟第I 卷客观题(共58分)一、单选题:本大题共8小题,每小题5分,共40分1.若复数z 满足()1i 1i z +=-,则z 的虚部为()A .i-B .1-C .iD .12.由斜二测画法得到的一个水平放置的三角形的直观图是等腰三角形,底角为30︒,腰长为2,如图,那么它在原平面图形中,顶点B '到x 轴的距离是()A .1B .2C .D .3.如图,已知43AP AB =,用OA ,OB 表示OP ,则OP 等于()A .1433OA OB-B .1433OA OB+C .1433OA OB-+D .1433OA OB--4.已知a ,b ,c 是不同的直线,α,β是不同的平面,则下列说法正确的是()A .若a b ∥,b α⊂,则a α∥B .若a b ⊥,a c ⊥,b α⊂,c α⊂,则a α⊥C .若αβ⊥,a αβ= ,b a ⊥,则b α⊥D .若a α⊥,a β⊥,则αβ∥5.某圆锥高为,母线与底面所成的角为π3,则该圆锥的表面积为()A .3πB .4πC .5πD .6π6.已知ABC △内角A 、B 、C 的对边分别为a 、b 、c ,若ABC △2223a b c +-,则cos C为()A .2B.12C .2-D .12-7.一海轮从A 处出发,以每小时40海里的速度沿南偏东35︒的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东65︒,在B 处观察灯塔,其方向是北偏东70︒,那么B ,C 两点间的距离是()A .海里B .海里C .海里D .海里8.在ABC △中,若动点P 满足222AC CB AP AB +⋅= ,则P 点的轨迹一定经过ABC △的()A .外心B .垂心C .重心D .内心二、选择题:本题共3小题,每小题6分.共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1z 与2z 是共轭复数,以下4个命题一定正确的是()A .1212z z z z =B .2212z z <C .12z z +∈RD .12z z ∈R10.设ABC △满足sin :sin :sin 2:3:A B C =,其面积为332,则()A.ABC △周长为6B .2A B C+=C .ABC △外接圆的面积为7π3D .ABC △中线CD 长为19211.如图,在正方体1111ABCD A B C D -中,点P 为线段1B C 上一动点,则下列说法正确的是()A .直线1BD ⊥平面11A C DB .异面直线AP 与1A D 所成角的取值范围是0,π3⎛⎤ ⎥⎝⎦C .AP ∥平面11A C DD .平面11A C D 与底面ABCD 的交线平行于直线AC第II 卷(共92分)三、填空题:本题共3小题,每小题5分.共15分.12.已知ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,1a =,2b =,1cos 4C =,则sin A =_________.13.已知3b = ,a 在b上的投影向量为12b ,则a b ⋅ 的值为_________.14.四棱锥P ABCD -的底面是边长为1的正方形,如图所示,点E 是棱PD 上一点,34PE PD =,若PF PC λ=且满足BF ∥平面ACE ,则λ=_________.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)已知向量()1,a x =,()2,3b = .(1)若()b a b ⊥- ,求a b - ;(2)若()3,4c =--,()b a c + ∥,求3b c + 与a 的夹角的余弦值.16.(15分)已知在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin 3c a B a B -=(1)求角A 的大小;(2)若a =,ABC △的面积为,求ABC △的周长.17.(15分)如图,在直三棱柱111ABC A B C -中,11113A C B C ==,11A B =,D 为11A B 的中点.(1)证明:1B C ∥平面1AC D .(2)若以1AB 为直径的球的表面积为48π,求三棱锥11B AC D -的体积.18.(17分)已知平面四边形ABCD ,2AB AD ==,60BAD ∠=︒,30BCD ∠=︒,BD CD ⊥,现将ABD △沿BD 边折起,使得平面ABD ⊥平面BCD ,点P 为线段AD 的中点.(1)求证:BP ⊥平面ACD ;(2)若M 为CD 的中点,求MP 与平面BPC 所成角的余弦值.(3)在(2)的条件下,求平面PBM 与平面BMD 所成二面角的余弦值.19.(17分)如图,在ABC △中,已知2AB =,AC =45BAC ∠=︒,BC 边上的中点为M ,点N 是边AC 上的动点(不含端点),AM ,BN 相交于点P .(1)求BAM ∠的正弦值;(2)当点N 为AC 中点时,求MPN ∠的余弦值.(2)当NA NB ⋅ 取得最小值时,设BP BN λ=,求λ的值.参考答案题号1234567891011答案BDCDABCAACBCDACD12.15813.3cos 2a θ= ,39cos 322a b a b θ∴⋅==⨯=.14.2315.(1)由()b a b ⊥- 可得20a b b ⋅-= .因为23a b x ⋅=+ ,2222313b =+= ,所以23130x +-=,解得113x =.所以111,3a ⎛⎫= ⎪⎝⎭ ,21,3a b ⎛⎫-=- ⎪⎝⎭ ,所以2213133a b ⎛⎫-=+ ⎪⎝⎭ .(2)()2,4a c x +=-- ,因为()b a c +∥,所以()23240x -⨯--=,解得1x =.所以()1,1a =,所以()317cos3,173b c a b c a b ca+⋅+==+,所以3b c + 与a 的夹角的余弦值为17.16.(1)由cos sin 3c a B B -=及正弦定理得,整理得3cos sin sin 3A B A B =,tan A =,在ABC △中,π3A =(2)()22222cos 312a b c bc A b c bc =+-⇒+-=;1sin 42ABC S bc A bc ===△;b c ∴+=ABC ∴△的周长为17.(1)连接1AC 交1AC 于点E ,则E 为1AC 的中点,连接DE ,而D 为11A B 的中点,则1DE B C ∥,又DE ⊂平面1AC D ,1B C ⊂/平面1AC D ,所以1B C ∥平面1AC D .(2)由1111AC B C =,D 为11A B 的中点,得111C D A B ⊥,且11C D =,由以1AB 为直径的球的表面积为48π,得214π48π2AB ⎛⎫⋅= ⎪⎝⎭,解得1AB =,因此(22148AA +=,解得14AA =,显然11B C D △的面积112S =⨯=,所以1111142433B ACD A B C D V V --==⨯=.18.(1)因为AB AD =,60BAD ∠=︒,所以ABD △为等边三角形,因为P 为AD 的中点,所以BP AD ⊥.取BD 的中点E ,连接AE ,AB AD =,则AE BD ⊥,因为平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,AE ⊂平面ABD ,所以AE ⊥平面BCD ,又CD ⊂平面BCD ,所以AE CD ⊥,因为AD CD ⊥,AD AE A = ,AE ,AD ⊂平面ABD ,所以CD ⊥平面ABD ,因为BP ⊂平面ABD ,所以CD BP ⊥,又因为CD AD D = ,CD ,AD ⊂平面ACD ,所以BP ⊥平面ACD .(2)过点M 作MH PC ⊥,垂足为H .如图所示,由(1)知,BP ⊥平面ACD ,因为MH ⊂平面ACD ,所以BP MH ⊥,BP PC P = ,BP ,PC ⊂平面BPC ,所以MH ⊥平面BPC ,所以MPC ∠为MP 与平面BPC 所成角.由(1)知,CD ⊥平面ABD ,BD ⊂平面ABD ,所以CD BD ⊥,在Rt BCD △中,因为30BCD ∠=︒,2BD =,所以tan BDDC BCD==∠因为M 为CD 的中点,所以12MD CM CD ===,在Rt PDM △中,2PM ==,在Rt PDC △中,PC ==,在CPM △中,2222222cos2PC PM CMMPC PC PM +-+-∠==⋅,所以MP 与平面BPC .(3)取ED 的中点为O ,连接PO ,因为P 为线段AD 的中点,所以PO AE ∥,1112222PO AE ====,由(1)知,AE ⊥平面BCD ,所以PO ⊥平面BCD ,BM ⊂平面BCD .所以PO BM ⊥,过点P 作PG BM ⊥,垂足为G ,连接OG ,PO PG P = ,PO ,PG ⊂平面POG ,所以BM ⊥平面POG .OG ⊂平面POG ,所以BM OG ⊥,所以PGO ∠为二面角P BM D --的平面角.在Rt BDM △中,BM ==,由(1)知,ABD △为等边三角形,P 为线段AD 的中点,所以BP ==由(1)知,BP ⊥平面ACD ,PM ⊂平面ACD .所以BP PM ⊥,在Rt BPM △中,1122BP PM BM PG ⋅=⋅,由(2)知,2PM=,即11222PG =,解得2217PG =.因为PO ⊥平面BCD ,OG ⊂平面BCD ,所以PO OG ⊥,在RtPOG △中,32114GO ==,所以321314cos 42217OG PGO PG ∠==,即二面角P BM D --的平面角的余弦值为34.19.(1)解:解法1、由余弦定理得222cos BC AB AC AB AC BAC =+-⋅⋅∠,即(2222222522BC =+-⨯⨯=,所以BC =,所以12BM CM BC ===,在ABM △中,由余弦定理,得2222cos 2BM AM AB BMA BM AM +-∠==⋅在ACM △中,由余弦定理,得2222cos 2CM AM AC CMA CM AM +-∠==⋅BMA ∠与CMA ∠互补,则cos cos 0BMA CMA ∠+∠=,解得5AM =,在ABM △中,由余弦定理,得2224cos 25AB AM BM BAM AB AM +-∠==⋅,因为0π,2BAM ⎛⎫∠∈ ⎪⎝⎭,所以3sin 5BAM ∠==.解法2、由题意可得,cos 4512AB AC AB AC ⋅=⨯⨯︒=,由AM 为边BC 上的中线,则()12AM AB AC =+,两边同时平方得,22211125442AM AB AC AB AC =++⋅=,故5AM =,因为M 为BC 边中点,则ABM △的面积为ABC △面积的12,所以111sin sin 222AB AM BAM AB AC BAC ⨯⨯∠=⨯⨯⨯∠,即11125sin 2sin 45222BAM ⨯⨯⨯∠=⨯⨯⨯︒,化简得,3sin 5BAM ∠=.解法3:以A 为坐标原点,以AC 所在直线为x 轴,以过点A 的垂线为y 轴,建立平面直角坐标系则()2,2B,()C ,722,22M ⎛⎫⎪⎪⎝⎭,所以AB =,722,22AM ⎛⎫= ⎪ ⎪⎝⎭,所以84cos 255AB AM BAM AB AM ⋅∠===⨯ ,因为0π,2BAM ⎛⎫∠∈ ⎪⎝⎭,所以3sin 5BAM ∠==.(2)解:方法1、在ABN △中,由余弦定理,得22222cos 45BN AB AN AB AN =+-⋅⋅︒,所以BN =,由AM ,BN 分别为边BC ,AC 上的中线可知P 为ABC △重心,可得221033BP BN ==,21033AP AM ==,在ABP △中,由余弦定理,得222cos 250PA PB AB APB PA PB +-∠==⋅,又由MPN APB ∠=∠,所以cos cos 50MPN APB ∠=∠=.解法2:因为BN 为边AC 上的中线,所以12BN BA AN AB AC =+=-+,()22111111322244AM BN AB ACAB AC AB AB AC AC -⎛⎫⋅=+⋅-+=--⋅+= ⎪⎝⎭,2222111024BN AB AC AB AB AC AC ⎛⎫=-+=-⋅+= ⎪⎝⎭,即BN =所以1310cos 50AM BN MPN AM BN⋅∠==.解法3:以A 为坐标原点,以AC 所在直线为x 轴,以过点A 的垂线为y 轴,建立平面直角坐标系()2,2B,()C,()N ,722,22M ⎛⎫⎪ ⎪⎝⎭,所以722,22AM ⎛⎫= ⎪ ⎪⎝⎭,(BN =.所以cos 50AM BN MPN AM BN ⋅∠== .(3)设NA x =,()22NA NB NA NA AB NA NA AB x ⋅=⋅+=+⋅=当22x =即22NA = 时,NA NB ⋅ 取最小值12-,1111212BN BA BC ∴=+ ,2BC BM = ,()01BP BN λλ=≤≤ ,919105105BP BA BM BA BM λλλ⎛⎫∴=+=+ ⎪⎝⎭ ,111111126126BP BA BM BA BM λλλ⎛⎫∴=+=+ ⎪⎝⎭ ,A ,P ,M 三点共线,11112112613λλλ+=∴=。
湖北鄂东南省级示范高中教育教学改革联盟学校2024年高一下学期期中联考数学试卷

2024年春季鄂东南省级示范高中教育教学改革联盟学校期中联考高一数学考试时间:2024年4月15日下午15:00-17:00;试卷满分:150分一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数2iz 13i+=+的虚部是( ) A .12−B .12C .1i 2−D .1i 22.下列关于平面向量的说法,其中正确的是( )A .若a b ≠ ,则||||a b ≠B .若//a b 且||||a b =,则a b =C .若0a b ⋅=,则0a = 或0b = D .若a 与b 不共线,则a 与b都是非零向量3.已知平面向量(1,2)a =,(3,4)b − ,则向量a 在向量b 上的投影向量是( )A .34,2525−B .68,55 −C .34,55 −D .34,55 −4.已知tan 121tan αα−=+,则cos 24πα+的值为( )A.B. CD5.在ABC △中,D 在边BC 上,延长AD 到P ,使得10AP =,若54PA mPB m PC =+−(m 为常数),则PD 的长度是( ) A .9B .8C .7D .66.若实数x ,y 满足332x y+=,21133xy n − =+,则n 的最小值为( ) A .2B .8C .9D .127.在ABC △中,点E ,F 分别是线段AB ,AC 的中点,点P 在直线EF 上,若ABC △的面积为4,则22BC PB PC ⋅+的最小值是( ) A .2B.C .4D8.已知定义在R 上的函数()y f x =,对任意的1x ,2,4x π∈+∞且12x x ≠,都有()()12120f x f x x x −>−,且函数4y f x π=+为奇函数.若锐角ABC △的三个内角为,,A B C ,则( )A .()()0f A fB +>B .()()0f A f B +<C .()()0f A f B +=D .()()f A f B +的符号无法确定二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.主动降噪耳机让我们在嘈杂的环境中享受一丝宁静,它的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与振幅相同的反相位声波来抵消噪声,已知某噪声的声波曲线函数为()3sin ||62f x x ππϕϕ =+< ,且经过点(2,3),则下列说法正确的是( )A .函数()y f x =的最小正周期12T =B .6πϕ=−C .函数()y f x =在区间(2,8)上单调递减D .函数(2)y f x =+是奇函数10.已知复数123,,z z z ,则下列结论正确的有( ) A .2211z z = B .1212z z z z ⋅=⋅C .1212z z z z =⋅D .若1213z z z z =,且10z ≠,则23z z =11.如图,设,Ox Oy 是平面内相交成θ角的两条数轴,其中(0,)θπ∈,1e ,2e分别是与x 轴,y 轴正方向同向的单位向量,若向量12OP a xe ye ==+,则把有序数对(,)x y 叫做向量OP 在夹角为θ的坐标系xOy 中的坐标,记为()(,)a x y θ=,则下列结论正确的是( )A .若3(1,2)a π= ,则||a =B .若44,(3,a b ππ==− ,则a b ⊥C .若对任意的12,5R e e λλ∈−最小值为52,则6πθ= D .若对任意的(0,)θπ∈,都有1212e e e e λ−≥−恒成立,则实数(][),31,λ∈−∞−+∞三、填空题;本题共3小题,每小题5分,共15分.12.已知sin cos θθ−sin 2θ=__________.13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos a B b A c b −=−,则角A =若I 为ABC △的内心,且AIIC λ=+,则λ=__________. 14.已知平面向量,a b,||2a =,||3b =,若存在平面向量c ,||1c = ,使得()()0a c b c −⋅−=,则||||a b a b −++的最小值是__________.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)已知向量(1,2)a −,||b = .(1)若//a b,求b 的坐标;(2)若(5)()a b a b +⊥−,求a 与b 夹角的余弦值.16.(15分)在ABC △中,角A ,C 的对边分别是a ,b ,c ,且222b c bc a +−=. (1)求角A 的大小; (2)若2b =,1sin 7C =,求ABC △的面积.17.(15分)已知向量,cos )m x x ωω= ,(cos ,cos )(0,)n x x x ωωω=−>∈R,1()2f x m n =⋅− ,且()y f x =的图象上相邻两条对称轴之间的距离为2π.(1)求函数()y f x =的解析式;(2)若0a >,且函数()y f x =在区间(,2)a a 上单调,求a 的取值范围.18.(17分)如图,在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,D 为BC 边上一点,已知2b =,4c =,23A π=.(1)若AD 平分BAC ∠,求AD 的长;(2)若D 为BC 边的中点,E ,F 分别为AB 边及AC 边上一点(含端点).且AE xAB = ,AF y AC =,1x y +=,求DE DF ⋅ 的取值范围. 19.(17分)阅读以下材料并回答问题:①单位根与本原单位根:在复数域,对于正整数n ,满足10n z −=的所有复数22cos isin ()k k z k Z n nππ=+∈称为n 次单位根,其中,满足对任意小于n 的正整数m ,都有1m z ≠,则称这种复数为n 次本原单位根.例如,4n =时,存在四个4次单位根1±,i ±,因为111=,2(1)1−=,因此只有两个4次本原单位根i ±; ②分圆多项式:对于正整数n ,设n 次本原单位根为12,,,m z z z ,则多项式()()()12m x z x z x z −−− 称为n 次分圆多项式,记为()n x Φ;例如24()(i)(i)1x x x x Φ=−+=+;回答以下问题:(1)直接写出6次单位根,并指出哪些为6次本原单位根(无需证明);(2)求出6()x Φ,并计算6321()()()()x x x x ΦΦΦΦ,由此猜想1264321()()()()()()x x x x x x ΦΦΦΦΦΦ的结果,(将结果表示为1110()nn n n n x a x a xa x a −−Φ=++++ 的形式)(猜想无需证明); (3)设所有12次本原单位根在复平面上对应的点为12,,,m A A A ,两个4次本原单位根在复平面上对应的点为12,B B ,复平面上一点P 所对应的复数z 满足||z =,求1212m PA PA PA PB PB ⋅⋅⋅的取值范围.。
2023-2024学年合肥市一中高一数学(下)期中考试卷附答案解析

2023-2024学年合肥市一中高一数学(下)期中考试卷(考试时间:150分钟满分:120分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足()2i i z -=(i 是虚数单位),则在复平面内z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限2.在ABC 中,sin :sin :sin 2:3:4A B C =,则cos C =()A .23-B .14-C .13-D .143.非零向量a ,b 满足2a b a b +=- ,若a b = ,则a ,b 的夹角为()A .π6B .π3C .2π3D .5π64.以边长为2的正三角形的一边所在直线为旋转轴,将该正三角形旋转一周所得几何体的侧面积为()A .B .4πC .D .8π5.圆台上底面半径为2cm ,下底面半径为4cm ,母线8cm AB =,A 在上底面上,B 在下底面上,从AB 中点M 拉一条绳子,绕圆台侧面一周到B 点,则绳子最短距离为()cm A .10B .12C .16D .206.安徽省肥西县紫蓬山风景秀丽,紫蓬山山顶有座塔.某同学为了测量塔高,他在地面C 处时测得塔底B 在东偏北45︒的方向上,向正东方向行走50米后到达D 处,测得塔底B 在东偏北75︒的方向上,此时测得塔顶A 的仰角为45︒,则塔顶A 离地面的高度AB 为()A .米B .50米C .25+米D .50米7.已知直角ABC 中,3AB =,4AC =,5BC =,I 是ABC 的内心,P 是IBC 内部(不含边界)的动点,若(),AP AB AC λμλμ=+∈R,则λμ+的取值范围为()A .11,42⎛⎫ ⎪⎝⎭B .17,212⎛⎫⎪⎝⎭C .7,112⎛⎫⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭8.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交同一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种阿基米德多面体.已知1AB =,则关于图中的半正多面体,下列说法正确的有()A B .该半正多面体过A ,B ,C 三点的截面面积为334C .该半正多面体外接球的表面积为8πD .该半正多面体的表面积为6+二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图,A B C ''' 是水平放置的ABC 的斜二测直观图,其中2O C O A O B ''''''==,2O B ''=.则以下正确的有()A .4OA =B .ABC 是等腰直角三角形C .4OB =D .ABC 的面积为810.已知平面向量()2,3a =-r,()2,1b = ,则()A .()2a b b⊥-B .a 与b可作为一组基底向量C .a 与bD .a 在b方向上的投影向量的坐标为21,33⎛⎫ ⎪⎝⎭11.已知a ,b ,c 分别是ABC 的三个内角A ,B ,C 的对边,其中正确的命题有()A .已知60A ∠=︒,4b =,2c =,则ABC 有两解B .若90A ∠=︒,3b =,4c =,ABC 内有一点P 使得PA ,PB ,PC两两夹角为120︒,则22230PA PB PC ++= C .若90A ∠=︒,1b =,c =ABC 内有一点P 使得PA 与PB 夹角为90︒,PA 与PC夹角为120︒,则3tan 4PAC ∠=D .已知60A ∠=︒,4b =,设a t =,若ABC 是钝角三角形,则t 的取值范围是()()4+∞ 三、填空题:本题共3小题,每小题5分,共15分.12.已知某圆锥的侧面展开图是一个半径为r 的半圆,且该圆锥的体积为3π,则r =.13.甲船在B 岛的正南方向A 处,10AB =千米,甲船以4千米/小时的速度向正北方向航行,同时,乙船自B 岛出发以6千米/小时的速度向北偏东60︒的方向驶去,航行时间不超过2.5小时,则当甲、乙两船相距最近时,它们航行的时间是小时.14.如图,某公园内有一块边长为2个单位的正方形区域ABCD 市民健身用地,为提高安全性,拟在点A 处安装一个可转动的大型探照灯,其照射角PAQ ∠始终为45︒(其中P ,Q 分别在边BC ,CD 上),则AP AQ ⋅的取值范围.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,底面边长为P ABCD -被平行于其底面的平面所截,截去一个底面边长为,高为4的正四棱锥1111P A B C D -.(1)求棱台1111A B C D ABCD -的体积;(2)求棱台1111A B C D ABCD -的表面积.16.如图,在ABC 中,已知2,4,60AB AC BAC ==∠=︒,M 是BC 的中点,N 是AC 上的点,且,,AN xAC AM BN=uuu r uuu r 相交于点P .设,AB a AC b ==.(1)若13x =,试用向量,a b表示,AM PN uuu r uuu r ;(2)若AM PN ⊥,求实数x 的值.17.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且sin C C a =,b =(1)求角B ;(2)若2a c +=,求边AC 上的角平分线BD 长;(3)求边AC 上的中线BE 的取值范围.18.在ABC 中,内角,,A B C 所对的边分别是a ,b ,c ,已知sin sin cos sin cos sin sin a A a C B b C A b B c A ++=+.(1)若2a =,且ABC 为锐角三角形,求ABC 的周长的取值范围;(2)若2b ac =,且外接圆半径为2,圆心为O ,P 为圆O 上的一动点,试求PA PB ⋅的取值范围.19.现定义“n 维形态复数n z ”:cos isin n z n n θθ=+,其中i 为虚数单位,*n ∈N ,0θ≠.(1)当π4θ=时,证明:“2维形态复数”与“1维形态复数”之间存在平方关系;(2)若“2维形态复数”与“3维形态复数”相等,求πsin 4θ⎛⎫+ ⎪⎝⎭的值;(3)若正整数m ,()1,2n m n >>,满足1m z z =,2n m z z =,证明:存在有理数q ,使得12m q n q =⋅+-.1.B【分析】利用复数代数形式的乘除运算化简复数z ,求出复数z 在复平面内对应的点的坐标即可.【详解】由()2i i z -=,得()()()i 2i i 12i 2i 2i 2i 55z +===-+--+,∴复数z 在复平面内对应的点的坐标为12,55⎛⎫- ⎪⎝⎭,位于第二象限.故选:B .2.B【分析】根据正弦定理及余弦定理求解.【详解】由正弦定理可知,::2:3:4a b c =,设2,3,4a k b k c k ===,则22222213161cos 2124a b c k k C ab k +--===-.故选:B 3.B【分析】由题意利用求向量的模的方法,求得22a b b ⋅= ,从而利用向量的夹角公式求解即可.【详解】∵非零向量a ,b满足2a b a b +=- ,且a b = ,设a ,b的夹角为θ,则2222244a a b b a a b b +⋅+=-⋅+ ,且22a b = ,所以22a b b ⋅= .∴22112cos 2b a b a b bθ⋅===⋅ .∵[]0,πθ∈,∴π3θ=.故选:B .4.C【分析】根据正三角形绕一边所在直线为旋转轴旋转一周,得到几何体是两个同底的全等圆锥,根据圆锥的侧面积公式求解.【详解】如图,正三角形ABC 绕AB 所在直线为旋转轴旋转一周,得到几何体是两个同底的全等圆锥,底面半径3r =母线长2l =,由圆锥的侧面积公式可得该几何体的侧面积为2π3243π⨯=.故选:C.5.D【分析】由题意需先画出圆台的侧面展开图,并还原成圆锥展开的扇形,则所求的最短距离是平面图形两点连线,根据条件求出扇形的圆心角以及半径长,再求出最短的距离.【详解】画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O ,由图得:所求的最短距离是MB ',设OA R =,圆心角是α,则由题意知,4πR α=①,()8π8R α=+②,由①②解得,π,82R α==,∴12,16OM OB '==,则22121620cm MB '=+=.则则绳子最短距离为20cm .故选:D .6.A【分析】设塔高为h 米,利用仰角的正切表示出BD h =,在BCD △中利用正弦定理列方程求得h 的值.【详解】设雷锋塔AB 的高度为h 米,在地面C 处时测得塔顶A 在东偏北45︒的方向上,45BCD ∠=︒,测得塔顶A 在东偏北75︒的方向上,仰角为45︒,在Rt △ABD 中,45ADB ∠=︒,tan 45hBD h ==︒,在BCD △中,754530CBD ∠=︒-︒=︒,由正弦定理得,sin 30sin 45CD BD=︒︒,即5012=h =.故选:A.7.C【分析】由题意得AB AC ⊥,以A 为坐标原点,,AB AC 所在的直线分别为,x y 轴建立平面直角坐标系,利用等面积法先求出I 的位置,设(),P x y ,根据AP AI IP =+ ,可得1134IP AB AC λμ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,故,34x yλμ==,34x y λμ+=+,根据线性规划即可求解.【详解】因为3AB =,4AC =,5BC =,所以222AB AC BC +=,即AB AC ⊥.如图建立平面直角坐标系:设内切圆的半径为r ,则()()()0,0,3,0,0,4A B C .∵ABC ABI BCI ACI S S S S =++V V V V ,∴2222AB AC AB r BC r AC r⋅⋅⋅⋅=++,即3434562222r r r r ⨯=++=,解得1r =,所以()1,1I ,∴1134AI AB AC =+ .∴1134AP AI IP AB AC IP =+=++ ,即1134AB AC AB AC IP λμ+=++ ,可得1134IP AB AC λμ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭.设(),P x y ,则()()()()111,13,00,431,4134x y λμλμ⎛⎫⎛⎫--=-+-=-- ⎪ ⎪⎝⎭⎝⎭,∴3,4x y λμ==,即,34x yλμ==,∴34x y λμ+=+.∵()()3,0,0,4B C ,∴直线BC 的方程为134x y+=.设34x y z λμ=+=+,表示与134x y+=平行的直线,平移34x y z =+,当34x y z =+经过点I 时,1173412z =+=;当34x y z =+与134x y +=重合时,134x y z =+=.因为P 是IBC 内部(不含边界)的动点,所以7,112z ⎛⎫∈ ⎪⎝⎭,即7,112λμ⎛⎫+∈ ⎪⎝⎭.故答案为:7,112⎛⎫⎪⎝⎭.【点睛】关键点睛:设(),P x y ,求出34x yλμ+=+,根据线性规划求解λμ+的范围.8.D【分析】先将该半正多面体补形为正方体,利用正方体与棱锥的体积公式判断A ,利用该半正多面体的对称性,得到截面为正六边形与外接球的球心位置,从而判断BC ,利用正三角形与正方体的面积公式判断D.【详解】A :如图,因为1AB =,的正方体沿各棱中点截去8个三棱锥所得到的,所以该半正多面体的体积为:2311832223V ⎛⎫=-⨯⨯⨯⨯= ⎪ ⎪⎝⎭,故A 错误;B :根据该半正多面体的对称性可知,过,,A B C 三点的截面为正六边形ABCFED ,又1AB =,所以正六边形面积为261S ==,故B 错误;C :根据该半正多面体的对称性可知,该半正多面体的外接球的球心为正方体的中心,即正六边形ABCFED 的中心,故半径为1AB =,所以该半正多面体外接球的表面积为224π4π14πS R ==⨯=,故C 错误;D :因为该半正多面体的八个面为正三角形、六个面为正方形,棱长皆为1,所以其表面积为2281616+⨯=+,故D 正确.故选:D.【点睛】关键点点睛:本题解决的关键有二,一是将该半正多面体补形为正方体,二是充分利用该半正多面体的对称性,从而得解.9.ABC【分析】根据直观图画出原图,进而判断出正确答案.【详解】画出原图如下图所示,根据斜二测画法的知识可知:4OC OA OB ===,三角形ABC 是等腰直角三角形,面积为()1444162⨯+⨯=.所以ABC 选项正确,D 选项错误.故选:ABC10.BC【分析】对A :计算()2a b b -⋅即可得;对B :借助基底向量的定义即可得;对C :借助平面向量夹角公式计算即可得;对D :借助投影向量定义计算即可得.【详解】对A :()22,5a b -=--,则()()222519a b b +⋅-=-⨯-⨯=- ,故A 错误;对B :易得a 与b 为不共线的向量,故a 与b可作为一组基底向量,故B 正确;对C :cos ,a b a b a b ====⋅C 正确;对D:121,555a bb b bb⋅⎛⎫⋅== ⎪⎝⎭ ,故D 错误.故选:BC.11.CD【分析】对A :由余弦定理可计算出a 有唯一解;对B :借助余弦定理与等面积法计算即可得;对C :设PAC θ∠=,由余弦定理可得sin sin AP ACACP APC=∠∠,代入数据计算即可得解;对D :分B ∠为钝角及C ∠为钝角,结合直角的临界状态计算即可得.【详解】对A:a ==ABC 有唯一解,故A 错误;对B :在PBC 、PAC △、PAB 中,分别有2222342cos120PB PC PB PC +=+-⋅︒,即2225PB PC PB PC =++⋅,22232cos120PA PC PA PC =+-⋅︒,即229PA PC PA PC =++⋅,22242cos120PA PB PA PB =+-⋅︒,即2216PA PB PA PB =++⋅,即有()222259162PA PB PC PA PB PB PC PA PC ++=+++⋅+⋅+⋅,即()222502PA PB PB PC PA PC PA PB PC -⋅+⋅+⋅++=,又13462ABC PBC PAC PAB S S S S =++=⨯⨯= ,即()1sin12062PA PB PB PC PA PC ⋅+⋅+⋅︒=,即PA PB PB PC PA PC ⋅+⋅+⋅=,即有22225PA PB PC ++=-,故B错误;对C :设PAC θ∠=,则在直角三角形PAB 中,APB θ∠=,PA θ=,在PAC △中,有sin sin AP ACACP APC=∠∠1sin120=︒,313222=4sin θθ=,即3tan 4θ=,故C 正确;对D :若B ∠为钝角,如图,作CD AB ⊥于点D ,有CD BC AC <<,即sin b A a b ⋅<<,即234t <<,若C ∠为钝角,如图,作CD AC ⊥于点C ,有BC CD >,即tan a b A >⋅,即43t >综上所述,t 的取值范围是()()23,43,∞⋃+,故D 正确.故选:CD.【点睛】关键点点睛:D 选项中关键点在于分B ∠为钝角及C ∠为钝角,分别找出直角的临界情况求出范围.12.23【分析】设圆锥的底面圆的半径为R ,高为h ,则母线长为r 且2R r =,根据勾股定理求得32h r =,结合圆锥的体积公式计算即可求解.【详解】由题意知,设圆锥的底面圆的半径为R ,高为h ,则圆锥的母线长为r ,且12π2π2R r =⨯,得2R r =,所以2232h r R r -=,又圆锥的体积为3π,所以211π33V Sh R h ==,即2133ππ()322r r =⨯,解得23r =.故答案为:13.514【分析】设经过x 小时距离最近,分别表示出甲乙距离B 岛的距离,由余弦定理表示出两船的距离,根据二次函数求最值的方法得到答案.【详解】设经过x 小时两船之间的距离为s 千米,甲船由A 点到达C 点,乙船由B 点到达D 点,则4,104,6AC x BC x BD x ==-=,11820060CBD ∠︒=︒-.由余弦定理可得()()()2222110462104628201002s x x x x x x ⎛⎫=-+--⋅⋅-=-+ ⎪⎝⎭,当205 2.522814x ==<⨯时,2s 最小,则两船之间的距离最小,此时它们航行的时间为514小时.故答案为:514.14.8,4⎡⎤⎣⎦【分析】设,tan PAB t θθ∠==,可得2tan 2BP t θ==,()[]21,0,11t DQ t t-=∈+,以点A 为坐标原点,,AB AD 所在直线分别为,x y 轴建立坐标系,然后求出,AP AQ 的坐标,结合数量积的运算和对勾函数的性质求解.【详解】设,tan PAB t θθ∠==,则2tan 2BP t θ==,()()[]21tan 21π2tan ,0,141tan 1t DQ t t θθθ--⎛⎫=-=∈ ⎪++⎝⎭.以点A 为坐标原点,,AB AD 所在直线分别为,x y 轴建立坐标系,则()()()210,0,2,2,,21t A P t Q t ⎛⎫- ⎪+⎝⎭,()()212,2,,21t AP t AQ t ⎛⎫-== ⎪+⎝⎭,所以()412441211t AP AQ t t t t -⎛⎫⋅=+=++- ⎪++⎝⎭ .令1u t =+,[]1,2u ∈,则242AP AQ u u ⎛⎫⋅=+- ⎪⎝⎭ ,[]1,2u ∈.由对勾函数的性质可得()2f u u u =+在(上单调递减,在)2上单调递增,所以()min f u f ==又()()13,23f f ==,所以()2f u u u =+在[]1,2u ∈上的值域为⎡⎤⎣⎦,所以2428,4AP AQ u u ⎛⎫⎡⎤⋅=+-∈- ⎪⎣⎦⎝⎭ .故答案为:8,4⎡⎤⎣⎦.15.(1)2243(2)112【分析】(1)借助正四棱锥于棱台的性质可得棱台的高,结合棱台体积公式计算即可得;(2)求出棱台各个面的面积后相加即可得.【详解】(1)过点P 作PO ⊥底面ABCD 于点O ,PO 交平面1111D C B A 于点1O ,由正四棱锥及棱台的性质可知,O 为底面ABCD 的中心,则111114O O PO PO PO PO PO =--==,即棱台1111A B C D ABCD -的高4h =,(1111111113A B C D ABCD ABCD A B C D V S S h-=⨯+⨯((22112244564333⎡=⨯+⨯=⨯⨯=⎢⎣,(2)连接OA,则22422AO AB ==,则112AA AP ===作1A M AB ⊥于点M ,则1A M =故1111114ABCD A B C DA ABB S S S S=++表正方形正方形梯形(((22142=++⨯⨯32872112=++=.16.(1)1122AM a b =+ ,11412PN a b =-+uuu r r r (2)25【分析】(1)根据向量的加法运算即可求得AM ;设()PN tBN t AN AB ==-uuu r uuu r uuu r uu u r ,利用向量的线性运算结合图形关系可得1(1)3AP t b ta =-+uu u r r r ,再由向量共线的性质得到14t =,最后表示出所求向量即可;(2)利用向量垂直的性质和数量积的定义式计算可得.【详解】(1)111()222AM AB AC a b =+=+uuu r uu u r uuu r r r ,设()PN tBN t AN AB ==-uuu r uuu r uuu r uu u r ,因为13AN AC = ,所以1()(1)(1)3AP AN NP AN t AN AB t AN t AB t AC t AB =+=--=-+=-+uu u r uuu r uu u r uuu r uuu r uu u r uuu r uu u r uuu r uu u r,即1(1)3AP t b ta =-+uu u r r r ,由,AP AM uu u r uuu r 共线得:1(1)3t t -=,解得:14t =,所以1111()124124PN t BN t AN AB AC AB b a ==-=-=-uuu r uuu r uuu r uu u r uuu r uu u r r r ,所以1111,22412AM a b PN a b =+=-+ .(2)BN BA AN AB x AC a xb =+=-+=-+uuu r uu r uuu r uu u r uuu r r r ,因为AM PN ⊥,由于,BN PN uuu r uuu r 共线,故AM BN ⊥ ,所以1111()28402222AM BN a b a xb x x ⎛⎫⎛⎫⋅=+⋅-+=-++-= ⎪ ⎪⎝⎭⎝⎭ ,解25x =.17.(1)π3(2)6(3)33,22⎤⎥⎝⎦【分析】(1)根据正弦定理结合两角和的正弦公式化简求值即可;(2)依据余弦定理及已知得13ac =,然后利用面积分割法列方程求解即可;(3)利用向量的加法运算及数量积模的运算得()1324BE ca =+ ,利用正弦定理得π2sin 216ac A ⎛⎫=-+ ⎪⎝⎭,然后利用正弦函数的性质求解范围即可.【详解】(1)因为sin C C a +=,根据正弦定理sin sin sin b A C C B=,即()sin sin cos sin B C B C b A B C =+,即sin sin sin B C B C =,又sin 0C ≠,所以tan B =,因为()0,πB ∈,所以π3B =.(2)由π3B =及余弦定理得22π32cos 3c a ac =+-,即()22233c a ac a c ac =+-=+-,又因为2a c +=,所以13ac =,所以111sin sin sin 22222ABC ABD BCD B B S S S c BD a BD ac B =+=⋅⋅+⋅⋅= ,所以()ππsin sin 63BD a c ac ⋅+⋅=,即132122BD =⨯(3)因为E 是AC 的中点,所以()12BE BA BC =+ ,则()()2222211322444ca BE BA BA BC BC c a ac +=+⋅+=++= ,由正弦定理得,2sin 4sin sin 4sin sin πsin sin 3b b ac A C A C A A B B ⎛⎫=⋅==- ⎪⎝⎭即2πcos 2sin sin 2cos 212sin 216ac A A A A A A ⎛⎫=+-+=-+ ⎪⎝⎭,因为()()20,π,π0,π3A C A ∈=-∈,所以20,π3A ⎛⎫∈ ⎪⎝⎭,所以π172π,π666A ⎛⎫-∈- ⎪⎝⎭,所以π1sin 2,162A ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,所以(]π2sin 210,36ac A ⎛⎫=-+∈ ⎪⎝⎭,所以23239,444ca BE +⎛⎤=∈ ⎥⎝⎦,所以322BE ⎛⎤∈ ⎥ ⎝⎦,即边AC 上的中线BE 的取值范围为3322⎛⎤ ⎥ ⎝⎦.18.(1)(3++;(2)[]2,6-.【分析】(1)直接利用正余弦定理即可求出角B ,利用正弦定理将周长转化为关于角A 的三角函数,利用三角函数的值域即可求解;(2)易得ABC 为等边三角形,取AB 中点M ,可得2223PA PB PM MA PM ⋅=-=- ,由P 为圆O 上的一动点,可得[]1,3PM ∈,进而可求PA PB ⋅ 的取值范围.【详解】(1)因为sin sin cos sin cos sin sin a A a C B b C A b B c A ++=+,所以由正弦定理可得22cos cos a ac B bc A b ac ++=+,由余弦定理可得2222222222a c b b c a a b ac +-+-++=+,即222a c b ac +=+,所以2221cos 222a cb ac B ac ac +-===.因为0πB <<,所以π3B =;由ABC 为锐角三角形,π3B =,所以π022ππ032A C A ⎧<<⎪⎪⎨⎪<=-<⎪⎩,可得ππ,62A ⎛⎫∈ ⎪⎝⎭.由正弦定理sin sin sin a bcA B C ==,得22πsin sin 32cA A ==⎛⎫- ⎪⎝⎭,则2π2sin 31sin A b c A ⎛⎫- ⎪⎝⎭====则ABC的周长为22cos cos 12333sin 2sin cos tan 222AA a b c A A A A +++==+=+.由ππ,62A ⎛⎫∈ ⎪⎝⎭,则ππ,2124A ⎛⎫∈ ⎪⎝⎭.因为2π2tanππ12tan tan 2π6121tan 12⎛⎫=⨯== ⎪⎝⎭-整理得2ππtan 101212+-=,解得πtan 212=πtan 212=-(舍),所以()tan 22A ∈,所以(33tan 2A ++,即ABC的周长的取值范围为(3+.(2)由正弦定理2sin bR B =(R 为ABC的外接圆半径),则212b ac b ===.由222a c b ac +=+,可得2224a c +=,则a c ==ABC 为等边三角形.取AB 中点M,如图所示:则()()PA PB PM MA PM MB ⋅=+⋅+ ()2PM PM MA MB MA MB =+⋅++⋅ 2223PM MA PM =--= .由2,1OP OM ==,则[]1,3PM ∈,则[]2,6PA PB ⋅∈- .19.(1)证明见解析;(3)证明见解析.【分析】(1)当π4θ=时,ππcos isin 44n z n n =+,)11i z =+,2i z =,由221z z =,即可证明“2维形态复数”与“1维形态复数”之间存在平方关系;(2)由“2维形态复数”与“3维形态复数”相等,可得cos 2i sin 2cos3i sin 3θθθθ+=+,利用复数相等的条件得到()2πk k θ=∈Z ,即可求πsin 4θ⎛⎫+ ⎪⎝⎭;(3)由1m z z =得cos i sin cos i sin m m θθθθ+=+,利用复数相等的条件得到()112π1k k m θ=∈-Z 和()222π2k k n θ=∈-Z ,则()12122π2π,12k k k k m n =∈--Z ,则()11221,2k m k k n k -=∈-Z ,进一步得()()111122222211,k k k m n n k k k k k =-+=⋅+-∈Z ,即可证明存在有理数12k q k =,使得12m q n q =⋅+-.【详解】(1)当π4θ=时,ππcos isin 44n z n n =+,则)1ππcos isin 1i 44z =++,2ππcos isin 2i 2z +==.因为)()2221211i 12i i i 22z z ⎤=+=++==⎥⎣⎦,故“2维形态复数”与“1维形态复数”之间存在平方关系.(2)因为“2维形态复数”与“3维形态复数”相等,所以cos 2i sin 2cos3i sin 3θθθθ+=+,因此cos 2cos3sin 2sin 3θθθθ=⎧⎨=⎩,解cos 2cos3θθ=,得()322πk k θθ=+∈Z 或()322πk k θθ+=∈Z ,解sin 2sin 3θθ=,得()322πk k θθ=+∈Z 或()322ππk k θθ+=+∈Z ,由于两个方程同时成立,故只能有()322πk k θθ=+∈Z ,即()2πk k θ=∈Z .所以πππsin sin 2πsin 444k θ⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭(3)由1m z z =,得cos i sin cos i sin m m θθθθ+=+,由(2)同理可得()112πm k k θθ=+∈Z ,即()()1112πm k k θ-=∈Z .因为1m >,所以()112π1k k m θ=∈-Z .因为221n m z z z ==,由(1)知221z z =,所以2n z z =.由(2)同理可得()2222πn k k θθ=+∈Z ,即()()2222πn k k θ-=∈Z .因为2n >,所以()222π2k k n θ=∈-Z ,所以()12122π2π,12k k k k m n =∈--Z ,又因为0θ≠,所以120k k ≠,所以()11221,2k m k k n k -=∈-Z ,即()()111122222211,kk km n n k k k k k =-+=⋅+-∈Z ,所以存在有理数12kq k =,使得12m q n q=⋅+-.【点睛】关键点点睛:利用复数相等求出参数然后求解.。
福建省福州第四中学2022-2023学年高一下学期期中检测数学试题

福建省福州第四中学2022-2023学年高一下学期期中检测数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.已知复数34iz=-(其中i是虚数单位),则下列命题中正确的为()对应点的坐标是(3,4)-,在第四象限,D 正确.故选:ACD .10.BD【分析】A. 根据平面向量不能比较大小判断.B. 根据平面向量的三角形法则判断.C.根据 平面向量的数量积定义判断.D. 根据平面向量的三角形法则判断.【详解】A 选项.向量不能比较大小,选项A 错误.B 选项. 根据向量加法运算公式可知,当向量a r 和b r 不共线时,两边之和大于第三边,即||||||a b a b +<+r r r r ,当a r 和b r 反向时,||||||a b a b +<+r r r r ,当a r 和b r 同向时,||||||a b a b +=+r r r r ,所以||||||a b a b +£+r r r r 成立,故B 正确;C 选项,|||||||cos |||||a b a b a b q ×=£r r r r r r ,选项C 错误.D 选项.当向量a r 和b r 不共线时,根据向量减法法则可知,两边之差小于第三边,即||||||a b a b ->-r r r r 当a r 和b r 反向时,||||||a b a b ->-r r r r ,当a r 和b r 同向且||||a b ³r r 时,||||||a b a b -=-r r r r ,当a r 和b r 同向且||||a b <r r 时,||||||a b a b ->-r r r r ,所以选项D 正确.故选:BD11.CD【分析】根据圆柱、圆锥的侧面积、表面积、体积等知识求得正确答案.【详解】A 选项,圆柱的侧面积为22π24πR R R ´=,A 选项错误.与14圆切于点Q,连接AQ60tan q =,60NQ=,。
浙江省普通高中高一下学期期中模拟考试数学试题含答案

浙江省普通高中高一下学期期中模拟考试数 学 试 题(时间:100分钟; 满分:120分)一、选择题(本大题共10小题,每小题4分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知()()3,2,,1a b k ==,且a ∥b ,则k 的值是( )A .23B .23-C .32D .32-2.在ABC ∆中,若1,3,30a b A ===,则B =( )A.60B.60或120C. 30或150D. 120 3.下列各式中,值为12的是( ) A .0sin15cos15 B .22cossin 1212ππ-C .0cos 42sin12sin 42cos12- D .020tan 22.51tan 22.5- 4.若βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是( )A .5665B .1665C .3365D .63655.在ABC ∆中,c b a ,,分别是三内角C B A ,,的对边,且C A 22sin sin -=()B B A sin sin sin -,则角C 等于( )A .6πB .3πC .65π D .32π6.若平面向量,,a b c 两两所成的角相等,且1,3a b c ===,则a b c ++等于( )A .2B .5C .2或5D .25或 7.在ABC ∆中,若31cos =A ,:=3:2AB AC ,则sin B 的值为( ) A .23 B .79 C .322 D .4298.定义两个平面向量的一种新运算sin ,a b a b a b ⊗=⋅,(其中><b a ,表示b a ,的夹角),则对于两个平面向量,a b ,下列结论不一定成立的是( )A.a b b a ⊗=⊗B.2222()()a b a b a b ⊗+=⋅ C.()()a b a b λλ⊗=⊗ D.若0a b ⊗=,则a b 与平行9.给出下列4个命题: ①若B A 2sin 2sin =,则ABC ∆是等腰三角形; ②若B A cos sin =,则ABC ∆是直角三角形; ③若0cos cos cos <C B A ,则ABC ∆是钝角三角形;④若1)cos()cos()cos(=---A C C B C A ,则ABC ∆是等边三角形.其中正确的命题是( )A .①③B .③④C .①④D .②③ 10.已知两个平面向量m,n 满足:对任意的R λ∈,恒有()2m nm m n λ+--≥,则( ) A .m m n =- B .m n =C .m m n =+D .2m n =二、填空题(本大题共7小题,每小题4分,满分28分)11.若O 为坐标原点,(1,1)OA -=,(3,5)AB =,则点B 的坐标为 ; 12.已知α为锐角,4sin 5α=,则tan()4πα+= ; 13.求值0013sin10cos10-= ; 14.设ABC ∆的内角C B A ,,所对的边分别为,,,c b a 且b c C a =+21cos ,则角A = ; 15.已知A 船在灯塔C 北偏东80处,且A 船到灯塔C 的距离为2km ,B 船在灯塔C 北偏西 40处,B A 、两船间的距离为7km ,则B 船到灯塔C 的距离为 ;16.已知ABC ∆中,060A ∠=,3BC =,则2AB AC +的最大值为 ;17.如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,3AP =, 点Q 是BCD ∆内(包括边界)的动点,则AP AQ ∙的取值范围是 .三、解答题(本大题共5小题,满分52分。
安徽省宿州市省、市示范高中2023-2024学年高一下学期4月期中考试数学试题

安徽省宿州市省、市示范高中2023-2024学年高一下学期4月期中考试数学试题一、单选题1.复数5i 12i-的共轭复数在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知某平面图形OABC 的直观图是如图所示的梯形O A B C '''',且2,3,2A B O C OA ''''''===,则原图形OABC 的面积为( )A .BC .12D .10 3.若同一平面内的三个力123,,F F F u u r u u r u u r 作用于同一个物体,且该物体处于平衡状态.已知123,4F F ==u u r u u r ,且1F u u r 与2F u u r 的夹角为120︒,则力3F u u r 的大小为( )A .37BC .13 D4.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,若1,cos 63a A C π==,则c =( )A B .23 C D .83 5.如图,四边形OADB 是以向量OA a =u u u r r ,OB b =u u u r r 为边的平行四边形.又13BM BC =,13CN CD =,则用a r ,b r 表示MN =u u u u r ( )A .1566a b +r rB .()23a b +r rC .1126a b -r rD .1126a b +r r 6.在ABC V 中,内角,,A B C 的对边分别为,,,a b c 若满足2cos a B c =,则该三角形为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .不能确定7.已知ABC V 外心是点O ,且2,AO AB AC AB OB =+=u u u r u u u r u u u r u u u r u u u r ,则向量BA u u u r 在向量BC u u u r 上的投影向量为( )A .14BC u u u r B .14BC -u u u r C u u r D .u u r 8.在ABC V 中,点D 满足34BD BC =u u u r u u u r ,点E 在射线AD (不含点A )上移动,若,AE AB AC λμ=+u u u r u u u r u u u r 则22(2)μλ++的取值范围是( )A .[4,)+∞B .(4,)+∞C .(1,)+∞D .[1,)+∞二、多选题9.下列命题中正确的有( )A .若a b =r r ,则32a b >r rB .BC BA DC AD --=u u u r u u u r u u u r u u u rC .||||||a b a b a +=+⇔r r r r r 与b r 的方向相反D .若非零向量,a b r r 满足||||a b a b +=-r r r r ,则向量a r 与b r 的夹角为π210.下列命题正确的有( )A .若复数z 满足i 1z -=,则z 的最大值为2B .若复数z 满足2R z ∈,则R z ∈C .若复数12,z z 满足12=z z ,则12=±z zD .若复数12,z z 满足2121z z z =且10z ≠,则12=z z11.在等腰梯形ABCD中,//,33,AB DC AB DC BC ===CD 所在的直线为轴,其余三边绕CD 旋转一周形成的面围成一个几何体,则下列说法正确的有( )A .等腰梯形ABCD 的高为1B .该几何体为圆柱C.该几何体的表面积为(6π+D .该几何体的体积为7π3三、填空题12.已知向量(4,3),(7,1)a b ==-r r ,则向量a r 与b r 的夹角大小为.13.现有一块如图所示的三棱锥木料,其中40AVB AVC BVC ︒∠=∠=∠=,6VA VB VC ===,木工师傅打算过点A 将木料切成两部分,则截面AEF △周长的最小值为.14.由三角形内心的定义可得:若点O 为ABC V 内心,则存在实数λ,使得||||AB AC AO AB AC λ⎛⎫=+ ⎪⎝⎭u u u r u u u r u u u r u u ur u u u r .在ABC V中,tan BAC ∠=O 为ABC V 内心,且满足AO xAB yAC =+u u u r u u u r u u u r ,则x y +的最大值为.四、解答题15.(1)在复数范围内解方程:2230x x -+=;(2)已知关于x 的方程20x ax ab -+=,其中,a b为实数,若2x =(i是虚数单位)是该方程的根,求a 与b 的值.16.已知向量(1,2),(2,3)a b ==-r r(1)设5c a b μ=-r r r ,若a c ⊥r r ,求实数μ的值;(2)若a b λ+r r 与2a b λ+r r 共线,求实数λ的值.17.2024年是宿州市泗县北部新城建立7周年,泗县县政府始终坚持财力有一分增长,民生有一分改善,全力打造我县民生样板,使寸土寸金的商业用地变身“城市绿肺”,老厂房、旧仓库变身步行道、绿化带等.现有一足够大的老厂房,计划对其改造,规划图如图中五边形ABCDE 所示,其中BDE △为等腰三角形,且11πππ,,,4km 1234CDE BCD CBD CD ∠=∠=∠==,计划沿线段BE 修建步行道.(1)求步行道BE 的长度;(2)现准备将ABE V 区域建为绿化带且23π∠=BAE ,当绿化带的周长最大时,求该绿化带的周长与面积.18.给出以下三个件:①222cos 4ab C a b =+-,②22(cos cos )b A a B c +=,③112tan tan sin A B b A +=.请从这三个条件中任选一个将下面的题目补充完整,并求解.已知在锐角ABC V 中,内角,,A B C 的对边分别为,,,a b c 且______.(1)求边长c ;(2)若ABC V 的面积ABC S V C 的最大值.19.定义1:对于一个数集A ,定义一种运算⊗,对任意,a b A ∈都有a b A ⊗∈,则称集合A 关于运算⊗是封闭的(例如:自然数集N 对于加法运算是封闭的).定义2:对于一个数集A ,若存在一个元素a A ∈,使得任意c A Î,满足a c a ⨯=,则称a 为集合A 中的零元,若存在一个元素b A ∈,使得任意c A Î,满足b c c ⨯=,则称b 为集合A 中的单位元(例如:0和1分别为自然数集N 中的零元和单位元).定义3:对于一个数集A ,如果满足下列关系:①有零元和单位元;②关于加、减、乘、除(除数不为0)四种运算都是封闭的;③对于乘法和加法都满足交换律和结合律,且满足乘法对加法的分配律;则称这个数集A是一个数域.(1)指出常用数集N,Z,Q,R,C中,那些数集可以构成数域(不需要证明);(2)已知集合{Z,Z}∣,证明:集合A关于乘法运算是封闭的;A x x a b a b==+∈∈(3)已知集合{,}∣,证明:集合A是一个数域.==+∈∈A x x a b a Q b Q。
四川省绵阳南山中学2023-2024学年高一下学期期中考试数学试题

rr 14.已知向量 a,b 满足
ar
r = 6,b
=
rr 4 ,且 a 与 b 的夹角为 60°,则
ar
+
r b
=
15.在正方形 OABC 中,点 D , E 分别是 AB , BC 的中点,则 cos ÐDOE = . 2
16.在锐角 VABC 中,角 A,B,C 所对的边分别为 a,b,c, b = 3 , sin A + asin B = 2 3 , 则 VABC 周长的取值范围为 .
^ cr .
(1)求 m 的值;
(2)求向量
ar
-
r b
与
r 2b
-
3cr
的夹角的余弦值.
19.已知 sin a sin a
+ cosπa - cosa
=
3,,a Î
æ çè
0
2
ö ÷ø
.
(1)求 tana 的值;
(2)若sin (a - b ) =
10 10
,且
b
Î
æ çè
0,π2
ö ÷ø
,求角
b
二、多选题
9.得到函数
y
=
cos
æ çè
2x
+
π 3
ö ÷ø
的图象,只需将函数
y
=
cos
x
图象上所有点的坐标(
)
试卷第21 页,共33 页
A.向左平移
π 3
个单位长度,再将横坐标缩短到原来的
1 2
倍(纵坐标不变)
B.向右平移
π 6
个单位长度,再将横坐标缩短到原来的
1 2
倍(纵坐标不变)
北京市2023-2024学年高一下学期期中考试数学试题含答案

北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外国语学校2022-2023学年度高一下学期期中考试
数 学 试 题
命题人:高一数学命题研究中心 审题人:高一数学命题研究中心
考试时间:2023年4月20日 试卷满分:150分
第Ⅰ卷(60分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列四个函数中,以π为最小正周期,且在区间,2ππ⎛⎫
⎪⎝⎭
上单调递减的是
A. |sin |y x =
B. cos y x =
C. tan y x =
D. cos 2
x
y =
2.如图为一平面图形的直观图,则此平面图形可能是选项中的
A. B. C. D.
3.根据所学知识判断下列描述错误的是 A.不相交的直线是平行直线
B.经过两条平行直线有且只有一个平面
C.不共线的三点确定一个平面
D.棱台的各侧棱延长后必交于一点
4.在ABC 中,若非零向量AB 与AC 满足0,0AB AC BC AB AC AB AC ⎛⎫ ⎪+⋅=⋅= ⎪⎝⎭
,则ABC 为 A. 三边均不相等的三角形 B.等腰直角三角形 C. 底边和腰不相等的等腰三角形 D. 等边三角形
5.设222
2tan121cos 48
cos 12-sin 121-tan 122
a b c -===,,,则有 A .c b a <<
B .b c a <<
C .a c b <<
D .b a c <<
6.“不以规矩,不成方圆”.出自《孟子.离娄章句上》.“规”指圆规,“矩”指由相互垂直的长短两条直尺构成的角尺,用来测量、画圆和方形图案的工具.有一圆形木板,以“矩”量之,较长边为10cm ,较短边为5cm ,如图所示,将这个圆形木板截出一块三角形木板,三角形定点A,B,C 都在圆周上,角A,B,C 分别对应,,a b c ,满足
=45c cm .若2
8ABC S cm ∆=,且a c >,则
A.3
sin 5C =
B.ABC ∆周长为12+45cm
C.ABC ∆周长为15+45cm
D.圆形木板的半径为25cm 7.已知1
1
1
31tan 1tan
22
αα-=--+,且02πα-≤≤,则
22sin sin 2cos()4ααπα+=- A .255 B .-3510 C .-310
10
D .-25
5
8.已知1
()sin cos (,)4
f x x x x R ωωω=->∈,若()f x 的任何一条对称轴与x 轴交点的横坐标都不属于 区间(2,3)ππ,则ω的取值范围是 A. 3111119[,
][,]812812 B. 1553(,][,]41284 C. 37711[,][,]812812 D. 13917
(,][,]44812
二、多选题:本大题共4小题,每小题5分,共20分.漏选得2分,错选得0分.
9.下面是关于复数2
1i
z =-(i 为虚数单位)的命题,其中真命题为
A .
2z = B .21i z z -=+ C.z 的共轭复数为1i -+ D.z 的虚部为1
10.已知函数()=sin()(0,0,||)2
f x A x A π
ωϕωϕ+>><的部分图
象如图所示,
则下列结论正确的是
A.函数的解析式为()=2sin(2)3
f x x π
+
B.函数()f x 在2[,]36ππ
-
-上单调递减 C.该图象向右平移6
π
个单位可得=2sin2y x 的图象
D.函数()y f x =关于点(,0)6
π
-
对称
11.一个腰长为1的等腰直角三角形ABC 三边上分别取一个点,,P Q R ,使得三角形PQR 也是等腰直角三角
形,则
PRQ ABC
S S △△的值可能为
A.
15
B.
27 C.310 D.4
2023
12.对于任意ABC ∆,3
2,4
AE EC BD DC ==,两直线AD,BE 相交于点O,延长CO 交AB 于点F,则下列结论
正确的是 A.38
1717
CO CA CB =
+ B.若0,::3:8:7xOA yOB zOC x y z ++==则 C.11247
,1,2,cos 3
494
BAC AB AC DOE π
∠=
==∠=
当时则 D.1677DEF ABC S S ∆∆=
第Ⅱ卷(90分)
三、填空题:本大题共4小题,每小题5分,共20分.
13.已知12,e e 是两个不共线单位向量,1212122,3,AB BC CD e e e e e e λ=+=-+=-,若A ,B ,D 三点共线,则实数λ=__________.
14.函数()()
2sin 3f x lg x =-的定义域为___________.
15.设点O 是ABC 外接圆的圆心,3AB =,且4AO BC -⋅=.则
sin sin B
C
的值是________. 16.浑仪,是中国古代的一种天文观测仪器,是以浑天说为理论基础制造的、由相应天球坐标系各基 本圈的环规及瞄准器构成的古代天文测量天体的仪器,它的基本结构由重重的同心圆环构成,整体看起
来像一个圆球.武汉外校某社团的同学根据浑仪运行原理制作了一个浑仪的模型(如下图所示,为丰富 同学们天文学相关知识,考完后可以通过二维码进一步了解):同心的小球半径为3,大球半径为R. 现为提高浑仪的稳固性,该社团同学在大球内放入一个由六根等长的铁丝(不计粗细)组成的四面 体框架,为不影响浑仪的正常使用,小球能在框架内自由转动,则大球半径R 的最小值为__________.
四.解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知(4,3)a =,(3,0)b =.
(Ⅰ)当k 为何值时,ka b +与2a b +垂直; (Ⅱ)当k 为何值时,ka b +与2a b +的夹角为锐角.
18.(本小题满分12分)已知函数22()2(sin cos )43cos 23f x x x x =++- (Ⅰ)求()f x 的对称轴方程;
(Ⅱ)若0,]2
x π
∈[,求函数()f x 的值域.
19.(本小题满分12分)
(Ⅰ)如图1,在直角梯形ABCD 中,AB ∥CD ,BC CD ⊥,CD =2AB =6,45ADC ∠=,梯形绕着直线AB 旋转一周,求所形成的封闭几何体的表面积;
(Ⅱ)有一个封闭的正三棱柱容器,高为12,内装水若干(如图2,底面处于水平状态),将容器放倒(如图3,
一个侧面处于水平状态),这时水面与各棱交点F ,E ,E 1,F 1分别为所在棱的中点,求图2中水面的高度.
图1图2图3
20.(本小题满分12分)如图,在平面四边形ABCD 中,,1,2
BCD AB π
∠=
=3.4ABC π∠=
(Ⅰ)当2,7BC CD =
=时,求ACD ∆的面积.
(Ⅱ)当,6
ADC π
∠=
2AD =时,求cos ACD ∠.
21.(本小题满分12分)
(Ⅰ)证明两角和的余弦公式:C αβ+cos()cos cos sin sin αβαβαβ+=- 并由C αβ+推导两角和的正弦公式::S αβ+sin()sin cos cos sin αβαβαβ+=+
(Ⅱ)已知153(0,),(0,),sin(),sin()2425π
βαβππαα∈∈-=-=,求cos
2
αβ
-的值.
22.(本小题满分12分)一个创业青年租用一块边长为4百米的等边ABC ∆田地如图养蜂、产蜜与售蜜,田地内拟修建笔直小路MN ,AP ,其中M ,N 分别为AC ,BC 的中点,点P 在CN 上,规划在小路MN 与AP 的交点O (O 与M 、N 不重合处设立售蜜点,图中阴影部分为蜂巢区,空白部分为蜂源植物生长区,A ,N 为出入口小路的宽度不计为节约资金,小路MO 段与OP 段建便道,供蜂源植物培育之用,费用忽略不计为车辆安全出入,小路AO 段的建造费用为每百米5万元,小路ON 段的建造费用为每百米4万元.
(Ⅰ)若拟修的小路AO 段长为7百米,求小路ON 段的建造费用;
(Ⅱ)设AOM θ∠=, 求cos θ的值,使得小路AO 段与ON 段的建造总费用最小.。