克拉泼振荡器的设计与仿真(原创)

合集下载

用Multisim软件模拟正弦波振荡器电路

用Multisim软件模拟正弦波振荡器电路

正弦波振荡器电路的设计一.设计要求1.要求振荡器的工作频率在30MHZ附近。

2.频率的稳定度为1%—5%。

二.设计原理正弦波振荡器可分为两大类,一类是利用正反馈原理构成的反馈振荡器,它是目前应用最广的一类振荡器。

另一类是负阻振荡器,它是将负阻器件直接连接到谐振回路中,领用负阻器件的负电阻效应去抵消回路中的损耗,从而产生出等幅的自由振荡。

本次实验采用负反馈振荡器产生正弦波。

原理框图如下:1、平衡条件与起振条件(1)振荡的过程当接通电源时,回路内的各种电扰动信号经选频网络选频后,将其中某一频率的信号反馈到输入端,再经放大→反馈→放大→反馈的循环,该信号的幅度不断增大,振荡由小到大建立起来。

随着信号振幅的增大,放大器将进入非线性状态,增益下降,当反馈电压正好等于输入电压时,振荡幅度不再增大进入平衡状态。

(2)起振条件——为了振荡起来必需满足的条件由振荡的建立过程可知,为了使振荡器能够起振,起振之初反馈电压Uf 与输入电压Ui 在相位上应同相(即为正反馈);在幅值上应要求Uf >Ui ,即:起振条件:2T K F n ψψψπ=+=|()|1T jw KF => (3)平衡条件——为维持等幅振荡所需满足的条件振幅平衡条件:|()|1T jw KF == 相位平衡条件 :2T K F n ψψψπ=+=其中n=0,1,2,3…2、稳定条件振荡器工作时要处于稳定平衡状态,既要振幅稳定,而且相位要稳定。

振幅稳定条件:AF 与Ui 的变化方向相反。

相位稳定条件:相位与频率的变化方向相反三. 设计步骤 1.选定电路形式。

选择电容反馈式的改进型振荡器——克拉泼振荡器。

下图是克拉泼振荡器的交流等效电路。

它是用电感L 和电容C3的串联电路构成,且C3<<C1,C2。

C1C2L1C3.此回路的总电容C 只要由C3决定,因为C1,C2和并联对电路总电容的影响很小。

所以电路的振荡角频率为10311LC LC ωω≈== 反馈系数12C F C = 振荡器频率取32MHZ ,则C3电容取50PF ,电感L1取500nH 。

克拉泼振荡器及跨阻放大电路设计与仿真

克拉泼振荡器及跨阻放大电路设计与仿真

摘要本次课程设计主要由三部分电路设计组成,克拉泼电容三点振荡电路、四阶巴特沃斯带通滤波器和跨阻放大电路。

此次电路设计,主要介绍了三个电路的设计原理、设计仿真过程、结果分析和结论等。

克拉泼电容三点振荡器的特点是在共基电容三点式振荡器的基础上,用一电容C4,串联于电感L1的支路上。

其作用是增加回路总电容和减小管子与回路间的耦合来提高振荡回路的标准性,使振荡频率的稳定度得到提高。

四阶巴特沃斯带通滤波器通过级联运放电路构成一个新电路使其转移函数的分母中含有巴特沃斯多项式,其中每个级联的子电路提供一个因式,进而得到四阶的巴特沃斯。

跨阻放大电路接连二级放大电路,将电流信号转换成电压信号,得到放大后的电信号。

完成电路原理图后再经过Protuse的仿真,得到了与理论值相近的结果,分析产生误差的原因以及所得结论。

关键字:振荡器;滤波器;放大器;ProtuseI目录1 绪论 (1)1.1 克拉泼电容三点振荡器 (1)1.2 四阶巴特沃斯带通滤波器 (1)1.3 跨阻放大器 (2)2 工作原理 (3)2.1 振荡器的工作原理 (3)2.1.1振荡器的概述 (3)2.1.2振荡器的原理 (3)2.1.3 电容三点式振荡器 (4)2.1.4 克拉泼振荡器的工作原理 (5)2.2 滤波器的工作原理 (6)2.2.1滤波器的概述 (6)2.2.2巴特沃斯响应 (6)2.2.3巴特沃斯带通滤波器的工作原理 (7)2.3 跨阻放大器的工作原理 (8)3 电路设计 (9)3.1 克拉泼振荡器的设计 (9)3.2巴特沃斯滤波器的设计 (11)3.3跨阻放大器的设计 (13)4 结果分析 (15)4.1仿真结果 (15)4.1.1 克拉泼振荡器的仿真 (15)4.1.2 巴特沃斯滤波器的仿真 (16)4.1.3跨阻放大器的仿真 (17)4.2分析结果 (17)4.2.1克拉泼的结果分析 (17)4.2.2巴特沃斯的结果分析 (18)4.2.3跨阻放大器的结果分析 (18)结论 (19)致谢 (20)参考文献 (21)附录 (22)II1 绪论1.1 克拉泼电容三点振荡器振荡器主要分为晶体振荡器和LC振荡器,本次课设采用LC振荡器。

实验三LC电容反馈三点式振荡器(克拉泼振荡器)

实验三LC电容反馈三点式振荡器(克拉泼振荡器)

实验三LC电容反馈三点式振荡器(克拉泼振荡器)实验三LC电容反馈三点式振荡器(克拉泼振荡器)⼀、实验⽬的1、掌握LC三点式振荡电路的基本原理,掌握电容反馈式LC三点振荡电路的设计⽅法及参数计算⽅法。

2、掌握振荡回路Q值对频率稳定度的影响。

3、掌握振荡器反馈系数不同时,静态⼯作电流I EQ对振荡器起振及振幅的影响。

⼆、预习要求1、复习LC振荡器的⼯作原理。

2、分析图3-1电路的⼯作原理,及各元件的作⽤,并计算晶体管静态⼯作电流Ic的最⼤值(设晶体管的β值为50)。

3、实验电路中,L1=3.3µh,若C=120pf,C′=680pf,计算当C T=50pf和C T=150pf时振荡频率各为多少?三、实验仪器1、双踪⽰波器2、万⽤表3、⾼频电路实验装置四、实验内容及步骤实验电路见3-1,实验前根据原理图在实验板上找到相应器件及插孔并了解其作⽤。

图3-1 LC电容反馈式振荡器、检查静态⼯作点(1)在实验板+12V插孔上接⼊+12V直流电源,注意电源极性不能接反。

(2)反馈电容C不接,(C′=680pf),⽤⽰波器观察振荡器停振时的情况,注意:连接C′的接线要尽量短。

(3)改变电位器Rp 测得晶体管V 的发射极电压V E ,V E 可连接变化,记下V E 的最⼤值,计算I E 值。

I =设Re = 1KΩ2、振荡频率与振荡幅度的测试实验条件:Ie=2mA 、C=100pf C′=680pf R L =110K(1)改变C T 电容,当分别接为C9、C10、C11时,记录相应的频率值,并填⼊表3.1。

(2)改变C T 电容,当分别接为C9、C10、C11时,⽤⽰波器测量相应振荡电压的峰峰值V p-p ,并填⼊表3.1。

表3.13、测试当C 、C′不同时,起振点、振幅与⼯作电流I ER 的关系(R=110KΩ)(1)取C=C3=100pf 、C′=C4=1200pf ,调电位器Rp 使I EQ (静态值)分别为表3.2所标各值,⽤⽰波器测量输出振荡幅度Vp-p (峰⼀峰值),并填⼊表3.2。

基于Multisim的克拉泼电路设计

基于Multisim的克拉泼电路设计

基于Multisim的克拉泼电路设计作者:孙立辉权庭兰来源:《电子技术与软件工程》2013年第22期摘要设计一种能够产生5MHz的正弦波的克拉泼电路,通过确定克拉泼电路各个元件参数,介绍克拉泼电路的特点,并通过Multisim软件进行仿真。

【关键词】Multisim 克拉泼电路设计克拉泼电路为改进后的电容三点式高频振荡器,电容三点式振荡器属于LC振荡器的一种,是在晶体管的三个电极分别与连接两个电容和一个电感元件而得名。

由于电容三点式振荡器的频率和反馈系数与这个三个电抗元件都有关系,当调节振荡电路的工作频率时,势必使反馈系数也会发生变化,这样使振荡电路稳定性变差。

因此为了克服这样的缺点,使用改进后的电容三端式振荡器—克拉泼电路。

1 工作原理克拉泼振荡电路时在电容三点式振荡电路的电感支路上串联一个电容构成,如图1所示。

C1、C2、C和L共同组成了振荡回路,当C远远小于C1和C2时,此时的振荡频率为。

而此时反馈系数为F=C1/C2。

可以看出振荡频率与C1、C2无关,只要调节C就可以改变振荡频率,而此时的反馈系数不变。

同时选择C1、C2的值远大于极间电容,这就减小了极间电容变化对振荡频率的影响,可以提高振荡频率的稳定性。

2 参数的确定2.1 确定合适的静态工作点为了使克拉泼振荡电路产生稳定的不失真正弦波,合理的选择静态工作点致关重要,克拉泼振荡电路的直流通路如图2所示。

一般小功率振荡器中三极管集电极电流 ICQ大约在1-4mA之间,本次设计选择ICQ=2mA,选择12V直流电源作为电路的工作电源,UCEQ ,b=50。

则有为了提高电路的稳定性能,选择RE=1kW,RC=3kW,,IRB2= 10? IBQ=0.4mA,,本设计选择RB2=6.8kW。

,可知,RB1=23.35kW,本设计选择RB1=24kW。

2.2 确定振荡回路元件参数震荡回路中的只有电容和电感两种电抗元件,首先根据经验确定其中一种电抗元件的参数,再根据振荡频率计算另一种元件的参数。

克拉泼振荡器及跨阻放大电路设计与仿真

克拉泼振荡器及跨阻放大电路设计与仿真

摘要本次课程设计主要由三部分电路设计组成,克拉泼电容三点振荡电路、四阶巴特沃斯带通滤波器和跨阻放大电路。

此次电路设计,主要介绍了三个电路的设计原理、设计仿真过程、结果分析和结论等。

克拉泼电容三点振荡器的特点是在共基电容三点式振荡器的基础上,用一电容C4,串联于电感L1的支路上。

其作用是增加回路总电容和减小管子与回路间的耦合来提高振荡回路的标准性,使振荡频率的稳定度得到提高。

四阶巴特沃斯带通滤波器通过级联运放电路构成一个新电路使其转移函数的分母中含有巴特沃斯多项式,其中每个级联的子电路提供一个因式,进而得到四阶的巴特沃斯。

跨阻放大电路接连二级放大电路,将电流信号转换成电压信号,得到放大后的电信号。

完成电路原理图后再经过Protuse的仿真,得到了与理论值相近的结果,分析产生误差的原因以及所得结论。

关键字:振荡器;滤波器;放大器;ProtuseI目录1 绪论 (1)1.1 克拉泼电容三点振荡器 (1)1.2 四阶巴特沃斯带通滤波器 (1)1.3 跨阻放大器 (2)2 工作原理 (3)2.1 振荡器的工作原理 (3)2.1.1振荡器的概述 (3)2.1.2振荡器的原理 (3)2.1.3 电容三点式振荡器 (4)2.1.4 克拉泼振荡器的工作原理 (5)2.2 滤波器的工作原理 (6)2.2.1滤波器的概述 (6)2.2.2巴特沃斯响应 (6)2.2.3巴特沃斯带通滤波器的工作原理 (7)2.3 跨阻放大器的工作原理 (8)3 电路设计 (9)3.1 克拉泼振荡器的设计 (9)3.2巴特沃斯滤波器的设计 (11)3.3跨阻放大器的设计 (13)4 结果分析 (15)4.1仿真结果 (15)4.1.1 克拉泼振荡器的仿真 (15)4.1.2 巴特沃斯滤波器的仿真 (16)4.1.3跨阻放大器的仿真 (17)4.2分析结果 (17)4.2.1克拉泼的结果分析 (17)4.2.2巴特沃斯的结果分析 (18)4.2.3跨阻放大器的结果分析 (18)结论 (19)致谢 (20)参考文献 (21)附录 (22)II1 绪论1.1 克拉泼电容三点振荡器振荡器主要分为晶体振荡器和LC振荡器,本次课设采用LC振荡器。

实验2 正弦波振荡器(LC振

实验2  正弦波振荡器(LC振

实验2 正弦波振荡器(LC振荡器和晶体振荡器)一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二.实验内容1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。

三.实验步骤1.实验准备插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。

2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。

)(1)西勒振荡电路幅频特性的测量3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。

调整电位器3W02,使输出最大。

开关3K05拨至“P”,此时振荡电路为西勒电路。

四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。

四个开关接通的不同组合,可以控制电容的变化。

例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。

按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。

表2-1根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并画出振荡频率与输出幅度的关系曲线。

注:如果在开关转换过程中使振荡器停振无输出,可调整3W01,使之恢复振荡。

(2)克拉泼振荡电路幅频特性的测量将开关3K05拨至“S”,振荡电路转换为克拉泼电路。

按照上述(1)的方法,测出振荡频率和输出电压,并将测量结果记于表2-1中。

克拉泼电路

佳木斯大学
实验报告
一、实验目的与要求
1、学会测量静态工作点。

2、学会观察起振的过程。

3、了解静态工作点对起振、振荡频率和输出幅度的影响。

4、了解可变电容对振荡频率和输出幅度的影响。

二、实验仪器
微机,仿真软件
三、实验内容与测试结果
1、建立仿真电路
根据题目搭建出如图所示克拉泼电路
图1
2、静态工作点测试
使用软件自带的直流静态工作点分析工具分析出e V 和e I 大小,如下图所示
图2
3、观察起振过程
图3 正常情况下起振过程
4、测试静态工作点对起振,振荡频率和输出幅度的影响
调节R7为正常值,偏大和偏小,观察各状态的起振过程,振荡频率和幅值
图 R7为50%时的状态
保持示波器各参数不变,改变R7
图 R7为10%时的状态
图 R7为90%时的状态5、测试可变电容对振荡频率和输出幅度的影响
同样改变C2为三种状态,保持示波器参数不动,观察所示幅度和频率
图 C2为25%时的状态
图 C2为80%时的状态
四、实验结果分析
1、静态工作点分析:由软件分析出的静态工作点可以看出放大器工作在放大状态,接近截止区
2、静态工作点对起振,振荡频率和输出幅度的影响:根据示波器输出的波形得到如下结论:静态工作偏低,起振快,振荡频率低,振幅小。

静态工作点偏高,起振、振荡频率、振幅与正常值相差不大
3、可变电容对振荡频率和输出幅度的影响:根据示波器输出的波形得到如下结论:C2的改变不影响振幅,只有当C2偏高时降低振荡频率,C2偏低时不影响振荡频率。

克拉珀振荡器实验报告

南昌大学实验报告学生姓名:沈子雄学号: 55专业班级:通信152班实验类型:□验证□综合□设计□创新实验日期:实验成绩:一、实验目的了解改进型电容三点式正弦波振荡电路:克拉珀振荡器。

二、实验原理普通电容三点式振荡电路,由于晶体管极间电容的存在,会使振荡频率发生偏移。

且极间电容的大小会随晶体管的工作状态发生改变,引起振荡频率的不稳定,为了解决这个问题,克拉珀振荡器在谐振回路中原有的电容支路上串接了一个小电容C4,且C4<<C2,C4<<C3,其中C2,C3为电容支路串联的电容,因此电容支路的总电容C近似为C4.,振荡频率近似为谐振频率也由C4和总电感决定。

故与C2,C3并联的极间电容对振荡频率的影响也显著减小。

三、实验步骤1.按照实验原理图搭建电路。

其中C5<<C2,C3,且为可调电容,可通过调节C5使振荡器满足振荡条件,产生振荡,振荡时波形如下图:振荡稳定时波形如下图:使用频率计数器测得频率:仿真电路中相应的原件参数:C5=9pF , L=振荡频率近似为谐振频率:z 16.671091001.021211235MH LC f f o osc =⨯⨯⨯===--ππ 可见近似计算结果与实际振荡频率相近。

瞬态分析:四、实验总结通过本次试验,我更加了解改进型电容三点式正弦波振荡电路:克拉珀振荡器克拉珀振荡器使用电容串联的方法来稳定振荡器的振荡频率,通过对电容的取值使得极间电容在晶体管工作的过程中给振荡频率带来的影响显著降低,振荡频率稳定度得到提高。

由于振荡需要满足起振条件,而起振条件与C4有关,如果C4过小,振荡器将停止振荡,所以振荡电路仅适用于频率调节范围很小的振荡器。

本次试验中用Multisim14软件按实验指导书上的数值无法得出波形。

克拉泼电路设计

克拉泼电路震荡电路是模拟电路中必修的一部分,三点式震荡电路更是信号产生的必要电路,最近研究了一下三点式震荡电路,克拉泼电路,现在来分享一下最近的研究过程。

最近有个项目,为了生成正弦波,因此对三点式震荡电路稍微学习了一下。

三点式震荡电路分为电容三点式和电感三点式。

首先,根据正弦波震荡电路的震荡条件可知,正弦波震荡电路就是一个没有输入信号的带选频网络的正弦反馈放大电路。

其放大电路方框图如下所示:如图所示,X i 是输入信号,X 0是输出信号,X f 是输出经过反馈电路后的信号,Xa 是输入和反馈信号共同作用的结果。

图中:a i X X X f =+ (1)F X X *0f = (2)A X X *a 0= (3)f i X X X +=a (4)由于可知,如放大电路的X a =X f ,则去掉输入端Xi 所形成的闭环系统,其输出端可能继续维持与开环时一样的输出信号。

则:1*00a f ==X X X X X X f a 或AF=1 (5) 设a A A δ∠=,f δ∠=F F ,则可得:1a =+∠=f AF AF δδ (6)1AF |F |..==A (7) .....3,2,1,2==+n n f a πδδ (8) 式(7)称为振幅平衡条件,式(8)称为相位平衡条件。

这是正弦波震荡电路持续产生震荡的两个条件。

根据百度百科的说法,克拉泼震荡电路是三点式电容震荡电路的改进电路,其输出的正弦波更加的稳定。

电容三点式振荡器,当需要改变频率而调节振荡回路的电容参数时,也会影响电路的起振,为此,把一个电容C 串入振荡回路的电感支路中,这样改变电容C 就可以调节振荡频率,而不影响电路的起振。

克拉泼电路如图所示:图中,R1,R2,R3,R4与三极管组成放大电路。

C1是旁路电容,作用是隔直通交;C3,C2,C4,L1组成谐振电路,REQ为负载。

克拉泼震荡电路特点:1、克拉泼震荡电路输出波形稳定。

2、克拉泼震荡电路的频率稳定度高,工作频率可以做的较高,达到几十赫兹到几百赫兹甚至更高的范围。

克拉泼振荡器实训报告

一、实训目的1. 理解克拉泼振荡器的工作原理和电路结构;2. 掌握克拉泼振荡器的频率调节方法;3. 分析克拉泼振荡器的性能指标,如振荡频率、幅度、相位等;4. 提高动手实践能力,培养团队协作精神。

二、实训内容1. 克拉泼振荡器原理讲解;2. 克拉泼振荡器电路搭建;3. 克拉泼振荡器性能测试;4. 克拉泼振荡器频率调节与稳定性分析。

三、实训过程1. 克拉泼振荡器原理讲解克拉泼振荡器(Clapp oscillator)是一种电容三点式振荡器的改进型线路。

它由晶体管、电感、电容和电阻等元件组成。

克拉泼振荡器具有频率稳定、电路结构简单等优点,广泛应用于各种电子电路中。

克拉泼振荡器的工作原理是利用晶体管的放大作用和电容、电感的储能特性,形成一个正反馈回路。

当电路处于稳态时,反馈信号使晶体管输出信号增强,从而使电路产生振荡。

2. 克拉泼振荡器电路搭建根据克拉泼振荡器的电路结构,搭建如下电路:(1)晶体管:选用NPN型晶体管,如BC547;(2)电感:选用固定电感器,如10μH;(3)电容:选用可变电容C3,用于调节振荡频率;(4)电阻:选用固定电阻R1、R2,用于设置晶体管的工作点;(5)其他元件:连接线、电源等。

搭建好电路后,进行调试,确保电路工作正常。

3. 克拉泼振荡器性能测试(1)测量振荡频率:通过测量输出信号的频率,判断克拉泼振荡器的工作频率是否符合设计要求;(2)测量幅度:通过测量输出信号的幅度,判断晶体管的放大作用是否正常;(3)测量相位:通过测量输出信号的相位,判断电路的正反馈作用是否良好。

4. 克拉泼振荡器频率调节与稳定性分析(1)频率调节:通过调节可变电容C3,观察振荡频率的变化,分析C3对振荡频率的影响;(2)稳定性分析:观察电路在不同负载、温度等条件下的振荡情况,分析克拉泼振荡器的稳定性。

四、实训结果与分析1. 克拉泼振荡器工作正常,振荡频率稳定,符合设计要求;2. 通过调节可变电容C3,可以实现振荡频率的连续调节;3. 克拉泼振荡器在不同负载、温度等条件下的振荡情况良好,稳定性较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

克拉泼振荡器的设计与仿真
设计要求:振荡频率为5MHz 。

一、电路形式的选择
振荡器工作频率属于短波段,选择电容反馈振荡器即可,为提高频率稳定度,选用改进型电容反馈振荡器-克拉泼振荡器。

二、选三极管
选三极管的依据主要为截止频率应为振荡频率的3-10倍,故选择型号为D42C1的三极管,其主要参数如下:
:Vceo=30
: Ic(max)=3 : hFE(min)=10 : hFE(max)=220 : Ft=50 : Pd=12.5
三、设计直流偏置电路
设计直流偏置电路时应使集电极静态电流为1-4mA 。

R1
4.7k¦¸
R25.1k¦¸
R3100k¦¸Key=C
50%R4500¦¸
R5
300¦¸
VCC
12V
2
Q1
D42C1
经测量集电极静态电流为1.39mA 。

四、设计回路
L120uH
C3
99pF
Key=A
50%C1500pF
C2
1nF
设计回路时各元件的参数选择应该满足:
1.电容一般取10-1000pF ,电感一般取0.1-100uF 。

2.保证反馈系数F 在0.1-0.5之间:
3.
4.在满足
的条件下和决定振荡频率,即应满足:
由条件3,
应尽量大,同时考虑条件1、2,选
为500pF ,
为1nF 。

由条件4,
选为20uH ,的估计值为50pF ,故选择100pF 的可调电容。

五、加辅助电路
加辅助电路,连接示波器和频率计,最终电路图如下:
R1
4.7k¦¸
R25.1k¦¸
R3100k¦¸
Key=C
50%R4500¦¸
R5300¦¸
L120uH
C3
99pF Key=A
50%VCC
12V
C1
500pF
C21nF
C4
1uF
C510nF
2
4
XSC1
A
B
G T
XFC1
123
18
Q1
D42C1
六、调测
运行仿真,并微调,使频率计读数最终稳定在5MHz 。

经测量输出电压幅度为8.1V 。

观察到的最大频偏为0.02MHz ,故频率稳定度为:
频率计读数及示波器显示波形如图:
3。

相关文档
最新文档