高频课程设计_LC振荡器_克拉泼.(DOC)

高频课程设计_LC振荡器_克拉泼.(DOC)
高频课程设计_LC振荡器_克拉泼.(DOC)

高频电子线路课程设计报告设计题目:高频正弦信号发生器

2015年 1月 6 日

目录

一、设计任务与要求 (1)

二、设计方案 (1)

2.1电感反馈式三端振荡器 (2)

2.2电容反馈式三端振荡器 (2)

2.3克拉波电路振荡器 (6)

三、设计内容 (8)

3.1LC振荡器的基本工作原理 (8)

3.2克拉泼电路原理图 (9)

3.2.1振荡原理 (9)

3.3克拉泼振荡器仿真 (10)

3.4.1软件简介 (10)

3.4.2进行仿真 (10)

3.4.3电容参数改变对波形的影响 (11)

四、总结 (17)

五、主要参考文献 (18)

六、附录.................................................................................... .. (18)

一、设计任务与要求

为了熟悉《高频电子线路》课程中所学到的知识,在本课程设计中,我和队友(石鹏涛、甘文鹏)对LC正弦波振荡器进行了分析和研究。通过对几种常见的振荡器(电感反馈式三端振荡器、电容反馈式三端振荡器、改进型电容反馈式振荡器)进行分析论证,我们最终选择了克拉泼振荡器。

在本次课程设计中,设计要求产生10~20Mhz的振荡频率。振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我们选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。

最后我们利用了仿真软件对电路进行了一写的仿真分析,如改变电容的参数,分析对电路产生的影响等,再考虑输出频率和振幅的稳定性,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。

二:设计方案

通过学习高频电子线路的相关知识,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路)等。通过老师所讲和查阅相关资料可知,克拉泼振荡电路具有该电路频率稳定性非常高,振幅稳定,适合做波段振荡器等优点。所以在本设计中拟采用改进型电容反馈式--克拉泼电路振荡器。

下面对几种振荡器进行分析论证:

2.1电感反馈式三端振荡器

图2.1 电感三点式振荡器

电感反馈震荡电路的优点是:由于1L 和2L 之间有互感存在,所以容易起振。其次是改变回路电容来调整频率时,基本上不影响电路的反馈系数,比较方便。

这种电路的主要缺点是:与电容反馈震荡电路想比,其震荡波形不够好。这是因为反馈支路为感性支路,对高次谐波呈现高阻抗,故对于LC 回路中的高次谐波反馈较强,波形失真较大。其次是当工作频率较高时,由于1L 和2L 上的分布电容和晶体管的极间电容均并联于1L 与2L 两端,这样,反馈系数F 随频率变化而变化。工作频率愈高,分布参数的影响也愈严重,甚至可能使F 减小到满足不了起振条件。

总之,由于存在互感,电路不好计算而且波形失真较大,在此不再仿真分析。 这种电路尽管它的工作频率也能达到甚高频波段,但是在甚高频波段里,优先选择的还是电容反馈振荡器。

2.2 电容反馈式三端振荡器

电容三点式振荡器又称为考毕兹振荡器,其电路原理图如下:

图2.2 电容三点式振荡器原理图

对于电容三点式振荡器,反馈系数F 的表达式为:

2

11≈C C C F + 不考虑各极间电容的影响,这时谐振回路的总电容量为1C 、2C 的串联,即

21111

C C C +=Σ

振荡频率的近似为

212

12121C C C C LC f +≈≈ππ

与电感三端震荡电路想比,电容三端振荡器的优点是输出波形较好,这是因为集电极和基极电流可通过对谐波为低阻抗的电容支路回到发射极,所以高次谐波的反馈减弱,输出的谐波分量减少,波形更加接近于正弦波。其次,该电路

中的不稳定电容(分布电容、器件的结电容等)都是与该电路并联的,因此适当的加大回路电容量,就可以减弱不稳定因素对振荡器的影响,从而提高了频率稳定度。最后,当工作频率较高时,甚至可以只利用器件的输入和输出电容作为回路电容。因而本电路适用于较高的工作频率。

这种电路的缺点是:调1C 或2C 来改变震荡频率时,反馈系数也将改变。但只要在L 两端并上一个可变电容器,并令1C 与2C 为固定电容,则在调整频率时,基本上不会影响反馈系数。

下面对其进行仿真分析:

仿真电路图:(原件标示符没改)

图2.3 电容三点式仿真电路图

仿真结果:

图2.4 示波器显示的波形

图2.5 频率计显示频率的频率

结果分析:

理论计算的振荡频率为

o f ==10.2M ,C = 4

343C C C C +。观察到的振荡波形如上图所示,频率基本上在13Mhz 左右变化但从波形看出其振荡极不稳定,且

波形失真较大。所以本次课程设计中不采用此设计。

2.3 克拉波电路振荡器

克拉泼电路时一种高稳定度的LC 震荡电路,电路图如下:

图2.6 克拉波电路振荡器原理图

它的特点是在前述的电容三点式振荡谐振回路电感支路中增加了一个电容C5,功用主要是以增加回路总电容和减小管子与回路间的耦合来提高振荡回路的标准性,使振荡频率的稳定度得以提高。

先不考虑各极间电容的影响,这时谐振回路的总电容量C 为C2、C4和C5的串联,即

55

42Σ1111C C C C C ≈++= 于是,振荡频率为

Σ0π21

≈LC f

使上式成立的条件是C4和C2都要都要远远大于C5,由此可见,C2、C4对振荡频率的影响显著减小,那么与C2、C4并接的晶体管极间电容的影响也就很小了,提高了振荡频率的稳定度。

仿真原理图:(仿真电路图标示符未改)

图2.7 克拉波电路振荡器仿真电路图

仿真结果:

图2.8 示波器波形分析图

图2.9 频率计显示频率

结果分析:

通过仿真,可以看出输出的波形基本上没有失真,同时输出频率也在要求的范围之内,并且可以通过更改C5的值来改变频率值。

综上,通过对电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路)的仿真论证分析,最终选择克拉泼振荡电路来实现LC正弦波振荡器的设计。

二、设计内容

3.1 LC振荡器的基本工作原理

振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。LC振荡器是一种能量转换器,由晶体管等有源器件和具有选频作用的无源网络及反馈网络组成。振荡器根据自身输出的波形可分为正弦波振荡器和非正弦波振荡器,正弦波振荡器在广播通讯、自动控制、仪器仪表、高频加热、超声探伤等领域有着广泛的应用。本课程设计讨论的就是正弦波振荡器。其框图如图所示。

图3.1 振荡器原理框图

3.2 克拉泼振荡器电路原理图:

3.2.1振荡原理

克拉泼电路是一种改进型的电容反馈振荡器,是在克拉泼电路上改进的来的,电路原理图如下所示:

图3.2 克拉泼电路原理图

震荡回路的总电容为:

55

42Σ1111C C C C C ≈++= 所以可以得到振荡频率为:

5Σ021π21

≈LC LC f π≈

3.4 克拉泼振荡器仿真:

3.4.1软件简介

Multisim 是一个专门用于电子线路设计与仿真的EDA 工具软件,它是加拿大IIT 公司(Interactive Image Technologise Ltd.)推出的继EWB 之后的版本。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。学生可以很方便地把刚刚学到的理论知识用计算机仿真真实的再现出来,并且可以用虚拟仪器技术创造出真正属于自己的仪表。

由于本次仿真主要用到了示波器和频率计,所以在此对示波器和频率计做简单介绍:

双通道示波器:

双通道示波器主要用来显示被测量信号的

波形,还可以用来测量被测信号的频率和周期

等参数。如右图所示。A,B 表示两个信号的通道,

Ext Trig 表示外接触发信号输入端,“-”表示

接地。

频率计:

频率计可以用来测量数字信号的频率,周期,相位以及

脉冲信号的上升沿和下降沿。如右图所示。应当注意的是,

在Multisim 中不能用频率计来测量较低频率的信号。

3.4.2进行仿真

下图为克拉泼电路振荡器的电路图,是Multisim

软件画出的,可以对其进

行仿真:

图3.5 克拉泼仿真电路图

下面给出当图中7C 变化时对波形的影响:

3.4.3电容参数改变对波形的影响

(1)7C 为0%,即7C =0pF ;

图3.6 示波器显示波形图

图3.7 0%频率计显示

仿真结果分析:

有图可以看出,当7C =0pF 时,波形本来是振荡的,结果慢慢不再振荡了,说明此时不再满足振荡条件,不构成振荡回路。

当我把7C 调为5%时,又出现了振荡曲线,如下图所示,此时频率大约为39Mhz 左右:

图3.7 5%时的频率计显示

(2)7C 为25%,即7C =7.5pF ;

图3.8 25%时的波形图

图3.8 25%时的频率图

仿真分析:

由图可以看出,当7C =7.5pF 时,波形为正弦图形且无失真,得到频率为18.286Mhz 左右。

(3)7C 为50%,即7C =15pF ;

图3.9 50%时的波形图

图3.10 50%时的频率值

仿真分析:

由图可以看出,当7C =15pF 时,波形为正弦图形且无明显失真,得到频率值为13.955Mhz 左右。

(4)7C 为75%,即7C =22.5pF ;

图3.11 75%时的波形图

图3.12 75%的频率值

仿真分析:

由图可以看出,当7C =22.5pF 时,波形为正弦图形且无明显失真,得到频率值为11.782Mhz 左右。

(5)7C 为100%,即7C =30pF ;

图3.13 100%时的波形图

图3.14 100%时的频率值

从以上振荡波形可知,随着7C 的逐渐增大,振荡波逐渐稳定。当7C 较小时,如,震荡波不太稳定,且太小时将不再起振。当7C 较大时,如图3.8到 图3.13,震荡波比较稳定。因此,7C 不能太小,一般应较大些。

三、 总结

在本次课程设计中,我选择的题目是LC 正弦波的设计,根据所学的高频电路知识,我拟采用克拉泼电路震荡器,它是一种改进型的电容反馈振荡器,具有频率稳定性高,振幅稳定等优点。

首先,我先对能够实现高频震荡器的几种常见电路进行了分析与论证,经过分析,可以知道的特点:电感三点式振荡器虽然说调频方便,容易起振但输出波形不理想。电容三点式振荡器振荡波形好但频率稳定性低。克拉泼振荡器振荡频率改变可不影响反馈系数,振荡幅度比较稳定。综上考虑,我最终采取了克拉珀电路振荡器。

其次,在震荡器的设计中,我首先分析了振荡器的工作原理,并利用Protel 软件画出了克拉泼电路的原理图,用做出了仿真电路图。由于受实际条件所限,我利用了Multisim 仿真软件来对自己的设计电路图进行仿真。在仿真的过程中,我对正弦波震荡电路有了更进一步的了解。通过这次课程设计,让我更好的掌握了各种电路的测试与计算。熟悉了电子仿真的工作原理和其具体的使用方法。明白了正弦波振荡器的分类方法以及各个类型电路的震荡波形,也逐渐对振荡器的振荡频率、震荡幅度等相关技术指标有了一定的了解。

改进:

在实验内容中通过对克拉泼电路震荡器的仿真分析,可见当电感上串联的电容容值改变时,频率的范围变化不大,频率范围大约为10.669~39.395(当7C =30pF 时为10.669,7C =1.5pF 时为39.395)。由此可见克拉泼振荡器的可调范围满足设计要求但是可调范围较小。

建议:

若要改进振荡器的可调范围,可以在电感的两端并上一个电容组成西勒振荡器,由所学知识可知,西勒振荡器除了具有克拉泼振荡器的优点,同时还改善了克拉泼振荡器的缺点,使可调范围加大。由于时间有限,这次

课程设计就没有再对西勒电路进行分析,在这次课程设计之后,我一定会对西勒电路振荡器在进行设计分析,最后再做出实物。

四、 主要参考文献

[1] 张肃文.《高频电子线路》第四版[M].高等教育出版社.2004.11

[2] 何中庸译.《高频电路设计与制作》[M].科学出版社.2008.6

[3]黄智伟.《基于NI Multisim的电子电路计算机仿真设计与分析》[M].电子工业出版社.2008.1

[4]王冠华.《Multisim10电路设计及应用》[M].国防工业出版社2008.6

五、附录

元器件清单:

LC正弦波振荡电路的仿真分析

摘要 振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 关键词:LC振荡回路;仿真;正弦波信号;Multisim软件;

目录 一、绪论 (1) 二、方案确定 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (3) 2.3 振荡平衡条件一般表达式 (4) 2.4起振条件和稳幅原理 (4) 三、LC振荡器的基本工作原理 (4) 四、总电路设计和仿真分析 (5) 4.1软件简介 (5) 4.2 总电路设计 (7) 4.3 进行仿真 (8) 4.4 各个原件对电路的影响 (11) 五、心得体会 (12) 参考文献 (13) 附录 (14) 电路原理图 (14) 元器件清单 (14)

一、绪论 在本课程设计中,对LC正弦波振荡器的仿真分析。正弦波振荡器用来产生正弦交流信号的电路,它广泛应用于通信、电视、仪器仪表和测量等系统中。在通信方面,正弦波震荡器可以用来产生运载信息的载波和作为接收信号的变频或调解时所需要的本机振荡信号。医用电疗仪中,用高频加热。在课程设计中,学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。 我利用了仿真软件对电路进行了一写的仿真分析,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,本设计中所涉及的仿真电路是比较简单的。但通过仿真得到的结论在实际的类似电路中有很普遍的意义。 二、方案确定 通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。我们这里研究的主要是LC三端式振荡器。

课程设计--四花样彩灯控制器

课程设计--四花样彩灯控制器

2012 ~ 2013 学年第二学期 《数字电子技术》 课程设计报告 题目:四花样彩灯控制器 专业:电子信息工程 班级: 11 电信一班 姓名:孙叶林陶轮汪宏俊汪义涛王安 亚 王劲松王亮亮王向阳魏伟指导教师:周旭胜 电气工程系 2013年5月30日

任务书 课题名称四花样彩灯控制器 指导教师(职称)周旭胜 执行时间2012~ 2013 学年第 2学期第 14 周学生姓名学号承担任务 王安亚1109121033 设计总电路图1 汪宏俊1109121031 设计总电路图2 陶轮1109121030 负责对比两个总电路图 汪义涛1109121032 设计555时钟脉冲产生电路 王向阳1109121036 设计四种码产生电路 王劲松1109121034 设计输出电路 魏伟1109121037 设计开关电路 王亮亮1109121035 查找参考资料 孙叶林1109121029 负责写课程设计报告 设计目的 通过设计方案的比较,对比电路的复杂与简单,器件的市场价格等方面因素,来选择一种比较好的可行性设计方案 设计要求(1) 彩灯一亮一灭,从左向右移动; (2) 彩灯两亮两灭,从左向右移动; (3) 四亮四灭,从左向右移动; (4) 从1~8从左到右逐次点亮,然后逐次熄灭; (5) 四种花样自动变换。

摘要 随着人们生活环境的不断改善和美化,在许多场合可以看到彩色霓虹灯。LED彩灯由于其丰富的灯光色彩,低廉的造价以及控制简单等特点而得到了广泛的应用,用彩灯来装饰街道和城市建筑物已经成为一种时尚。但目前市场上各式样的LED彩灯控制器大多数用全硬件电路实现,电路结构复杂、功能单一,这样一旦制作成品只能按照固定的模式闪亮,不能根据不同场合、不同时间段的需要来调节亮灯时间、模式、闪烁频率等动态参数。优易LED全彩灯光控制系统由Color Edit编辑软件、主控器、分控器和LED光源组成,广泛应用于城市景观、风景名胜、道路桥梁、建筑轮廓、娱乐场所、户外广告、室内装饰等美化、亮化工程。 四花样自动切换的彩灯控制器,其电路简单、取材容易,而且被广泛地应用与现实生活当中。例如用于店面装饰可以增加其美观,吸引更多顾客。 在经过了几天紧张的电路焊接和调试,期间还进行了部分方案的修改和改进,现已实现了课程设计的主要任务和具体要求。 关键字:LED彩灯硬件电路

晶体振荡器课程设计

1石英晶体及其特性 (1) 1.1 石英晶体简介............................................... . ... 1.2石英晶体的阻抗频率特性...................................... 1 ... 2晶体管的部工作原理 (3) 3.晶体振荡器电路的类型及其工作原理 (4) 3.1串联型谐振晶体振荡器........................................ 4…??… 3.2并联谐振型晶体振荡器........................................ 6…??… 3.3泛音晶体振荡器................................................ 8 .. 4 确定工作点和回路参数(以皮尔斯电路为例) (10) 4.1主要技术指标 (10) 4.2确定工作点 (10) 4.3交流参数的确定 (11) 5提高振荡器的频率稳定度........................................... 1 2 6.总结 (13) 参考文献:........................................................ 1.4

Word 文档

1石英晶体及其特性 1.1石英晶体简介 石英是矿物质硅石的一种,化学成分是Sio2,形状是呈角锥形的六棱结晶体,具有各向异性的物理特性。按其自然形状有三个对称轴,电轴X,机械轴丫光轴Z。石英谐振器中的各种晶片,就是按与各轴不同角度,切割成正方形、长方形、圆形、或棒型的薄片,如图1的AT、BT、CT、DT 等切型。不同切型的晶片振动型式不,性能不同 1.2石英晶体的阻抗频率特性 石英谐振器的电路符号和等效电路如图121。C0称为静态电容,即晶体不振动时两极板间的等效电容,与晶片尺寸有关,一般约为几到几十pF。晶体作机械振动时的惯性以Lq、弹性用Cq振动时因磨擦造成的损耗用Rq来等效,它们的数值与晶片切割方位、形状和大小有关, 一般Lq为10 3102H,Cq为10 410 1pF,Rq 在几一几百欧之间。它

混频器原理分析

郑州轻工业学院 课程设计任务书 题目三极管混频器工作原理分析 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 一、主要内容 分析三极管混频器工作原理。 二、基本要求 1:混频器工作原理,组成框图,工作波形,变频前后频谱图。 2:晶体管混频器的电路组态及优缺点。 3:自激式变频器电路工作原理分析。 4:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。 5:设计时间为一周。 三、主要参考资料 1、李银华电子线路设计指导北京航天航空大学出版社2005.6 2、谢自美电子线路设计·实验·测试华中科技大学出版社2003.10 3、张肃文高频电子线路高等教育出版社 2004.11 完成期限:2010.6.24-2010.6.27 指导教师签名: 课程负责人签名: 2010年6月20日

目录 第一章混频器工作原理------------------------------------------4 第一节混频器概述------------------------------------------------4 第二节晶体三极管混频器的工作原理及组成框图---------5 第三节三极管混频器的工作波形及变频前后频谱图------8 第二章晶体管混频器的电路组态及优缺点------10 第一节三极管混频器的电路组态及优缺点------- 第二节三极管混频器的技术指标------ 第三章自激式变频器电路工作原理分析--------------------12 第一节自激式变频器工作原理分析---------------------12 第二节自激式变频器与他激式变频器的比较------------------------13 第四章心得体会---------------------------------------14 第五章参考文献---------------------------------------15

RC正弦波振荡器电路设计及仿真

《电子设计基础》 课程报告 设计题目: RC正弦波振荡器电路设计及仿真学生班级: 学生学号: 学生姓名: 指导教师: 时间: 成绩: 西南xx大学 信息工程学院

一.设计题目及要求 RC正弦波振荡器电路设计及仿真,要求: (1)设计完成RC正弦波振荡器电路; (2)仿真出波形,并通过理论分析计算得出频率。 二.题目分析与方案选择 在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。 三.主要元器件介绍 10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器 四.电路设计及计算 电路震荡频率计算: f=1/2πRC

起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d 由其电路元件特性 R=10KΩ C=10nF 电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。 平衡时A v=3,F v=1/3(w=w0=1/RC) 五.仿真及结果分析 在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图 图2 刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

555多谐震荡器-实验报告

实验题目:用555定时器设计一个时钟信号源,频率为f=1KHz,占空比为60%。 实验报告: 一、实验相关信息 1、实验日期: 2、实验地点: 二、实验内容 用555定时器设计一个时钟信号源,频率为f=1KHz,占空比为60%。 三、实验目的 1、了解555定时器的工作原理和电路结构; 2、掌握555定时器的典型应用。 三、实验设备、元器件 1、实验仪器:(写清型号) 2、实验元器件: 四、理论计算 (1)555多谐震荡器电路结构 图1 多谐振荡器 (2)工作波形

(3)工作过程简述 接通电源后,电容C 被充电,νc 上升,当νc 上升到 Vcc 32 时,触发器被复位,同时 放电T 导通,此时 νo 为低电平,电容C 通过R 2 和T 放电,使νc 下降,当νc 下降到Vcc 31 时,触发器又被复位,νo 为高电平。电容C 放电所需时间为 C R C R t PL 227.02ln ≈= (1) 当电容C 放电结束时,T 截止,Vcc 将通过R 1、R 2向电容C 充电,νc 由Vcc 31上升到Vcc 32所需时间为 C R R C R R t PH )(7.02ln )(2121+≈+= (2) 当νc 上升到Vcc 32 时,触发器由发生翻转,如此周而服始,在输出端就得到一个周期 性的方波,其频率为 C R R t t f PH PL )2(43.1121+≈+= (3) %100)2((%)212 1X R R R R t t t q PH PL PH ++=+= (4) (4)占空比可调电路结构 对于图1电路结构占空比固定不变,要得到占空比可调的周期方波,对其电路改进,如图2所示。 由(4)式可知,占空比始终大于50%,要得到占空比小于50%的方波,只要在输出端加一个反向器即可。

高频课设电容三端式振荡器

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 电容三端式振荡器 初始条件: 电容三端式振荡器原理,Multisim软件 要求完成的主要任务: (1)设计任务 根据电容三端式振荡器的原理,设计电路图,并在multisim软件仿真出波形结果。 (2)设计要求 ①正常工作状况时的波形图; ②起振条件的仿真,要求改变偏置电阻、相位电容和电源电压值,再观察起振波形和振荡电压的变化情况。 时间安排: 1、2014 年11月17 日集中,作课设具体实施计划与课程设计报告格式的要求说明。 2、2014 年11月17 日,查阅相关资料,学习基本原理。 3、2014 年11月18 日至2014 年11月20日,方案选择和电路设计。 4、2014 年11月20 日至2014 年11月21日,电路仿真和设计说明书撰写。 5、2014 年11月23 日上交课程设计报告,同时进行答辩。 课设答疑地点:鉴主13楼电子科学与技术实验室。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 1 克拉泼振荡器原理 (3) 1.1 克拉泼振荡器产生的原因 (3) 1.2 克拉泼振荡器电路分析 (3) 1.3 克拉泼振荡器起振条件 (4) 1.3.1 相位条件 (4) 1.3.2振幅条件 (4) 1.4 克拉泼振荡器的振荡频率 (5) 2 克拉泼振荡器仿真分析 (6) 2.1 正常起振的电路图 (6) 2.2改变偏置电阻的仿真 (7) 2.3改变相位电容的仿真 (8) 2.4改变电源大小的仿真 (8) 3 心得体会 (9) 参考文献 (10)

混频器的设计与仿真知识讲解

混频器的设计与仿真

目录 前言 0 工程概况 0 正文 (1) 3.1设计的目的及意义 (1) 3.2 目标及总体方案 (1) 3.2.1课程设计的要求 (1) 3.2.2 混频电路的基本组成模型及主要技术特点 (1) 3.2.3 混频电路的组成模型及频谱分析 (1) 3.3工具的选择—Multiusim 10 (3) 3.3.1 Multiusim 10 简介 (3) 3.3.2 Multisim 10的特点 (3) 3.4 混频器 (3) 3.4.1混频器的简介 (3) 3.4.2混频器电路主要技术指标 (4) 3.5 混频器的分类 (4) 3.6详细设计 (5) 3.6.1混频总电路图 (5) 3.6.2 选频、放大电路 (5) 3.6.3 仿真结果 (6) 3.7调试分析 (9) 致谢 (9) 参考文献 (10) 附录元件汇总表 (10)

混频器的设计与仿真 前言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。移动通信中一次中频和二次中频等。在发射机中,为了提高发射频率的稳定度,采用多级式发射机。用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 工程概况 混频的用途是广泛的,它一般用在接收机的前端。除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。因此,做有关混频电路的课题设计很能检验对高频电子线路的掌握程度;通过混频器设计,可以巩固已学的高频理论知识。混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。 具体原理框图如图2-1所示。

压控振荡器

压控振荡器 一.基本原理 信号的频率取决于输入信号电压的大小,因此称为“压控振荡器”。其它影响压控振荡器输出信号的参数还VCO(Voltage ControlledOscillator)(压控振荡器)是指输出信号的频率随着输入信号幅度的变化而发生相应变化的设备,它的工作原理可以通过公式(5-1)来描述。 (5-1) 其中,u(t)表示输入信号,y(t)表示输出信号。由于输入信号的频率取决与输入信号的电压的变化,因此称为“压控振荡器”。其他影响压控振荡器输出信号 的参数还有信号的幅度A c ,振荡频率f c ,输入信号灵敏度k c ,以及初始相位。 压控振荡器的特性用输出角频率ω0与输入控制电压uc之间的关系曲线(图1)来表示。图中,uc为零时的角频率ω0,0称为自由振荡角频率;曲线在ω0,0处的斜率K0称为控制灵敏度。使振荡器的工作状态或振荡回路的元件参数受输入控制电压的控制,就可构成一个压控振荡器。在通信或测量仪器中,输入控制电压是欲传输或欲测量的信号(调制信号)。人们通常把压控振荡器称为调频器,用以产生调频信号。在自动频率控制环路和锁相环环路中,输入控制电压是误差信号电压,压控振荡器是环路中的一个受控部件。 压控振荡器的类型有LC压控振荡器、RC压控振荡器和晶体压控振荡器。对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。晶体压控振荡器的频率稳定度高,但调频范围窄,RC压控振荡器的频率稳定度低而调频范围宽,LC 压控振荡器居二者之间。

在MATLAB中压控振荡器有两种:离散时间压控振荡器和连续时间压控振荡器,这两种压控振荡器的差别在于,前者对输入信号采用离散方式进行积分,而后者则采用连续积分。本书主要讨论连续时间压控振荡器。 为了理解压控振荡器输出信号的频率与输入信号幅度之间的关系,对公式(5-1)进行变换,取输出信号的相角Δ为 对输出信号的相角Δ求微分,得到输出信号的角频率ω和频率f分别为: ω=2πf c+2πk c u(t) (5-3) (5-4) 从式(5-4)中可以清楚地看到,压控振荡器输出信号的频率f与输入信号幅度u(t)成正比。当输入信号u(t)等于0时,输出信号的频率f等于f c;当输入信号u(t)大于0时,输出信号的频率f高于f c;当输入信号u(t)小于0时,输出信号的频率f低于f c。这样,通过改变输入信号的幅度大小就可以准确地控制输出信号的频率。 二.程序及结果分析 定义一个锯齿波信号,频率是20HZ,幅度范围在0V和1V之间。现在用此信号 =20HZ,输入信号作为压控振荡器的输入控制信号,该压控振荡器的振荡频率f c 灵敏度,初始相位。使用MATLAB求得输出的压控振荡信号。MATLAB 程序如下: %MATLAB实现压控振荡器 clear all; clc; t0=0.15;%定义压控信号持续时间 ts=0.0001;%定义信号采样率 fc=50;%定义振荡频率 t=[0:ts:t0];%时间矢量 u0=20*t(1:length(t)/3);%定义压控信号(单周期) u=[u0,u0,u0,0];%定义压控信号(3个周期) Ac=1;%定义振幅 kc=0.1;%定义输入信号灵敏度 fi=0;%定义初始相位 %对压控信号进行积分 u_int(1)=0;%定义压控信号积分初值 for i=1:length(u)-1%进行离散积分 u_int(i+1)=u(i)+u_int(i);

路灯控制器课程设计

电子技术课程设计 课程设计任务书 20 16 - 20 17学年第一学期第18周—19周 题目《路灯控制器》 内容及要求 ①设计一个路灯控制自动照明的电路 ②当日照光亮到一定程度时使灯自动熄灭,而日照光暗到一定程度时又能自 动点亮。开启和关断的日照光照度根据用户进行调节。 ③设计计时电路,用数码管显示路灯当前一次的连续开启时间。 ④设计计数显示电路,统计路灯的开启次数。 进度安排 1、查资料,确定方案(三 天) 2、方案设计(天) 3、仿真调试 (二 天) 4、硬件实现与调试 (三 天) 5 、 撰写课程设计报告并答辩(天)学生姓名:

目录 前言 (3) 一选题背景 (4) 1.1 设计要求 (4) 1.2 指导思想 (4) 二方案论证 (5) 2.1 方案说明 (5) 2.2 方案原理 (5) 三电路的设计与分析 (6) 3 . 1 电路原理框图. (6) 3.2单元电路的设计与分析. (6) 四. 电路的调试与分析 (13) 4.1调试使用的仪器. (13) 4.2 电路的调试 (13) 五.总结 (15) 5.1 设计体会 (15) 5.2 改进提高 (15) 六. 附录及参考文献 (16) 6.1 附录1 元器件清单. (16) 6.2 附录2 电路的原理图. (16)

6.3 附录3 实物图 (17) 6.4 参考文献 (18) 、八、- 前言 在现代城市中,效率意识日益突出,人们希望不需要人力资源的浪费,希望使效率合理使用最大化。因此,自动路灯控制器是实现无人管理自动开关的重要设计。本课程设计的任务就是设计一个路灯控制器。鼓励学生在熟悉基本原理的前提下,与实际应用相联系,提出自己的方案,完善设计。

Proteus与cadence实训(高频正弦波振荡器)

课程设计任务书 学生姓名:专业班级:电子1001班指导教师:韩屏工作单位:信息工程学院题目: 高频晶体正弦波振荡器 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个高频晶体正弦波振荡器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus 软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对高频晶体正弦波振荡器电路进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 目录 (1) 摘要 (2) 一、工作原理说明 (3) 1.1、振荡器概念 (3) 1.2、静态工作点的确定 (3) 1.3、振荡器的起振检查 (4) 二、电路设计 (5) 2.1、正弦波振荡器的设计 (5) 2.2、电路功能的仿真 (7) 2.3、Cadence部分原理图设计 (9) 三、PCB版图设计 (15) 四、心得体会 (18) 五、参考文献 (19)

高频课程设计

本科课程设计 课程名称:高频电子线路 课设项目:调频接收机设计课设地点:高频实验室 专业班级:学号 学生姓名: 指导教师: 2013年1 月13 日

一、课程设计目的和要求 通过本课题设计与调试,提高动手能力,巩固已学知识,建立无线电调频接收机的整体概念,了解调频接收机整体与各单元电路之间的关系及相互影响,从而能正确设计、计算调频接收机的各个单元电路:输入回路、高频放大、混频、中频放大、鉴频及低频功放级。初步掌握调频接收机的调整及测试方法。 二、调频接收机的主要技术指标 调频接收机的主要技术指标有: 1.工作频率范围 接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。接收机的工作频率必须与发射机的工作频率相对应。如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz 2.灵敏度 接收机接收微弱信号的能力称为灵敏度,通常用输入信号电压的大小来表示,接收的输入信号越小,灵敏度越高。调频广播收音机的灵敏度一般为5~30uV。 3.选择性 接收机从各种信号和干扰中选出所需信号(或衰减不需要的信号)的能力称为选择性,单位用dB(分贝)表示dB数越高,选择性越好。调频收音机的中频干扰应大于50dB。 4.频率特性

接收机的频率响应范围称为频率特性或通频带。调频机的通频带一般为200KHz。 5.输出功率 接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。 三、调频接收机组成 图一调频接收机组成框图 一般调频接收机的组成框图如图一所示。其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。本机振荡器输出的另一高频f2亦进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。 四、单元电路设计 1、高频小信号放大电路

高频石英晶体振荡器仿真报告

燕山大学石英晶体振荡器设计报告 题目: 专业:电子信息工程 姓名:李飞虎 指导教师:李英伟 院系站点:信息科学与工程学院 2014年11 月17 日 高频石英晶体振荡器仿真报告

1.振荡器电路属于一种信号发生器类型,即表现为没有外加信号的情况下能自动生成具有一定频率、一定波形、一定振幅的周期性交变振荡信号的电子线路。振荡器起振时是将电路自身噪声或电源跳变中频谱很广的信号进行放大选频。此时振荡器的输出幅值是不断增长的,随着振幅的增大,放大器逐渐由放大区进入饱和区或者截止区,其增益逐渐下降,当放大器增益下降而导致环路增益下降到1时,振幅的增长过程将停止,振荡器达到平衡,进入等幅振荡状态。振荡器进入平衡状态后,直流电源补充的能量刚好抵消整个环路消耗的能量。 2,串联晶体振荡器 在串联型晶体振荡器中,晶体接在振荡器要求低阻抗的两点之间,通常接在反馈电路中。图1-1和图1-2显示出了一串联型振荡器的实际路线和等效电路。可以看出,如果将石英晶体短路,该电路即为电容反馈的振荡器。电路的实际工作原理为:当回路的谐振频率等于晶体的串联谐振频率时,晶体的阻抗最小,近似为一短路线,电路满足相位条件和振幅条件,故能正常工作;当回路的谐振频率距串联谐振频率较远时,晶体阻抗增大,是反馈减弱,从而使电路不能满足振幅条件,电路不能正常工作。串联型晶体振荡器只能适应高

次泛音工作,这是由于晶体只起到控制频率的作用,对回路没有影响,只要电路能正常工作,输出幅度就不受晶体控制。 图1-1 图1-2 设计参数在仿真图上,首先进行静态分析,根据仿真,各元件参数符合要求。对于振荡器,当该电路接为串联型振荡器时,晶体起到选频短路线的作用,(与三端电容振荡器相同)输出频率应为3MHZ. L1,C1,C2组成谐振回路,参数符合要求,即f0=3MHZ。 3.并联晶体振荡器 并联振荡器分为c-b型和b-e型。前者相对稳定。所以我设计的是c-b型。 参数分析与前者类似。交流参数确定时,并联振荡电路中晶振接在谐振回

NE555多谐振荡电路课程设计要点

目录要....................................................................................................................................................... 2摘......................................................................................................................................... 41 设计任务和要求...................................................................................................................................... 4.1.1:设计任务.................................................................................................................................... 4:设计要求.1.2 ........................................................................................................................................ 4方案比较与论证.2 .......................................................................................................................... 4 .:稳压电源通常由 2.1.................................................................................................................................... 8 .2.2 :方案论证错误!未定义书签。硬件设计. (3) .................................................................................................. 错误!未定义书签。3.1 :设计思想............................................................................................... 错误!未定义书签。3.2 :称功能模块.系统仿真.. (84) .................................................................................................................... 8:仿真原理图如下:.4.1 错误!未定义书签。................................................................................................................ 5系统的组装............................................................................................... 错误!未定义书签。PCB版板图.:5.1 ......................................................................................................................................................... 96 结论:错误!未定义书签。参考文献:................................................................................................................... .................................................................................................. 错误!未定义书签。附录一:电路原理图.错误!未定义书签。:元件列表...................................................................................................................

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

高频电子线路调频接收机课程设计(MC13135)

河北科技师范学院课程设计说明书课程名称:高频电子线路 设计题目:调频接收机 姓名: 系别:机电工程学院 专业班级:电子信息0701 指导教师: 日期:2009-11.30~12.5

调频接收机设计报告 设计者: 指导老师: 一、调频接收机的主要技术指标 调频接收机的主要技术指标有: 1.工作频率范围 接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。接收机的工作频率必须与发射机的工作频率相对应。如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz 2.灵敏度 在标准调制(如调制频率f Ω= kHz 、频偏△f m =kHz或25kHz、50 kHz、75 kHz )条件下,使接收机输出端为额定音频功率和规定信噪比的输入信号电平,称为灵敏度。接受的输入信号电平越小,灵敏度越高。调频广播收音机的灵敏度为50μV, 3.中频选择性 接收机6dB带宽和带外的抑制能力称为中额选择性,一般调频收音机的中频6dB带宽为±100kHz,±200kHz处的带宽抑制能应大于40dB手机中频6dB带宽为±5kHz,±10kHz处带外抑制能力应大于40dB。 4.中频抑制比 接收机对输入信号为本机中频信号f I的抑制能力称为中频抑(IFR )IFR=20㏒(V IF/V S),式中,V S是输入灵敏度电平,V IF是使输出功率为额定值的输入中频信号电平,单位用dB(分贝)表示dB数越高,中频抑制能力越强。5.镜相抑制比 接收机对输入信号为镜象频率信号(f j)的抑制能力,称为镜像(IRR)IRR=20㏒(V j /V S)式中,V S是输入灵敏度电平,V j是使输出功率为额定值的输入镜像信号电平,单位用dB(分贝)表示dB数越高,镜相抑制能力越强。镜像频比本振频频率高一个中频f I,它与本振频率f o之差仍等于中频f I,f j 率f j =f o+f I=f S+2f I ,f S是接收机工作频率。 6.音频响应

压控振荡器的设计与仿真.

目录 1 引言 (2) 2 振荡器的原理 (5) 2.1 振荡器的功能、分类与参数 (5) 2.2 起振条件 (9) 2.3 压控振荡器的数学模型 (10) 3 利用ADS仿真与分析 (11) 3.1 偏置电路的的设计 (12) 3.2 可变电容VC特性曲线测试 (13) 3.3 压控振荡器的设计 (15) 3.4 压控振荡器相位噪声分析 (18) 3.5 VCO振荡频率线性度分析 (23) 4 结论 (24) 致谢 (25) 参考文献 (25)

压控振荡器的设计与仿真 Advanced Design System客户端软件设计 电子信息工程(非师范类)专业 指导教师 摘要:ADS可以进行时域电路仿真,频域电路仿真以及数字信号处理仿真设计,并可对设计结果进行成品率分析与优化,大大提高了复杂电路的设计效率。本论文运用ADS仿真软件对压控振荡器进行仿真设计,设计出满足设计目标的系统,具有良好的输出功率,相位噪声性能及震荡频谱线性度。本论文从器件选型开始,通过ADS软件仿真完成了有源器件选型,带通滤波器选型,振荡器拓扑结构确定,可变电容VC特性曲线,瞬态仿真及谐波平衡仿真。实现了准确可行的射频压控振荡器的计算机辅助设计。关键字:压控振荡器,谐波平衡仿真,ADS 1 引言 振荡器自其诞生以来就一直在通信、电子、航海航空航天及医学等领域扮演重要的角色,具有广泛的用途。在无线电技术发展的初期,它就在发射机中用来产生高频载波电压,在超外差接收机中用作本机振荡器,成为发射和接收设备的基本部件。随着电子技术的迅速发展,振荡器的用途也越来越广泛,例如在无线电测量仪器中,它产生各种频段的正弦信号电压:在热加工、热处理、超声波加工和某些医疗设备中,它产生大功率的高频电能对负载加热;某些电气设备用振荡器做成的无触点开关进行控制;电子钟和电子手表中采用频率稳定度很高的振荡电路作为定时部件等。尤其在通信系统电路中,压控振荡器(VCO)是其关键部件,特别是在锁相环电路、时钟恢复电路和频率综合器电路等更是重中之重,可以毫不夸张地说在电子通信技术领域,VCO几乎与电流源和运放具有同等重要地位。 人们对振荡器的研究未曾停止过。从早期的真空管时代当后期的晶体管时代,无论是理论上还是电路结构和性能上,无论是体积上还是制作成本上无疑都取得了飞跃性的

实验三多谐振荡器

实验三多谐振荡器和计数器的设计 一、实验目的 1、学会用Multisim7 的总线功能设计电路; 2、学会Multisim7 虚拟仪器逻辑分析仪的使用; 3、掌握用555 电路设计振荡器的方法; 4、掌握集成同步十进制计数器74LS160 的逻辑功能,用置零法和置数法设计其它 进制计数器。 二、实验原理及参考图 1、555 定时器是一种多用途的数字—模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器,其管脚图如图4-3.1 所示。 2、集成同步十进制计数器74LS160 除了十进制加法功能之外,还有同步预置数、异步置零和保持功能,其管脚图如图4-3.2 所示,其功能表如表4-3.2 所示。74LS160通过置零法和置数法可以构成其它进制计数器。 置零法的原理:当计数器从零开始,计数到某个状态时,令它跳过后面的其它状态,直接置零,重新开始计数。 置数法的原理:通过给计数器重复置入某个数值,使计数器跳过若干个状态。 图 4-3.1 图4-3.2 三、实验内容与步骤 1、多谐振荡器的设计

(1)、用555 电路设计一个输出频率可调范围为100Hz~10KHz 的多谐振荡器;(2)、根据设计值,选择元件并设置好参数、连接好电路; ( 3)、用示波器观察输出波形,并测量输出信号的频率范围,与设计值进行比较,讨论产生误差的原因。 当输入电阻为R2=4997500Ω 时,获取100HZ的振荡器。 实际输出波形的周期为T=10.038ms; 其误差为(100-1/10.038*1000)/100*100%=0.38%;

当输入电阻为R2=47500Ω 时,获取10KHZ的振荡器; 实际输出波形的周期为T=117.424us; 其误差为(10000-1/117.424*1000000)/10000*100%=14.84%; 误差分析:当输入频率较小时,相对误差小;频率大,则具有较大的误差。如上原理图显示,电容C1的取值Q=1/(Ln3-Ln1.5),而实际取值为1.4427nF,无法消除所有的计算误差。所以,在获取较大频率值时,误差得到放大,使实际产生的数据不准确。这就是100HZ和10KHZ误差大小的原因之一。二来实现硬件电路的元器件本身数值不是准确的,存在相对误差,从而引起波形频率不准确。 2、计数器的设计 (1)、用置零法将74LS160 连接成七进制计数器,输出QD、QC、QB、QA 接数码管 及逻辑分析仪;

相关文档
最新文档