高频实验2:LC与晶体振荡器
LC实验报告

实验一 LC 与晶体振荡器实验报告一、实验目的1、了解三点式振荡器和晶体振荡器的基本电路及工作原理。
2、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。
3、测量振荡器的反馈系数等参数。
4、比较LC 与晶体振荡器的频率稳定度。
二、实验原理三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。
1、起振条件1)相位平衡条件:Xce 和Xbe 必需为同性质的电抗,Xcb 必需为异性质的电抗,且它们之间满足下列关系:2)幅度起振条件:LCX X X X Xc oC L cebe 1 |||| )(=-=+-=ω,即'ie 1*()AuL m oe q Fu q qq >++式中:qm ——晶体管的跨导, FU ——反馈系数, AU ——放大器的增益,qie ——晶体管的输入电导, qoe ——晶体管的输出电导, q'L ——晶体管的等效负载电导, FU 一般在0.1~0.5之间取值。
2、电容三点式振荡器1)电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容Ci 和输出电容Co 对频率稳定度的影响较大,且频率不可调。
2)串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L 支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由 C3和L 决定。
C1和C2主要起电容分压反馈作用,从而大大减小了Ci 和Co 对频率稳定度的影响,且使频率可调。
L1L13)并联改进型电容反馈三点式电路——西勒振荡器 电路如图1-4所示,它是在串联改进型的基础上,在L1两端并联一个小电容C4,调节C4可改变振荡频率。
西勒电路的优点是进一步提高电路的稳定性,振荡频率可以做得较高,该电路在短波、超短波通信机、电视接收机等高频设备中得到非常广泛的应用。
本实验箱所提供的LC 振荡器就是西勒振荡器。
《通信电子线路》实验指导书

《通信电⼦线路》实验指导书实验⼀、⾼频⼩信号放⼤器实验⼀、实验⽬的1、了解谐振回路的幅频特性分析——通频带与选择性。
2、了解信号源内阻及负载对谐振回路的影响,并掌握频带的展宽。
3、掌握放⼤器的动态范围及其测试⽅法。
⼆、主要实验仪器与设备1、⾼频电⼦线路综合实验箱(TKGP系列);2、扫频仪;3、⾼频信号发⽣器;4、双踪⽰波器。
三、实验原理1、⼩信号调谐放⼤器基本原理⾼频⼩信号放⼤器电路是构成⽆线电设备的主要电路,它的作⽤是⼤信道中的⾼频⼩信号。
为使放⼤信号不失真,放⼤器必须⼯作在线性范围内,例如⽆线电接收机中的⾼放电路,都是典型的⾼频窄带⼩信号放⼤电路。
窄带放⼤电路中,被放⼤信号的频带宽度⼩于或远⼩于它的中⼼频率。
如在调幅接收机的中放电路中,带宽为9KHz,中⼼频率为465KHz,相对带宽Δf/f0约为百分之⼏。
因此,⾼频⼩信号放⼤电路的基本类型是选频放⼤电路,选频放⼤电路以选频器作为线性放⼤器的负载,或作为放⼤器与负载之间的匹配器。
它主要由放⼤器与选频回路两部分构成。
⽤于放⼤的有源器件可以是半导体三极管,也可以是场效应管,电⼦管或者是集成运算放⼤器。
⽤于调谐的选频器件可以是LC谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC集中滤波器,声表⾯波滤波器等。
本实验⽤三极管作为放⼤器件,LC 谐振回路作为选频器。
在分析时,主要⽤如下参数衡量电路的技术指标:中⼼频率、增益、噪声系数、灵敏度、通频带与选择性。
单调谐放⼤电路⼀般采⽤LC回路作为选频器的放⼤电路,它只有⼀个LC回路,调谐在⼀个频率上,并通过变压器耦合输出,图1-1为该电路原理图。
1f中⼼频率为f0+带宽为Δf=f2-f1图1-1、单调谐放⼤电路为了改善调谐电路的频率特性,通常采⽤双调谐放⼤电路,其电路如图1-2所⽰。
双调谐放⼤电路是由两个彼此耦合的单调谐放⼤回路所组成。
它们的谐振频率应调在同⼀个中⼼频率上。
两种常见的耦合回路是:1)两个单调谐回路通过互感M耦合,如图1-2(a)所⽰,称为互感耦合双调谐振回路;2)两个单调谐回路通过电容耦合,如图1-2(b)所⽰,称为电容耦合双调谐回路。
lc振荡器 实验报告

lc振荡器实验报告LC振荡器实验报告引言振荡器是电子学中常见的一个电路,它能够产生连续的交流信号。
LC振荡器是一种基本的振荡器电路,由电感(L)和电容(C)组成。
本实验旨在通过搭建LC振荡器电路并观察其振荡现象,深入理解振荡器的原理与特性。
实验材料与方法实验所需材料有:电感、电容、电阻、信号发生器、示波器、电压表、电线等。
实验步骤:1. 将电感、电容和电阻按照电路图连接好;2. 将信号发生器的输出端与电路的输入端相连;3. 将示波器的探头分别连接到电路的输出端和电压表的输出端;4. 打开信号发生器和示波器,调整信号发生器的频率和示波器的时间基准;5. 观察示波器上的波形,并记录相关数据;6. 根据实验数据分析振荡器的特性。
实验结果与讨论在实验过程中,我们通过调整信号发生器的频率和示波器的时间基准,观察到了LC振荡器的振荡现象。
在正确连接电路的前提下,当信号发生器输出的频率与振荡器的共振频率相等时,振荡器能够产生稳定的振荡信号。
我们记录了不同频率下的振荡现象,并通过示波器观察到了正弦波形。
在共振频率附近,我们观察到了振荡信号的幅值最大,而在共振频率两侧,幅值逐渐减小。
这是因为在共振频率处,电感和电容之间的能量转移达到最大,而在共振频率两侧,能量转移不完全,导致振荡信号的幅值减小。
我们还通过改变电容和电感的数值,观察到了振荡器的频率变化。
根据振荡器的公式,频率与电容和电感的数值成反比关系。
因此,通过调整电容和电感的数值,我们可以改变振荡器的频率。
此外,我们还观察到了振荡器的启动条件。
在实验中,我们发现当信号发生器的频率与振荡器的共振频率相差较大时,振荡器无法启动。
只有当两者的频率足够接近,振荡器才能启动并产生稳定的振荡信号。
这是因为振荡器需要通过电容和电感之间的能量转移来维持振荡,而频率差异过大会导致能量转移不完全,无法形成稳定的振荡。
结论通过本次实验,我们成功搭建了LC振荡器电路,并观察到了振荡现象。
LC与晶体振荡器

LC与晶体振荡器——实验内容与步骤开启实验箱,在实验板上找到与本次实验内容相关的单元电路,并对照实验原理图,认清各个元器件的位置与作用,特别是要学会如何使用“短路帽”来切换电路的结构形式。
作为第一次接触本实验箱,特对本次实验的具体线路作如下分析;电阻R101~R106为三极管BG101提供直流偏置工作点,电感L101既为集电极提供直流通路,又可防止交流输出对地短路,在电阻R105上可生成交、直流负反馈,以稳定交、直流工作点。
用“短路帽”短接切换开关K101、K102、K103的1和2接点(以后简称“短接K xxx╳-╳”)便成为LC西勒振荡电路,改变C107可改变反馈系数,短接K101、K102、K1032-3,并去除电容C107后,便成为晶体振荡电路,电容C106起耦合作用,R111为阻尼电阻,用于降低晶体等效电感的Q 值,以改善振荡波形。
在调整LC振荡电路静态工作点时,应短接电感L102(即短接K104 2-3)。
三极管BG102等组成射极跟随电路,提供低阻抗输出。
本实验中LC振荡器的输出频率约为1.5MHz,晶体振荡器的输出频率为6MHz,调节电阻R110,可调节输出的幅度。
经过以上的分析后,可进入实验操作。
接通交流电源,然后按下实验板上的+12V总电源开关K1和实验单元的电源开关K100,电源指示发光二极管D4和D101点亮。
(一)、LC西勒振荡器1、组成LC西勒振荡器:短接K1011-2、K1021-2、K103 1-2、K1041-2,并在C107处插入1000p的电容器,这样就组成了与图1-4完全相同的LC西勒振荡器电路。
用示波器(探头衰减10)在测试点TP102观测LC振荡器的输出波形,记录波形的VP-P值和频率值。
2、调整振荡器的输出:改变电容C110和电阻R110值,记录使LC振荡器的输出频率f0和输出幅度V Lo。
(二)、观察反馈系数K fu对振荡电压的影响:C106 =470pF由原理可知反馈系数K fu=C106/C107。
实验2 正弦波振荡器(LC振荡器和晶体振荡器)

实验2 正弦波振荡器(LC振荡器和晶体振荡器)一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二.实验内容1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。
三.实验步骤1.实验准备插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。
2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。
)(1)西勒振荡电路幅频特性的测量3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。
调整电位器3W02,使输出最大。
开关3K05拨至“P”,此时振荡电路为西勒电路。
四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。
四个开关接通的不同组合,可以控制电容的变化。
例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。
按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。
表2-1根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并画出振荡频率与输出幅度的关系曲线。
注:如果在开关转换过程中使振荡器停振无输出,可调整3W01,使之恢复振荡。
(2)克拉泼振荡电路幅频特性的测量将开关3K05拨至“S”,振荡电路转换为克拉泼电路。
按照上述(1)的方法,测出振荡频率和输出电压,并将测量结果记于表2-1中。
高频实验2:LC与晶体振荡器

实验二:LC与晶体振荡器一.实验目的1.熟悉电子元器件和高频电子线路实验系统。
2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能。
3.熟悉静态工作点I EQ对振荡器振荡幅度和频率的影响。
4.熟悉LC谐振回路的电容变化对振荡器振荡频率的影响。
二.实验预习要求1.做本实验时应具备的知识点:∙三点式LC振荡器∙克拉泼电路∙静态工作点值对振荡器工作的影响2.做本实验时所用到的仪器:∙ LC与晶体振荡模块实验板∙双踪示波器∙频率计∙万用表三.实验电路原理1.概述LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器是指振荡回路是由LC元件组成的。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。
2.LC振荡器的起振条件一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振、平衡条件和相位平衡条件。
3.C振荡器的频率稳定度频率稳定度表示:在一定时间、或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。
由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。
实验二 LC与晶体振荡器

实验二LC与晶体振荡器一、实验目的1. 初步认识实际的硬件振荡电路的组成,尤其要重视实际电路比原理性电路,多添加的辅助性元件的作用,以培养良好的识图习惯,增强识图能力。
2. 掌握交流等效电路的绘制方法。
3. 对振荡电路的静态工作点、反馈系数对振荡的建立、输出波形等振荡特性的影响进行观测。
目的在于为设计振荡电路时,如何正确选择静态工作点和反馈系数,提供依据和方法。
4. 比较LC与晶体振荡器的频率稳定度。
二、实验原理1. 并联改进型电容反馈三点式电路——西勒振荡器本实验以在短波、超短波通信机,电视接收机等高频设备中得到非常广泛应用的西勒振荡器(即并联改进型电容反馈三点式振荡器)为例,其原理电路如图2-1所示。
西勒振荡器是在串联改进型电容反馈三点式振荡电路(克拉泼振荡器)的基础上,在L1两端并联一个小电容C4,且C4>C3,振荡频率主要由L1和C4决定,调节C4可改变振荡频率。
西勒电路的优点是进一步提高振荡频率的稳定性,振荡频率可以做得较高,2. 交流等效电路分析交流等效电路分析法,是把电路的交流系统从电路中分离出来,进行单独分析的一种方法,因此其关键在于正确地绘制交流等效电路。
下面给出绘制交流等效电路的一般原则:(1)直流电源看作短路 (2)交流旁路电容看作短路 (3)隔直耦合电容看作短路(4)为简化交流等效图,一些技术性元件可以删除,而原理性元件则不能随便删除和变更位置。
从电路中各元件对信号的放大、处理有无直接关系来分,可以分为技术性元件与原理性元件两类。
原理性元件指那些与信号的放大、处理有直接关系的元件。
技术性元件指辅助电路完成原理性工作,以及为了使电路达到某些技术指标而加入的,但并不影响电路的基本工作的元件。
判别的方法是看该元件是不是电路基本功能(如放大或振荡功能)必不可少的,如果将它去掉后,电路仍具有基本功能,说明该元件是技术性元件。
否则,该元件是原理性元件。
判别时应考虑电路所处理的信号频率和元件在电路中的位置。
高频实验报告_电容反馈LC振荡器实验报告

电容反馈LC 振荡器实验报告学号 200805120109 姓名 刘皓 实验台号实验结果及数据(一)静态工作点(晶体管偏置)不同对振荡器振荡频率、幅度和波形的影响 1、K 1、K 2 均置于1—2,K 3、K 4断开,用示波器和频率计在B 点监测。
调整DW 1,使振荡器振荡;微调C 6,使振荡频率在4MHz 左右。
2、调整DW 1,使BG 1工作电流E Q I 逐点变化,E Q I 可用万用表在A 点通过测量发射极电阻R 4两端的电压得到(R 4=1k Ω)。
振荡器工作情况变化及测量结果如表1所示:表1 静态工作点变化对振荡器的影响最佳静态工作点E Q V = 2.0V E Q I 2.0mA (二)反馈系数不同对振荡器振荡频率、幅度和波形的影响保持静态工作点电流为最佳值,即调整DW 1使振荡输出幅度尽量大且不失真。
改变K 1、K 2的位置,即选用不同反馈系数,振荡器工作变化情况及测量结果如表2所示:。
表2 反馈系数变化对振荡器的影响 测量条件:E Q I = m A该工作点下的最佳反馈系数是:E Q I = 2.0m A C 2= 300 pF C 3= 300 pF(三)振荡器频率范围测量在最佳反馈条件下,调整C 5从最大到最小,观察并记录振荡器的振荡频率的变化。
m in f = 3.80 MHz m ax f = 4.22MHz(四)负载变化对振荡器的影响1、K 3断开的情况下,将振荡器的振荡频率调整到4MHz 左右,此时频率osc f = 3.95 MHz ,幅度opp V = 0.75 V 。
2、将K 3分别接1—2、1—3、1—4的位置,即接入不同的负载电阻R 5,测得的相应的频率和幅度及计算结果如表3所示。
表3 负载变化对振荡器的影响 测量条件:osc f = 3.95 MHz ,幅度opp V = 0.75 V由表3知:负载变化对振荡器工作频率的影响是:负载变化保证振荡的前提下对工作频率的影响较小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七.实验报告要求
1.记录LC振荡器与晶体振荡器的测量数据:
⑴静态工作点电流IEQ以及与对应的各点振荡频率和电压峰~峰值Vp-p;
⑵振荡器频率范围;
⑶影响振荡稳定性的因素;
2.LC振荡器与晶体振荡器测量比较的结果,分析晶体振荡器的优点。
(2)反馈系数F和集电极接入系数P1的选择
为了获得较高的频率稳定度,振荡管的C、E端与回路之间常采用部分接入,而且振荡器的工作状态选在甲乙类的欠压状态。通常选取接入系数:
P1不能太小,否则振荡强度会减弱,甚至不起振。
反馈系数F也不宜过大或过小,一般经验数据取F=C1/C2≈0.1~0.5,然后在调试中由实验决定。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。
2.LC振荡器的起振条件
一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振、平衡条件和相位平衡条件。
mA=VE (mA)
2.静态工作点IEQ变化对振荡器工作频率及其振幅值的影响
⑴实验初始条件:IEQ=2.5mA(调13W01达到),
⑵调节电位器13W01以改变晶体管静态工作点IEQ,使其分别为表1所示各值,把频率计探头接到OUT端,读取并记录相应的振荡频率值;把示波器探头接到13TP02端,测量相应的输出振荡电压峰-峰值Vp-p,并填入表1。
*克拉泼电路
*静态工作点值对振荡器工作的影响
2.做本实验时所用到的仪器:
* LC与晶体振荡模块实验板
*双踪示波器
*频率计
*万用表
三.实验电路原理
1.概述
LC振荡器实质上是满足振荡条件的正反馈放大器。LC振荡器是指振荡回路是由LC元件组成的。从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
四.实验内容
1.用万用表进行静态工作点测量,用示波器观察振荡器的停振、起振现象。
2.用示波器观察振荡器输出波形,测量振荡电压峰-峰值Vp-p,并以频率计或示波器记录频率值。
3.观察并测量静态工作点IEQ对振荡器振荡幅度和频率的影响。
五.实验设备及仪器的调整
1.LC和晶体振荡器模块电路的调整
①选择接通跳线开关13K02接入13L01和13C1,即LC选频电路。
4.振荡器频率范围的测量
测量方法:
用小起子缓慢调节调整半可变电容13C1,同时用频率计在OUT端观察并测量输出振荡信号在1.5mA时的最大和最小频率值fmax和fmin,将其填入表1。
5.晶体振Байду номын сангаас器的测量
测试方法:
(1)选择接通跳线开关13K02接入13JZ501,断开13C1和13L01,构成晶体振荡电路。
4、LC振荡器的调整和参数选择
以实验采用的改进型电容三点振荡电路(西勃电路)为例
(1)静态工作点的调整
合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路,如实验电路图12-1所示。
当振荡器稳定工作时,振荡管工作在非线性状态,通常是依靠晶体管本身的非线性实现稳幅。若选择晶体管进入饱和区来实现稳幅,则将使振荡回路的等效Q值降低,输出波形变差,频率稳定度降低。因此,一般在小功率振荡器中总是使静态工作点远离饱和区,靠近截止区。
(2)重复上述1、2、3、4步骤,将测量结果填入表2。
表2:晶体振荡器测量记录(示波器坐标参数:Time/DIV:V/DIV:)
IEQ(mA)
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
f(MHz)
格数
频率值
Vp-p(V)
格数
电压值
其他测量记录
低端停振点电流值(mA)
高端停振点电流值(mA)
3.实验体会和总结。
②用小起子缓慢调节调整半可变电容13C1,将其振荡频率调至约6.5MHz。
2.频率计的设置
选择1Hz~100MHz的"A"输入端;功能档选择"FA"(读频率);衰减档选择"×1"档;建议闸门时间选择"0.1s"档;低通选择开关选择"关"档。
3.示波器的设置
①探头衰减开关:×10档。
②建议V/DIV调至100mV档。
表1:LC振荡器测量记录(示波器坐标参数:Time/DIV:V/DIV:)
IEQ(mA)
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
f(MHz)
格数
频率值
Vp-p(V)
格数
电压值
其他测量记录
低端停振点电流值:
高端停振点电流值:
fmax:
fmin:
⑶观察振荡器停振和起振
在IEQ的低端停振点电流值和高端停振点电流值附近,用用小起子缓慢调节电位器13W01,并在示波器中观察其停振和起振现象。将低端停振点电流值和高端停振点电流值用万用表读出并填入表1。
③建议Time/DIV调至50ns或100ns档。
4.数字万用表的设置(略)
六.实验步骤
1.静态工作点IEQ的测量
将三用表接入测试点13TP03,以测量晶体振荡管13BG01的发射极电压VEQ,具体方法如下:
用小起子调节电位器13W01改变三极管13BG01的基极电压VB,其发射极电压VEQ亦随之变化。用万用表读取VEQ的值,并按以下公式计算其相应的IEQ值(13R07=1kΩ):
实验二:LC与晶体振荡器
一.实验目的
1.熟悉电子元器件和高频电子线路实验系统。
2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能。
3.熟悉静态工作点IEQ对振荡器振荡幅度和频率的影响。
4.熟悉LC谐振回路的电容变化对振荡器振荡频率的影响。
二.实验预习要求
1.做本实验时应具备的知识点:
*三点式LC振荡器
3.C振荡器的频率稳定度
频率稳定度表示:在一定时间、或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。