(完整)高频课程设计_LC振荡器_西勒
电子线路课程设计-高频LC振荡器教材

《高频LC振荡器》专业班级:12级电信三班姓名:彭祝凡赵骞秦海华学号:080212129 080212123 08021125 指导教师:李强设计时间: 2014年12月11日物理与电气工程学院2014 年12 月11 日摘要在信息飞速发展的时代,对信息的获取,传输与处理的方法越来越受到人们的重视。
如何高速快捷且没有失真的传递信息成为关注的热点。
通过对高频电子线路的学习,了解到高频信号发生器主要用来向各种电子设备和电路提供高频信号或高频标准信号,以便测试各种电子设备和电路的电器特性.一般采用LC谐式振荡器,频率可由调谐电容器的刻度读出。
高频信号发生器主要是产生高频正弦震荡波,故电路主要是高频振荡电路构成。
振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。
为此,振荡器是电子技术领域中最基本的电子线路。
振荡器主要分为晶体振荡器和LC回路的三个端点与晶体管的三个电极分别连接而成的电路。
其中三点式又分为两种基本电路。
根据反馈网络由电容还是电感完成的分为电容反馈振荡器和电感反馈振荡器。
同时为了提高振荡器的稳定度,通过电容三点式振荡器的改进可以得到克拉泼振荡器和西勒振荡器两种改进的电容反馈振荡器。
其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,震荡频率可以做得很高。
通过对各电路的比较,以及根据课设要求频率稳定度等综合考虑,最终选择西勒振荡器,继而通过multisim设计电路和仿真,并完成相关技术指标。
关键字:三点式,振荡器,西勒电路,multisim目录摘要 (2)1. 概述 (4)2. 课程设计任务及要求 (4)2.1 设计任务 (4)2.2 设计要求 (4)3. 理论设计 (4)3.1方案论证 (4)3.2系统设计 (5)3.2.1 结构框图及说明 (5)3.2.2 系统原理图及工作原理 (5)3.3 单元电路设计 (6)3.3.1单元电路工作原理 (6)3.3.2元件参数选择 (8)4. 安装调试 (9)4.1 安装调试过程 (9)4.2 故障分析 (10)5. 结论 (10)6. 使用仪器设备清单 (10)7. 收获、体会和建议 (11)8. 参考文献 (11).1 概述在本次课程设计中,为了熟悉《高频电子线路》课程,着眼于LC正弦波振荡器的分析和研究。
LC振荡器的实验报告

河海大学计算机与信息学院高频电子电路课程实践报告西勒高频振荡器的制作指导老师: 朱昌平、张秀平、殷明授课班号: 202601姓名: 陈强学号: 1062310211我先通过上网寻找资料,找相关的原理图,再通过书本上的原理,进行一定的改进,电路除了采用两个将达的电容C3、C9以外,还把基本型的电容反馈线路集电极——基极支路改用LC并联回路再与C4串联,从而叫做西勒电路。
运用Multisim软件进行仿真,刚开始只出来8M左右的波形,后来我通过调节相应电容C5和电感L1的大小,提高了频率大小。
最高可以达到22M左右,但同时导致的后果是电压幅值变小。
再提高,就会出现波形失真。
对于这个问题,请教了老师与学长,到目前为止还没有解决。
对于电路图的绘制,由于我大一时就学习了Protel ,所以上手很快,仿照仿真图,把原理图规则清楚的画出来(见上图),对于西勒振荡器里面的一些元器件,都是很常见的,所以免去了自己画封装的步骤。
然后转换成PCB ,通过排版,调整,设计,主要问题是对于贴片的处理,之前没有做过贴片的板子,所以问了学长如何处理,知道了这方面的知识。
画板子的总体速度比较快。
以上是最后得到的PCB 。
三.电路硬件制作与调试元器件列表:LED、单排针、双排针、单插排、9V直流电源贴片电阻:10K、47Ω、1K、4.7K、100K电位器:503、102贴片电容:103P、102P、104P、1PF、220PF、510PF电解电容:47μF三极管:9018NPN电感:1μH定值电感、绕制电感首先用油纸打印PCB,接着轧板子,打孔;然后对照着原理图和PCB焊接电路板。
个人觉得最容易出错的一步是焊接贴片,电容贴片没有标注大小,特别容易错,所以一定要特别小心。
由于我之前有过焊板子的经历,这一步骤相对比较顺利。
焊好板子后,就进行电路板的初步调试,用万用表依次测试板子的通断,排除虚短续断的出现,确保之后调试的成功。
通过调试发现必须要把电位器102调成0Ω,即顺时针旋转调节集电极偏置电阻R20,听到有滑丝声(即电阻值为0Ω)时停止。
lc调频振荡器设计课程设计

lc调频振荡器设计课程设计一、课程目标知识目标:1. 学生能理解LC调频振荡器的基本原理,掌握其电路构成及各部分功能。
2. 学生能掌握LC调频振荡器中电感L和电容C的计算方法,了解其对振荡频率的影响。
3. 学生能了解调频技术的基本概念,掌握LC调频振荡器的调频原理。
技能目标:1. 学生能运用所学知识,设计并搭建一个简单的LC调频振荡器电路。
2. 学生能通过实验,学会使用频率计、示波器等仪器进行振荡频率的测量,提高实验操作能力。
3. 学生能分析实验数据,掌握调整LC参数对振荡频率的影响,培养问题分析和解决能力。
情感态度价值观目标:1. 学生通过学习LC调频振荡器的设计,培养对电子技术的兴趣和热情。
2. 学生在小组合作完成设计任务的过程中,培养团队协作精神和沟通能力。
3. 学生通过实践操作,增强动手能力,提高创新意识和实践能力。
4. 学生能够关注电子技术在生活中的应用,认识到科技发展对人类社会的贡献。
课程性质:本课程为电子技术实践课程,结合理论教学和实验操作,帮助学生将所学知识应用于实际电路设计。
学生特点:学生为高年级电子专业学生,已具备一定的电子技术基础知识和实验操作能力。
教学要求:注重理论与实践相结合,提高学生的实际操作能力和问题解决能力。
在教学过程中,注重引导学生主动探究,培养学生的创新意识和团队合作精神。
通过课程目标的具体分解,为后续教学设计和评估提供明确方向。
二、教学内容1. 理论知识:- 介绍LC振荡器的基本原理,包括谐振电路的工作原理和振荡产生的条件。
- 讲解LC调频振荡器的电路构成,分析电路中各元件的作用。
- 深入阐述调频原理,包括变容二极管调频技术和LC参数调频技术。
2. 实践操作:- 指导学生进行LC调频振荡器电路的设计,包括选择合适的元件和计算LC参数。
- 安排实验操作,让学生动手搭建LC调频振荡器电路,并使用频率计、示波器等仪器进行频率测量。
- 引导学生分析实验数据,探讨LC参数变化对振荡频率的影响。
高频课程设计振荡器西勒

高频电子线路课程设计报告设计题目:LC正弦波振荡器的设计2014年 1月 10日目录一、设计任务与要求 (1)二、设计方案 (1)电感反馈式三端振荡器 (1)电容反馈式三端振荡器 (2)2.3克拉波电路振荡器 (3)西勒电路振荡器 (4)三、设计内容 (5)LC振荡器的基本工作原理................................................ . (5)西勒电路原理图及分析 (6)3.2.1振荡原理 (7)3.2.2静态工作点的设置 (7)西勒振荡器原理图 (8)仿真结果与分析 (8)3.4.1软件简介 (8)3.4.2进行仿真 (9)3.4.3仿真结果分析 (11)四、总结 (11)五、主要参考文献 (13)一、设计任务与要求在本课程设计中,为了熟悉《高频电子线路》课程,着眼于LC正弦波振荡器的分析和研究。
通过对电感反馈式三端振荡器(哈特莱振荡器)、电容反馈式三端振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析、对比和讨论,以达到课程设计的目的和要求。
在课程设计中,为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。
本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,输出频率可调范围为10~20MHz。
本设计中所涉及的仿真电路是比较简单的。
但通过仿真得到的结论在实际的类似电路中有很普遍的意义。
二、设计方案通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。
其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。
由所学知识可知,西勒电路具有该电路频率稳定性非常高,振幅稳定,频率调节方便,适合做波段振荡器等优点。
(完整版)高频电子线路课程设计

课程设计班级:电信12-1班*名:**学号:**********指导教师:**成绩:电子与信息工程学院信息与通信工程系目录摘要 (1)引言 (2)1. 概述 (3)1.1 LC振荡器的基本工作原理 (3)1.2 起振条件与平衡条件 (4)1.2.1 起振条件 (4)1.2.2平衡条件 (4)1.2.3 稳定条件 (4)2. 硬件设计 (5)2.1 电感反馈三点式振荡器 (5)2.2 电容反馈三点式振荡器 (6)2.3改进型反馈振荡电路 (7)2.4 西勒电路说明 (8)2.5 西勒电路静态工作点设置 (9)2.6 西勒电路参数设定 (10)3. 软件仿真 (11)3.1 软件简介 (11)3.2 进行仿真 (12)3.3 仿真分析 (13)4. 结论 (13)4.1 设计的功能 (13)4.2 设计不足 (13)4.3 心得体会 (14)参考文献 (14)徐雷:LC振荡器设计摘要振荡器是一种不需要外加激励、电路本身能自动地将直流能量转换为具有某种波形的交流能量的装置。
种类很多,使用范围也不相同,但是它们的基本原理都是相同的,即满足起振、平衡和稳定条件。
通过对电感三点式振荡器(哈脱莱振荡器)、电容三点式振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析,根据课设要求频率稳定度为10-4,西勒电路具有频率稳定性高,振幅稳定,频率调节方便,适合做波段振荡器等优点,因此选择西勒电路进行设计。
继而通过Multisim设计电路与仿真。
关键词:振荡器;西勒电路;MultisimAbstractThe oscillator is a kind of don't need to motivate, circuit itself automatically device for DC energy into a waveform AC energy applied. Many different types of oscillators, using range is not the same, but the basic principles are the same, to meet the vibration, the equilibrium and stability conditions. Based on the inductance of the three point type oscillator ( Hartley), three point capacitance oscillator ( Colpitts) and improved capacitor feedback oscillator (Clapp and Seiler) analysis, according to class requirements, Seiler circuit with high frequency stability, amplitude stability frequency regulation, convenient, suitable for the band oscillator etc., so the final choice of Seiler circuit design. Then through the Multisim circuit design and simulation. Key Words:Oscillator; Seiler; Multisim1高频电子线路课程设计引言在信息飞速发展的时代,对信息的获取、传输与处理的方法越来越受到人们的重视。
高频电子线路课程设计-电容三点式LC振荡器的设计与制作

高频课设实验报告实验项目电容三点式LC振荡器的设计与制作系别专业班级/学号学生姓名实验日期成绩指导教师电容三点式 LC 振荡器的设计与制作一、实验目的1.了解电子元器件和高频电子线路实验系统。
2.掌握电容三点式LC 振荡电路的实验原理。
3.掌握静态工作点、耦合电容、反馈系数、等效Q 值对振荡器振荡幅度和频率的影响4.了解负载变化对振荡器振荡幅度的影响。
二、实验电路实验原理1.概述2.L C振荡器的起振条件一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。
3.LC振荡器的频率稳定度频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:△f0/f0来表示(f0为所选择的测试频率:△f0为振荡频率的频率误差,Δf0=f02 -f01:f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。
由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高 Q 值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。
4.LC振荡器的调整和参数选择以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图1-1 所示。
(1)静态工作点的调整合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏有一定的影响。
偏置电路一般采用分压式电路。
当振荡器稳定工作时,振荡管工作在非线性状态,通常是依靠晶体管本身的非线性实现稳幅。
若选择晶体管进入饱和区来实现稳幅,则将使振荡回路的等效 Q 值降低,输出波形变差,频率稳定度降低。
因此,一般在小功率振荡器中总是使静态工作点远离饱和区靠近截止区。
(2)振荡频率 f 的计算式中 CT为 C1、C2和 C3的串联值,因 C1(300p)>>C3(75p),C2(1000P)>> C3(75p),故 CT≈C3,所以,振荡频率主要由 L、C 和 C3 决定。
高频电路振荡器课程设计

高频电路振荡器课程设计一、课程目标知识目标:1. 学生能够理解并掌握高频电路振荡器的基本原理和工作机制;2. 学生能够掌握高频电路振荡器的关键组成部分及各部分的功能;3. 学生能够了解高频电路振荡器在通信、雷达等领域的应用。
技能目标:1. 学生能够运用所学知识,设计并搭建一个简单的高频电路振荡器;2. 学生能够运用仿真软件对高频电路振荡器进行仿真分析,优化电路性能;3. 学生能够通过实验验证高频电路振荡器的设计方案,并解决实际问题。
情感态度价值观目标:1. 学生对高频电路振荡器产生兴趣,培养学习电子技术的热情;2. 学生在团队合作中,学会沟通、协作,培养团队精神;3. 学生能够认识到高频电路振荡器在我国科技发展中的重要性,增强国家自豪感。
课程性质分析:本课程为电子技术专业课程,以实践为主,理论联系实际。
课程内容具有较强的实用性和技术性。
学生特点分析:学生为高中年级,具备一定的电子技术基础知识,对新鲜事物充满好奇,动手能力强,但理论知识相对薄弱。
教学要求:1. 注重理论与实践相结合,提高学生的实际操作能力;2. 通过小组合作,培养学生的团队协作能力;3. 结合实际应用,激发学生的学习兴趣,培养创新意识。
二、教学内容1. 理论部分:(1)高频电路振荡器的原理及分类;(2)高频电路振荡器关键组成部分:放大器、反馈网络、选频网络等;(3)高频电路振荡器的性能指标及稳定性分析。
2. 实践部分:(1)设计并搭建一个简单的高频电路振荡器;(2)使用仿真软件(如Multisim、Protel等)进行振荡器电路仿真;(3)实验验证振荡器性能,分析并优化电路参数。
3. 教学大纲安排:(1)第一周:高频电路振荡器原理及分类学习;(2)第二周:关键组成部分及其功能学习;(3)第三周:性能指标及稳定性分析;(4)第四周:实践操作,设计并搭建振荡器;(5)第五周:仿真软件操作及电路仿真;(6)第六周:实验验证及电路优化。
4. 教材章节及内容:(1)第一章:高频电路基础;(2)第二章:振荡器原理及分类;(3)第三章:振荡器关键组成部分及设计方法;(4)第四章:振荡器性能分析及稳定性判断;(5)第五章:振荡器实践操作及仿真分析。
高频课设报告

LC振荡器的设计——通信电子线路课程设计一、课程设计内容LC振荡器的设计之西勒振荡器的设计二、课程设计目的及要求目的:振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。
要求:设计的正弦波振荡器能够输出稳定正弦波信号,输出频率可调范围为10~20MHz。
本设计中所涉及的仿真电路是比较简单的。
但通过仿真得到的结论在实际的类似电路中有很普遍的意义。
三、课程设计具体实现1、原理设计通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈三点式振荡器、电容反馈三点式振荡器以及改进型电容反馈式振荡器等。
其中电感反馈三点式易于起振,但稳定性差,适用于低频。
而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得很高。
由所学知识可知,西勒电路具有频率高、振幅稳定、频率调节方便等优点。
所以在本设计中拟采用西勒电路振荡器。
原理图及等效电路如图(a)(b)所示。
西勒电路是在克拉波电路的电感两端并联上一个电容得到的,有效地改善了克拉波电路可调范围小的缺点。
而且频率稳定性高,振幅稳定,频率调节方便,适合做波段振荡器。
2、参数计算合理地选择振荡器的静态工作点,对振荡器的起振,工作的稳定性,波形质量的好坏有着密切的关系。
-般小功率振荡器的静态工作点应选在远离饱和区而靠近截止区的地方。
根据上述原则,一般小功率振荡器集电极电流ICQ大约在0.8-4mA之间选取,故本实验电路中:选ICQ=2mA, VCEQ=6V,β=100 则有Re+Rc=(12-6)/2=3KΩ为提高电路的稳定性,取Re=1KΩ则Rc=2.1KΩ相应地取Rb1=5.1KΩ,Rb2=2.1KΩ,所以在本电路中,取R4=1KΩ,R1=2.1KΩ,R2=5.1KΩ,R3=2.1KΩ回路中的各种电抗元件都可归结为总电容C和总电感L两部分。
确定这些元件参量的方法,是根据经验先选定一种,而后按振荡器工作频率再计算出另一种电抗元件量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电子线路课程设计报告设计题目:LC正弦波振荡器的设计2014年1月10日目录一、设计任务与要求 (1)二、设计方案 (1)2.1电感反馈式三端振荡器 (1)2.2电容反馈式三端振荡器 (2)2.3克拉波电路振荡器 (3)2.4西勒电路振荡器 (4)三、设计内容 (5)3.1LC振荡器的基本工作原理................................................ . (5)3.2西勒电路原理图及分析 (6)3.2.1振荡原理 (7)3.2.2静态工作点的设置 (7)3.3西勒振荡器原理图 (8)3.4 仿真结果与分析 (8)3.4.1软件简介 (8)3.4.2进行仿真 (9)3.4.3仿真结果分析 (11)四、总结 (11)五、主要参考文献 (13)一、设计任务与要求在本课程设计中,为了熟悉《高频电子线路》课程,着眼于LC正弦波振荡器的分析和研究。
通过对电感反馈式三端振荡器(哈特莱振荡器)、电容反馈式三端振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析、对比和讨论,以达到课程设计的目的和要求。
在课程设计中,为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。
本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,输出频率可调范围为10~20MHz。
本设计中所涉及的仿真电路是比较简单的。
但通过仿真得到的结论在实际的类似电路中有很普遍的意义。
二、设计方案通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。
其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。
由所学知识可知,西勒电路具有该电路频率稳定性非常高,振幅稳定,频率调节方便,适合做波段振荡器等优点。
所以在本设计中拟采用并联改进型的西勒电路振荡器。
下面对几种振荡器进行分析论证:2.1电感反馈式三端振荡器电感三点式振荡器又称哈特莱振荡器,其原理电路如图所示:起振条件:feoe ie feh M L M L h h h 121'>++> 式中,'oe h 为考虑震荡回路阻抗后的晶体管等效输出导纳,)/1(''p oe oe R h h +=,此处'p R 为输出回路的谐振阻抗。
震荡频率:()M L L C LC f 2π21π21≈21++≈电感反馈震荡电路的优点是:由于1L 和2L 之间有互感存在,所以容易起振。
其次是改变回路电容来调整频率时,基本上不影响电路的反馈系数,比较方便。
这种电路的主要缺点是:与电容反馈震荡电路想比,其震荡波形不够好。
这是因为反馈支路为感性支路,对高次谐波呈现高阻抗,故对于LC 回路中的高次谐波反馈较强,波形失真较大。
其次是当工作频率较高时,由于1L 和2L 上的分布电容和晶体管的极间电容均并联于1L 与2L 两端,这样,反馈系数F 随频率变化而变化。
工作频率愈高,分布参数的影响也愈严重,甚至可能使F 减小到满足不了起振条件。
因此,这种电路尽管它的工作频率也能达到甚高频波段,但是在甚高频波段里,优先选择的还是电容反馈振荡器。
2.2 电容反馈式三端振荡器电容三点式振荡器又称为考毕兹振荡器,其原理电路如图:反馈系数F 的表达式211≈C C C F + 不考虑各极间电容的影响,这时谐振回路的总电容量为1C 、2C 的串联,即21111C C C +=Σ振荡频率的近似为21212121C C C C LC f +≈≈ππ与电感三端震荡电路想比,电容三端振荡器的优点是输出波形较好,这是因为集电极和基极电流可通过对谐波为低阻抗的电容支路回到发射极,所以高次谐波的反馈减弱,输出的谐波分量减少,波形更加接近于正弦波。
其次,该电路中的不稳定电容(分布电容、器件的结电容等)都是与该电路并联的,因此适当的加大回路电容量,就可以减弱不稳定因素对振荡器的影响,从而提高了频率稳定度。
最后,当工作频率较高时,甚至可以只利用器件的输入和输出电容作为回路电容。
因而本电路适用于较高的工作频率。
这种电路的缺点是:调1C 或2C 来改变震荡频率时,反馈系数也将改变。
但只要在L 两端并上一个可变电容器,并令1C 与2C 为固定电容,则在调整频率时,基本上不会影响反馈系数。
2.3 克拉波电路振荡器克拉泼电路时一种高稳定度的LC 震荡电路,电路图如下:它的特点是在前述的电容三点式振荡谐振回路电感支路中增加了一个电容C3,其取值比较小,要求C3<< C1,C3<< C2。
先不考虑各极间电容的影响,这时谐振回路的总电容量CΣ为C1、C2 和C3的串联,即4321Σ≈1111C C C C C ++= 于是,振荡频率为4Σ0π21≈π21≈LC LC f使上式成立的条件是C1和C2都要选得比较大,由此可见,C1、C2对振荡频率的影响显著减小,那么与C1、C2并接的晶体管极间电容的影响也就很小了,提高了振荡频率的稳定度。
2.4 西勒电路振荡器西勒电路是在克拉泼电路的L 两端并联上一个电容得到的,有效的改善了克拉泼电路可调范围小的缺点,电路图如图所示:433214Σ≈1111C C C C C C C ++++= 所以振荡频率()43Σ0π21≈π21≈C C L LC f +该电路频率稳定性非常高,振幅稳定,频率调节方便,适合做波段振荡器。
通过对以上的几种电路的分析,可以看出:1. 电感反馈式三端振荡器:容易起振,调频方便,但波形失真较大;2.电容反馈式三端振荡器:波形好,频率稳定性好,但调频不方便;3.克拉泼振荡器:调频方便但可调范围小;4.西勒振荡器:频率稳定性高,振幅稳定,调频方便。
所以,在本设计中拟采用并联改进型的西勒电路振荡器。
三、设计内容3.1 LC振荡器的基本工作原理振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。
LC振荡器是一种能量转换器,由晶体管等有源器件和具有选频作用的无源网络及反馈网络组成。
振荡器根据自身输出的波形可分为正弦波振荡器和非正弦波振荡器,正弦波振荡器在广播通讯、自动控制、仪器仪表、高频加热、超声探伤等领域有着广泛的应用;而非正弦振荡器能产生出矩形波(方波)、三角波、锯齿波等信号,这些信号可以用于测量设备、数字系统、自动控制及计算机设备中。
本设计讨论的就是正弦波振荡器。
其框图如图1所示。
振荡器原理框图由所学知识可知,构成一个振荡器必须具备下列三个条件:1)一套振荡回路,包含两个(或两个以上)储能元件。
在这两个元件中,当一个释放能量时,另一个就接收能量。
释放与接收能量可以往返进行,其频率决定于元件的数值。
2)一个能量来源,补充由振荡回路电阻所产生的能量损失。
在晶体管振荡器中,这个能源就是直流电源。
3)一个控制设备,可以使电源功率在正确的时刻补充电路的能量损失,以维持等幅振荡。
这是由有源器件和正反馈电路完成的。
3.2 西勒振荡器电路原理图:3.2.1振荡原理西勒电路是一种改进型的电容反馈振荡器,是在克拉泼电路上改进的来的,电路原理图如下所示:震荡回路的总电容为:433214Σ≈1111CCCCCCC++++=所以可以得到振荡频率为:()43Σ0π21≈π21≈CCLLCf+此时,4C为粗调,3C为细调,电路调频方便而且调频范围大。
3.2.2静态工作点的设置合理地选择振荡器的静态工作点,对振荡器的起振,工作的稳定性,波形质量的好坏有着密切的关系。
-般小功率振荡器的静态工作点应选在远离饱和区而靠近截止区的地方。
根据上述原则,一般小功率振荡器集电极电流I CQ大约在0.8-4mA之间选取,故本实验电路中:选ICQ=2mA, VCEQ=6V,β=100则有Ω=-=-=+KIUURRCQCEQCCce32612为提高电路的稳定性Re值适当增大,取Re=1KΩ则Rc=2KΩ因:U EQ =I CQ ·R E 则:U EQ =2mA ×1K=2V因: I BQ =I CQ /β 则: I BQ =2mA/100=0.02mA一般取流过Rb2的电流为5-10I BQ , 若取10I BQ因:BQ BQb I V R =2 7.0+=EQ BQ V V Ω==K V R b 5.132.07.22 所以取标称电阻为12K Ώ。
因:21b BQ BQCC b R V V V R -=则:Ω=Ω-=K K VV V R b 3.41127.27.2121 3.2.2振荡回路元件参数的计算回路中的各种电抗元件都可归结为总电容C 和总电感L 两部分。
确定这些元件参量的方法,是根据经验先选定一种,而后按振荡器工作频率再计算出另一种电抗元件量。
从原理来讲,先选定哪种元件都一样,但从提高回路标准性的观点出发,以保证回路电容Cp 远大于总的不稳定电容Cd 原则,先选定Cp 为宜。
若从频率稳定性角度出发,回路电容应取大一些,这有利于减小并联在回路上的晶体管的极间电容等变化的影响。
但C 不能过大,C 过大,L 就小,Q 值就会降低,使振荡幅度减小,为了解决频稳与幅度的矛盾,通常采用部分接入。
反馈系数F=C1/C2,不能过大或过小,适宜1/8—1/2。
因振荡器的工作频率为:LC f π210=当LC 振荡时,按题目要求令0f =10MHz ,L =10μH本电路中,则回路的谐振频率0f 主要由C 4、C 6决定,即)(212143C C L LC f +==ππ有pf Lf C C 157412264≈=+π 取C 4 =75pf ,C 6=82pf ,因要遵循C 2,C 3>>C 4,C 6,C 2/C 3=1/8—1/2的条件,故取C 2=680pf ,则C 3=680pf 。
为了尽可能地减小负载对振荡电路的影响,振荡信号应尽可能从电路的低阻抗端输出。
3.3 西勒振荡器电路图:如图,下图为西勒电路振荡器的电路图,是Protel 软件画出的,Protel 软件是一款功能强大的原理图绘制及PCB 制作软件。
可以方便快捷的进行原理图的绘制:3.4 西勒振荡器仿真:3.4.1软件简介Multisim 是一个专门用于电子线路设计与仿真的EDA 工具软件,它是加拿大IIT 公司(Interactive Image Technologise Ltd.)推出的继EWB 之后的版本。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。