人教A版高中数学必修3第一章算法初步1.2基本算法语句导学案

合集下载

高二数学 第一章《算法初步》教案人教A版必修3

高二数学 第一章《算法初步》教案人教A版必修3

1.1.1算法的概念一、三维目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。

(2)能够用自然语言叙述算法。

(3)掌握正确的算法应满足的要求。

(4)会写出解线性方程(组)的算法。

(5)会写出一个求有限整数序列中的最大值的算法。

(6)会应用Scilab 求解方程组。

2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。

由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。

3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。

二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。

难点:把自然语言转化为算法语言。

三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。

2、要使算法尽量简单、步骤尽量少。

3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。

教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。

但是我们却从小学就开始接触算法,熟悉许多问题的算法。

如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。

我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。

人教A版高中数学必修3:1.1.2程序框图与算法的基本逻辑结构

人教A版高中数学必修3:1.1.2程序框图与算法的基本逻辑结构

例4.画程序框图, 对于输入的x值, 输出相应的y值.
0(x 0) y 1(0 x 1)
x(x 1)
开始
程序框图
输入x
是 x<0?
否 是
0≤x<1? 否
y=x
y=1 y=0
输出y 结束
知识探究(二):算法的循环结构
思考1:在算法的程序框图中,由按照一 定的条件反复执行的某些步骤组成的逻 辑结构,称为循环结构,反复执行的步 骤称为循环体,那么循环结构中一定包 含条件结构吗?
知识探究(一):算法的程序框图
表示算法的图形称为算法的程序框图又 称流程图,其中的多边形叫做程序框, 带方向箭头的线叫做流程线,程序框图 的含义是 用程序框、流程线及文字说
明来表示算法的图形.
图形符号
名称
功能
终端框
表示一个算法的起始和结束
(起止框)
输入、输出 框
表示一个算法输入和输出的 信息
处理框
普通高中课程标准试验教科书 人教A版数学必修3 第一章 算法初步
1.1.2 程序框图与算法 的基本逻辑结构
大庆铁人中学数学组 李莎
问题提出
1.算法的含义是什么?
在数学中,按照一定规则解决某一 类问题的明确和有限的步骤称为算法.
2.算法是由一系列明确和有限的计算步 骤组成的,我们可以用自然语言表述一 个算法,但往往过程复杂,缺乏简洁性, 因此,我们有必要探究使算法表达得更 加直观、准确的方法,这个想法可以通 过程序框图来实现.
n≤100?

是 n是偶数?
否 输出S
结束
S=S+n×n

例7:用“二分法”求方程 x2 2 0(x 0) 的近 似解的算法如何设计?

人教A版高中数学必修3《一章 算法初步 1.2.1 输入语句、输出语句和赋值语句 》示范课课件_21

人教A版高中数学必修3《一章 算法初步  1.2.1 输入语句、输出语句和赋值语句 》示范课课件_21
(1) 4=m×(2) x+y=1×0 (3) A=B=2×(4) N=2*√N
2、写出下列语句描述的算法的输出结果
(1) a=5
(2) a=1
b=3
b=2
c=(a+b)/2
c=a+b
d=c*c
b=a+c-b
print“d=”; d print a,b,c
d=16
1, 2, 3
小结
这节课我们主要学习了输入语句、输出语句和 赋值语句的主要功能、一般格式和相关说明,请 同学们用心掌握。
输入语句 输出语句 赋值语句 条件语句 循环语句
这节课我们先学习输入、输出、赋值语句
输入语句与程序框图中的输 入框对应,用来输入信息.
输出语句与程序框图中的输 出框对应,用来输出信息.
赋值语句与程序框图中的赋 值框对应,用来给变量赋值.
例1 :用描点法作函数 y=x3+3x2-24x+30的图象时,需

a b c.
3
程序框图
s 3
,输出y
.
程序:
开始 INPUT “Maths,Chinese,English=”;a,b,
输入a,b,c
y

a

b 3

c
输出y
结束
INPUT “Maths=”;a INPUT “Chinese=”;b
INPUT “English=”;c
y= (a+b+c)/3
PRINT “The average=”;y END
作业:课本24页练习1.2.3.4
BASIC语言中的常用运算符号
运算符
*
/ ^ >= <= <> \

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修一、教学目标1. 理解算法的基本概念,了解算法在数学和日常生活中的应用。

2. 掌握算法的基本步骤,能够清晰地描述和分析算法的过程。

3. 学会使用循环结构编写算法,熟练掌握基本的编程技巧。

4. 通过解决实际问题,培养学生的逻辑思维能力和创新能力。

二、教学内容1. 算法的基本概念:算法、输入、输出、步骤2. 算法的基本步骤:排序、查找、乘法口诀、求解一元二次方程3. 循环结构:for循环、while循环、do-while循环4. 实际问题求解:编写算法解决生活中的实际问题,如计算器、购物清单等。

三、教学重点与难点1. 重点:算法的基本概念、基本步骤和循环结构。

2. 难点:循环结构的嵌套使用和复杂问题的算法设计。

四、教学方法与手段1. 采用问题驱动的教学方法,引导学生从实际问题中提炼出算法。

2. 使用多媒体教学手段,展示算法的过程和效果,增强学生的直观感受。

3. 引导学生通过编程实践,巩固算法知识,提高解决问题的能力。

五、教学安排1. 第一课时:介绍算法的基本概念,学习算法的输入、输出、步骤。

2. 第二课时:学习算法的基本步骤,掌握排序、查找、乘法口诀、求解一元二次方程等基本算法。

3. 第三课时:学习循环结构,掌握for循环、while循环、do-while循环的用法。

4. 第四课时:运用所学算法解决实际问题,编写算法程序。

5. 第五课时:进行课堂讨论,分享算法解决问题的经验,进行算法设计的交流和探讨。

六、教学过程1. 导入:通过引入日常生活中的算法例子,如计算购物找零、制定旅行计划等,激发学生的兴趣,引出算法的概念。

2. 新课导入:介绍算法的定义、特点和作用,引导学生了解算法在数学和科学领域中的应用。

3. 案例分析:分析排序、查找等基本算法,让学生通过具体案例理解算法的基本步骤和原理。

4. 编程实践:让学生动手编写简单的算法程序,如排序算法、查找算法等,加深对算法概念的理解。

第一章 算法初步全章教案

第一章 算法初步全章教案

第一章 算法初步第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:A .确定区间[,]a b ,验证()()0f a f b <,给定精度ε;B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序. 算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解→写出算法.③练习:举例更多的算法例子;→对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程320x-=的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图. (学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题.第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1.2.顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作.注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A组1题.第一课时 1.2.1 输入语句、输出语句和赋值语句教学要求:正确理解输入语句、输出语句、赋值语句的结构. 让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿. 通过实例使学生理解3种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法,能用这三种基本的算法语句表示算法,进一步体会算法的基本思想. 教学重点:会用输入语句、输出语句、赋值语句.教学难点:正确理解输入语句、输出语句、赋值语句的作用.教学过程:一、新课导入:1. 提问:学习了哪些算法的表示形式?(自然语言或程序框图描述)算法中的三种基本的逻辑结构?(顺序结构、条件结构和循环结构)2. 导入:我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见”的. 因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序. 程序设计语言有很多种. 如BASIC,Foxbase,C语言,C++,J++,VB,VC,JB 等.各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句条件语句和循环语句.今天,我们一起用类BASIC语言学习输入语句、输出语句、赋值语句. 基本上对应于算法中的顺序结构.二、讲授新课:1. 教学三种语句的格式及功能:①出示例1:编写程序,计算一个学生数学、语文、英语三门课的平均成绩.(分析算法→框图表示→教师给出程序,学生试说说对各语句的理解.)①出示例2:用描点法作函数y=x3+3x2-24x+30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值②出示例3:给一个变量重复赋值. (程序见P16)③出示例4:交换两个变量A和B的值,并输出交换前后的值.(教法:先分析算法→画出框图→编写程序→分析各语句→变式→小结:先写算法,再编程)3. 小结:输入、输出和赋值语句的格式;赋值“=”及表达式;编写简单程序解决数学问题.三、巩固练习:1. 练习:教材P16 1、2题 2. 作业:P16 3、4题.第二课时 1.2.2 条件语句教学要求:正确理解条件语句的概念,并掌握其结构. 会应用条件语句编写程序. 教学重点:条件语句的步骤、结构及功能.教学难点:会编写程序中的条件语句.教学过程:一、复习准备:1. 提问:算法的三种逻辑结构?条件结构的框图模式?2. 提问:输入语句、输出语句和赋值语句的格式与功能?3. 一次招生考试中,测试三门课程,如果三门课程的总成绩在200分及以上,则被录取. 请对解决此问题的算法分析,画出程序框图. (变题:…总成绩在200分以下,则不被录取)二、讲授新课:1. 教学条件语句的格式与功能:①分析:复习题③中的两种条件结构的框图模式?②给出复习题③的程序,试读懂程序,说说新的语句的结构及含义.③条件语句的一般有两种:IF—THEN语句;IF—THEN—ELSE语句. 语句格式及框图如下.分析语句执行流程,并说明:①“条件”是由一个关系表达式或逻辑表达式构成,其一般形式为“<表达式><关系运算符><表达式>”,常用的运算符有“>”(大于)、“<”(小于)、“>=”(大于或等于)、“<=”(小于或等于),“<>”(不等于). 关系表达式的结果可取两个值,以“真”或“假”来表示,“真”表示条件满足,“假”则条件不满足. ②“语句”是由程序语言中所有语句构成的程序段,即可以是语句组. ③条件语句可以嵌套,即条件语句的THEN 或ELSE后面还可以跟条件语句,嵌套时注意内外分层,避免逻辑混乱.2. 教学典型例题:②出示例5:编写程序,输入一元二次方程ax2+bx+c=0的系数,输出它的实数根.(算法分析→画程序框图→编写程序→给出系数的一组值,分析框图与程序各步结果)注意:解方程之前,先由判别式的符号判断方程根的情况. 函数SQR()的功能及格式.②讨论:例5程序中为何要用到条件语句?条件语句一般用在什么情况下?答:一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个数的大小等问题,还有求分段函数的函数值等,往往要用条件语句,有时甚至要用到条件语句的嵌套③练习:编写程序,使得任意输入的2个实数从小到大排列.④出示例6:编写程序,使得任意输入的3个实数从小到大排列.(讨论:先用什么语句?→用具体的数值给a、b、c,分析计算机如何排列这些数?→写出程序→画出框图→说说算法→变式:如果是4个实数呢?3. 小结:条件语句的格式与功能及对应框图. 编程的一般步骤:①算法分析:根据提供的问题,利用数学及相关学科的知识,设计出解决问题的算法. ②画程序框图:依据算法分析,画出程序框图. ③写出程序:根据程序框图中的算法步骤,逐步写出相应的程序语句.三、巩固练习: 1. 练习:教材P22 1、2题.2. 试编写程序进行印刷品邮资的计算. (前100g 0.7元,以后每100g 0.4元)3. 作业:P22 3、4题.第三课时 1.2.3 循环语句教学要求:正确理解循环语句的概念,并掌握其结构. 会应用循环语句编写程序. 教学重点:两种循环语句的表示方法、结构和用法,用循环语句表示算法.教学难点:理解循环语句的表示方法、结构和用法,会编写程序中的循环语句. 教学过程:一、复习准备:1. 设计一个计算1+2+3+……+10的算法,并画出程序框图.2. 循环结构有哪两种模式?有何区别?相应框图如何表示?答:当型(while 型)和直到型(until 型). 当型循环语句先对条件判断,根据结果决定是否执行循环体,可能一次也不执行循环体,也称为“前测试型”循环;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体.二、讲授新课:1. 教学两种循环语句的格式与功能:① 给出复习题①的两种循环语句的程序,试读懂程序,说说新的语句的结构及含义.② 两种循环语句的语句结构及框图如下.说明:“循环体”是由语句组成的程序段,能够完成一项工作. 当使用WHIL 语句时,循环内部应当有改变循环的条件,否则会产生无限循环. 学习时注意两种循环语句的区别.③ 讨论:两种循环语句的区别?当型循环先判断后执行,直到型循环先执行后判断,则:在WHILE 语句中,是当条件满足时执行循环体;在UNTIL 语句中,先执行循环体,再当条件不满足时再执行循环体.2. 教学例题:① 出示例:编写程序,计算1+2+3+……+99+100的值.(分析:实现累加的算法 → 分别用两种循环语句编写 → 变题:计算20以内偶数的积.② 给出下列一段程序,试读懂程序,说说各语句的作用,分析程序的功能. (见教材P24)(读,找疑问 → 说各语句 → 分析功能)③ 练习:用描点法作函数y =x 3+3x 2-24x +30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x =-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值. ④ 分析右边所给出程序:当n=10时,结果是多少?程序INPUT “n=”;ni =1 a =0 WHILE i <= n a = a +(i +1)/i i = i+1WENDPRINT “…”;aEND实现功能?3. 小结:① 循环语句的两种不同形式:WHILE 语句和UNTIL 语句(还可补充了For 语句),掌握它们的一般格式.② 在用WHILE 语句和UNTIL 语句编写程序解决问题时,一定要注意它们的格式及条件的表述方法. WHILE 语句中是当条件满足时执行循环体,而UNTIL 语句中是当条件不满足时执行循环体.③ 循环语句主要用来实现算法中的循环结构,在处理一些需要反复执行的运算任务. 如累加求和,累乘求积等问题中常用到.三、巩固练习: 1. 练习:教材P24 1题.2. 编写程序,实现输出1000以内能被3和5整除的所有整数. (算术运算:5 MOD 3 =2)3. 作业:P24 2、3题.第一课时 1.3.1 算法案例---辗转相除法与更相减损术教学要求:理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析; 基本能根据算法语句与程序框图的知识设计出辗转相除法与更相减损术完整的程序框图并写出它们的算法程序.教学重点:理解辗转相除法与更相减损术求最大公约数的方法.教学难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言. 教学过程:一、复习准备:1. 回顾算法的三种表述:自然语言、程序框图(三种逻辑结构)、程序语言(五种基本语句).2. 提问:①小学学过的求两个数最大公约数的方法?(先用两个公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.)口算出36和64的最大公约数. ②除了用这种方法外还有没有其它方法?6436128=⨯+,36∴和28的最大公约数就是64和36的最大公约数,反复进行这个步骤,直至842=⨯,得出4即是36和64的最大公约数.二、讲授新课:1. 教学辗转相除法:例1:求两个正数1424和801的最大公约数.分析:可以利用除法将大数化小,然后逐步找出两数的最大公约数. (适用于两数较大时)①以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的. 利用辗转相除法求最大公约数的步骤如下:(1)用较大的数m 除以较小的数n 得到一个商0S 和一个余数0R ;(2)若0R =0,则n 为m ,n 的最大公约数;若0R ≠0,则用除数n 除以余数0R 得到一个商1S 和一个余数1R ;(3)若1R =0,则1R 为m ,n 的最大公约数;若1R ≠0,则用除数0R 除以余数1R 得到一个商2S 和一个余数2R ;……依次计算直至n R =0,此时所得到的1n R -即为所求的最大公约数.②由上述步骤可以看出,辗转相除法中的除法是一个反复执行的步骤,且执行次数由余数是否等于0来决定,所以我们可以把它看成一个循环体,它的程序框图如右图:(师生共析,写出辗转相除法完整的程序框图和程序语言)练习:求两个正数8251和2146的最大公约数. (乘法格式、除法格式)2. 教学更相减损术:我国早期也有求最大公约数问题的算法,就是更相减损术. 在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之.翻译为:(1)任意给出两个正数;判断它们是否都是偶数. 若是,用2约简;若不是,执行第二步.(2)以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数. 继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.例2:用更相减损术求91和49的最大公约数.分析:更相减损术是利用减法将大数化小,直到所得数相等时,这个数(等数)就是所求的最大公约数. (反思:辗转相除法与更相减损术是否存在相通的地方) 练习:用更相减损术求72和168的最大公约数.3. 小结:辗转相除法与更相减损术及比较①都是求最大公约数的方法,辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少;②结果上,辗转相除法体现结果是以相除余数为0得到,而更相减损术则以减数与差相等而得到.三、巩固练习:1、练习:教材P35第1题 2、作业:教材P38第1题 第二课时 1.3.2 算法案例---秦九韶算法教学要求:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质;理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用.教学重点:秦九韶算法的特点及其程序设计.教学难点:秦九韶算法的先进性理解及其程序设计.教学过程:一、复习准备:1. 分别用辗转相除法和更相减损术求出两个正数623和1513的最大公约数.2. 设计一个求多项式5432()254367f x x x x x x =--+-+当5x =时的值的算法. (学生自己提出一般的解决方案:将5x =代入多项式进行计算即可)提问:上述算法在计算时共用了多少次乘法运算?多少次加法运算?此方案有何优缺点?(上述算法一共做了5+4+3+2+1=15次乘法运算,5次加法运算. 优点是简单、易懂;缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.)二、讲授新课:1. 教学秦九韶算法:① 提问:在计算x 的幂值时,可以利用前面的计算结果,以减少计算量,即先计算2x ,然后依次计算2x x ⋅,2()x x x ⋅⋅,2(())x x x x ⋅⋅⋅的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算)② 结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.③ 更有效的一种算法是:将多项式变形为:5432()254367f x x x x x x =--+-+=,依次计算2555⨯-=,55421⨯-=,2153108⨯+=,10856534⨯-=,534572677⨯+=故(5)2677f =. ――这种算法就是“秦九韶算法”. (注意变形,强调格式) ④ 练习:用秦九韶算法求多项式432()2351f x x x x x =+-++当4x =时的值. (学生板书→师生共评→教师提问:上述算法共需多少次乘法运算?多少次加法运算?)⑤ 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a x a x a --=++++的求值问题?改写:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++. 首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,,10n n v v x a -=+. ⑥ 结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值,整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩.这是一个反复执行的步骤,因此可用循环结构来实现.⑦ 练习:用秦九韶算法求多项式5432()52 3.5 2.6 1.70.8f x x x x x x =++-+-当5x =时的值并画出程序框图.2. 小结:秦九韶算法的特点及其程序设计三、巩固练习:1、练习:教材P35第2题 2、作业:教材P36第2题 第三课时 1.3.3 算法案例---进位制教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律. 教学重点:各种进位制之间的互化.教学难点:除k 取余法的理解以及各进位制之间转换的程序框图及其程序的设计.教学过程:一、复习准备:1. 试用秦九韶算法求多项式52()42f x x x =-+当3x =时的值,分析此过程共需多少次乘法运算?多少次加法运算?2. 提问:生活中我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的秤是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又有什么联系呢?二、讲授新课:1. 教学进位制的概念:① 进位制是人们为了计数和运算方便而约定的记数系统,“满几进一”就是几进制,几进制的基数就是几. 如:“满十进一”就是十进制,“满二进一”就是二进制. 同一个数可以用不同的进位制来表示,比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的. 表示各种进位制数一般在数字右下脚加注来表示,如上例中:(2)(8)(16)1110017139==② 一般地,任意一个k 进制数都可以表示成不同位上数字与基数的幂的乘积之和的形式,即1110()1...(0,n n n n k n n n n a a a a a k a a a k a k a ka k a k ----<<≤<=⨯+⨯+⨯+⨯.如:把(2)110011化为十进制数,(2)110011=1⨯25+1⨯24+0⨯23+0⨯22+1⨯21+1⨯20=32+16+2+1=51.把八进制数(8)7348化为十进制数,3210(8)7348783848883816=⨯+⨯+⨯+⨯=.2. 教学进位制之间的互化:①例1:把二进制数(2)1001101化为十进制数.(学生板书→教师点评→师生共同总结将非十进制转为十进制数的方法) 分析此过程的算法过程,编写过程的程序语言. 见P34②练习:将(5)2341、(3)121转化成十进制数.③例2、把89化为二进制数.分析:根据进位制的定义,二进制就是“满二进一”,可以用2连续去除89或所得商,然后取余数. (教师板书)上述方法也可以推广为把十进制化为k 进制数的算法,这种算法成为除k 取余法. ④练习:用除k 取余法将89化为四进制数、六进制数.⑤例3、把二进制数(2)11011.101化为十进制数.解:4(211-=⨯. (小数也可利用上述方法化进行不同进位制之间的互化. )变式:化为八进制→方法:进制互化3. 小结:进位制的定义;进位制之间的互化.三、巩固练习:1、练习:教材P35第3题 2、作业:教材P38第3题 第四课时 1.3.4 生活中的算法实例教学要求:通过生活实例进一步了解算法思想.教学重点:生活实例的算法分析.教学难点:算法思想的理解.教学过程:一、复习准备:1. 前面学习了哪几种算法案例?每种算法的作用及操作方法是怎样的?2. 算法思想在我们的生活中无处不在,如何利用我们所学习的知识解决生活中的实际问题?二、讲授新课:1. 霍奇森算法:提问:同学们经常会面对一个共同的问题,就是有时有太多的事情要做. 例如,你可能要面临好几门课的作业的最后期限,你如何合理安排以确保每门课的作业都能如期完成?如果根本不可能全部按期完成,你该怎么办?(霍奇森算法可以。

人教版高中数学必修三 第一章 算法初步1.2算法与程序框图TI教案

人教版高中数学必修三 第一章 算法初步1.2算法与程序框图TI教案

算法与程序框图教案1.1 算法与程序框图(3课时)1.1.2程序框图教学目标:1. 了解程序框图的概念,理解程序框图的符号表示2. 程序框图的规则重点难点:1.程序框图的概念与符号表示2.程序框图的规则教学过程:一. 引入1.程序框图概念算法可以用自然语言来描述,但为了使算法的程序或步骤表达的更直观,我们常用框图表示? 问题: 什么程序框图?程序框图: 又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

通常,程序框图由程序与流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线是方向箭头,按照算法进行的顺序将程序框连接起来。

例1:(1)用二分法设计一个求方程022=-x 的近似根的算法.(2)用程序框图表示此算法。

解:设所求近似根与精确解的差的绝对值不超过0.005,算法:第一步:令()22-=x x f .因为()()02,01><f f ,所以设x 1=1,x 2=2.第二步:令221x x m +=,判断f (m )是否为0.若是,则m 为所求;若否,则继续判断()()m f x f ⋅1大于0还是小于0.第三步:若()()01>⋅m f x f ,则x 1=m ;否则,令x 2=m.第四步:判断005.021<-x x 是否成立?若是,则x 1、x 2之间的任意值均为满足条件的近似根(不防取近似根为m=122x x +.);若否,则返回第二步. 说明:按以上步骤,我们将依次得到课本第4页的表1-1和图1.1-1.于是,开区间(1.4140625,1.41796875)中的实数都满足假设条件的原方程是近似根.(2)程序框图循环结构例2: 判断一个正整数n是否是质数。

(1)试写出一个算法;(2)用程序框图表示这个算法。

(1)解:第一步:判断n是否等于2.若n=2, 则n是质数;若n>2,则执行第二步。

第二步:依次从2~(n-1)检验是不是n的因数,即整除n的数。

2022版优化方案高一数学人教版必修三学案 第一章 算法初步 1.1.2第2课时循环结构

2022版优化方案高一数学人教版必修三学案 第一章 算法初步 1.1.2第2课时循环结构

第2课时循环结构1.问题导航(1)什么是循环结构、循环体?(2)循环结构可细分为哪两类?它们有什么相同点和不同点?(3)什么状况下,可以使用循环结构?(4)循环结构与条件结构有什么关系?2.例题导读通过对例6的学习,学会当算法过程中包含重复存在的步骤时,可以用循环结构表示,同时学会循环结构的两类表示:一类是当型循环结构,另一类是直到型循环结构;通过对例7的学习,学会依据“确定循环体”“初始化变量”“设定循环把握条件”的挨次来构造循环结构.1.循环结构的概念及相关内容(1)循环结构:依据肯定的条件反复执行某些步骤的状况.(2)循环体:反复执行的步骤.2.循环结构的分类及特征名称直到型循环当型循环结构特征先执行循环体,后推断条件,若条件不满足,就连续执行循环体,直到条件满足时终止循环.先推断条件,若条件满足,则执行循环体,否则终止循环.1.推断下列各题.(对的打“√”,错的打“×”)(1)程序框图中的循环可以是无尽的循环;()(2)循环结构是在一些算法中从某处开头依据肯定条件,反复执行某一处理步骤,故循环结构中肯定包含条件结构;()(3)循环结构中不肯定包含条件结构.()解析:程序框图中的循环,必需是有限循环;循环结构肯定包含条件结构.答案:(1)×(2)√(3)×2.下面的框图是循环结构的是()A.①②B.②③C.③④D.②④解析:选C.由循环结构的特点知③④是循环结构,其中①是挨次结构,②是条件结构.3.运行如图所示的程序框图,输出的结果为________.解析:n=1;S=1+0=1,n=2;S=3,n=3;S=6,n=4;S=10,n=5;S=15,n=6;S=21,n=7;S=28,n=8.答案:284.举例说明循环结构适用哪些常见的计算?解:循环结构主要用在一些有规律的重复计算中,如累加求和,累乘求积等问题.1.算法的基本规律结构有三种,即挨次结构、条件结构和循环结构.其中挨次结构是最简洁的结构,也是最基本的结构,循环结构必定包含条件结构,所以这三种基本规律结构是相互支撑的,它们共同构成了算法的基本结构,无论怎样简单的规律结构,都可以通过这三种结构来表达.2.两种循环结构的相同点:从两种不同形式的循环结构可以看出,循环结构中肯定包含条件结构,用于确定何时终止执行循环体.3.假如算法问题里涉及的运算进行了很多次重复的操作,且先后参与运算的数之间有相同的规律,就可引入变量循环参与运算(我们称之为循环变量),应用于循环结构.在循环结构中,要留意依据条件设计合理的计数变量、累加和累乘变量等,特殊要求条件的表述要恰当、精确.循环结构程序框图的设计设计一个算法,求13+23+…+993+1003的值,并画出程序框图.(链接教材P13例6)[解]算法如下:第一步,使S=0.其次步,使I=1.第三步,使S=S+I3.第四步,使I=I+1.第五步,若I≤100,则返回第三步;否则,输出S,算法结束.程序框图如图所示.方法归纳(1)假如算法问题中涉及的运算进行了多次重复的操作,且先后参与运算的数之间有相同的变化规律,就可以利用循环结构设计算法解决.(2)本题易错点是初始值与计数变量的取值;在循环结构中,要留意依据条件设计合理的计数变量、累加变量和累乘变量等,条件的表述肯定要恰当、精确,累加变量的初始值一般取0,而累乘变量的初始值一般取1.1.(1)如图所示程序框图输出的结果是() A.8 B.9C.10 D.11解析:选D.当i=11时,不满足条件即输出.(2)设计求1×2×3×4×…×2 015的程序框图.解:程序框图如图所示:利用循环结构求满足条件的数值求满足1+12+13+14+…+1n>2的最小正整数n,写出算法,并画出程序框图.[解]算法如下:第一步,S=0;其次步,i=1;第三步,S=S+1i;第四步,i=i+1;第五步,若S>2,则输出i-1,否则返回第三步,循环结束.程序框图如图所示:[互动探究] 若将本例中的1n 改为1n 2,其他条件与结论都不变,那么,算法与程序框图需要怎样变化?解:算法与程序框图中,都将“S =S +1i ”改为“S =S +1i 2”.方法归纳求满足条件的最值问题的实质及留意事项:(1)实质:利用计算机的快速运算功能,对全部满足条件的变量逐一测试,直到产生第一个(不)满足条件的值时结束循环.(2)留意事项:①要明确数字的结构特征,打算循环的终止条件与数的结构特征的关系及循环次数.②要留意要统计的数消灭的次数与循环次数的区分.③要特殊留意推断框中循环变量的取值限制,是“>”“<”还是“≥”“≤”,它们的意义是不同的.2.(1)某程序框图如图所示,则该程序的算法功能是________.解析:由程序框图可知,输出的i 是满足1×3×5×7×…×n >50 000的最小正整数n .答案:求满足1×3×5×7×…×n >50 000的最小正整数n(2)已知1+2+3+4+…+i ≤200,画出求i 的最大值的程序框图. 解:程序框图如图所示.循环结构的实际应用某工厂2022年生产小轿车200万辆,技术革新后估计每年的生产力量比上一年增加5%,问最早哪一年该厂生产的小轿车数量超过300万辆?写出解决该问题的一个算法,并画出相应的程序框图.[解] 算法如下:第一步,令n =0,a =200,r =0.05;其次步,T =ar (计算年增量);第三步,a =a +T (计算年产量);第四步,假如a ≤300,那么n =n +1,返回其次步;否则执行第五步; 第五步,N =2022+n ; 第六步,输出N . 程序框图如图所示:方法归纳(1)在解决实际问题时,关键是读懂题目,建立合适的模型,找到问题的计算公式.例如本题中T=200(1+5%)n.然后再去设计算法,画出程序框图.(2)设计一个程序框图算法的一般步骤:①用自然语言表述算法步骤;②确定每一个算法步骤所包含的规律结构,并用相应的程序框图表示,得到表示该步骤的程序框图;③将全部步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序框图.3.(1)小红今年12岁,她父亲比她大25岁,设计程序框图,计算出几年后她父亲比她的年龄大一倍,那时他们两人的年龄各是多少?解:程序框图如图所示.(2)某城市现有人口总数为100万人,假如年自然增长率为1.2%,试解答下列问题:①写出该城市人口数y(万人)与年份x(年)的函数关系式;②用流程图表示如下算法:计算大约多少年以后该城市人口将达到120万人.解:①y=100(1+1.2%)x;②程序框图如图:易错警示忽视初始值以及循环终止条件致误画出求S=14+24+34+…+104的程序框图.[解]程序框图如图所示:[错因与防范](1)本题易消灭累加和S的初始值为1,循环终止条件为i<10的错误.(2)循环结构中对循环次数的把握格外关键,它直接影响着运算的结果.(3)把握循环次数要引入循环变量,其取值如何限制,要弄清两个问题:一是需要运算的次数;二是循环结构的形式,是“当型”还是“直到型”.扫一扫进入91导学网()循环结构4.(1)(2022·高考重庆卷)执行如图所示的程序框图,则输出s的值为()A.10 B.17C.19 D.36解析:选C.开头s=0,k=2;第一次循环s=2,k=3;其次次循环s=5,k=5;第三次循环s=10,k=9;第四次循环s=19,k=17,不满足条件,退出循环,输出s=19.故选C.(2)给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),请在图中推断框①处和执行框②处填上合适的语句,使之能完成该题算法功能.解:该算法使用了当型循环结构.由于是求30个数的和,故循环体应执行30次,其中i是计数变量.因此推断框内的条件应当用来限制计数变量i,故应填写i≤30?.算法中的变量p表示参与求和的各个数,由于它也是变化的,且满足第i个数比其前一个数大i-1,第i +1个数比其前一个数大i,故应有p=p+i.即:①处应填i≤30?;②处应填p=p+i.1.如图所示的程序框图中,语句“S=S×n”将被执行的次数是()A.4 B.5C.6 D.7解析:选B.由程序框图知:S=1×2×3×…×n.又1×2×3×4×5=120<200,1×2×3×4×5×6=720>200.故语句“S=S×n”被执行了5次.2.如图所示的程序框图表示的算法功能是()A.计算小于100的奇数的连乘积B.计算从1开头的连续奇数的连乘积C.从1开头的连续奇数的连乘积,当乘积大于或等于100时,计算奇数的个数D.计算1×3×5×…×n≥100时的最小的n值解析:选D.这是一个直到型循环结构,S=1×3×5×…,推断条件是S≥100?,输出的是i,所以表示的是S=1×3×5×…×n≥100时的最小的n值,故选D.3.如图所示的程序框图的输出结果为-18,那么在推断框中①表示的条件应当是()A.i≥9? B.i≥8?C.i≥7? D.i≥6?解析:选A.当S=6,i=1时,m=-2×1+6=4,S=6+4=10;当i=2时,m=-2×2+6=2,S=10+2=12;当i=3时,m=-2×3+6=0,S=0+12=12;当i=4时,m=-2×4+6=-2,S=-2+12=10;当i=5时,m=-2×5+6=-4,S=-4+10=6;当i=6时,m=-2×6+6=-6,S=-6+6=0;当i=7时,m=-2×7+6=-8,S=-8+0=-8;当i=8时,m=-2×8+6=-10,S=-10-8=-18.故推断条件为:i≥9?,故选A.4.(2022·高考江苏卷)如图是一个算法流程图,则输出的n的值是________.解析:由算法流程图可知:第一次循环:n=1,2n=2<20,不满足要求,进入下一次循环;其次次循环:n=2,2n=4<20,不满足要求,进入下一次循环;第三次循环:n=3,2n=8<20,不满足要求,进入下一次循环;第四次循环:n=4,2n=16<20,不满足要求,进入下一次循环;第五次循环:n=5,2n=32>20,满足要求,输出n=5.答案:5[A.基础达标]1.一个完整的程序框图至少包含()A.起止框和输入、输出框B.起止框和处理框C.起止框和推断框D.起止框、处理框和输入、输出框解析:选A.一个完整的程序框图至少包括起止框和输入、输出框,故选A. 2.(2021·安徽巢湖检测)如图所示是一个循环结构的算法,下列说法不正确的是()A.①是循环变量初始化,循环就要开头B.②为循环体C.③是推断是否连续循环的终止条件D.①可以省略不写解析:选D.①为循环变量初始化,必需先赋值才能有效把握循环,不行省略.故选D.3.执行如图所示的程序框图,输出的S值为()A.2 B.4C.8 D.16解析:选C.框图执行如下:k=0,S=1;S=1,k=1;S=2,k=2;S=8,k=3.所以输出S的值为8.4.(2022·高考安徽卷)如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55C.78 D.89解析:选B.当输入x=1,y=1,执行z=x+y及z≤50,x=y,y=z后,x,y,z的值依次对应如下:x=1,y=1,z=2;x=1,y=2,z=3;x=2,y=3,z=5;x=3,y=5,z=8;x=5,y=8,z=13;x=8,y=13,z=21;x=13,y=21,z=34;x=21,y=34,z=55.由于55≤50不成立,故输出55.故选B.5.执行如图所示的程序框图,若m=5,则输出的结果为()A.4B.5C.6D.8解析:选B.由程序框图可知,k=0,P=1.第一次循环:由于k=0<5,所以P=1×30=1,k=0+1=1.其次次循环:由于k=1<5,所以P=1×31=3,k=1+1=2.第三次循环:由于k=2<5,所以P=3×32=33,k=2+1=3.第四次循环:由于k=3<5,所以P=33×33=36,k=3+1=4.第五次循环:由于k=4<5,所以P=36×34=310,k=4+1=5.此时满足推断框内的条件,输出结果为z=log9 310=5.故选B.6.(2022·高考天津卷)阅读如图所示的框图,运行相应的程序,输出S的值为________.解析:S=0,n=3,S=0+(-2)3=-8,n=3-1=2≤1不成立;故S=-8+(-2)2=-4,n=2-1=1≤1成立.故输出S的值为-4.答案:-47.(2021·临沂调研)假如执行如图所示的程序框图,输入x=4.5,则输出的数i=________.解析:第一次执行循环体时,i=1,x=3.5;其次次执行循环体时,i=2,x=2.5;第三次执行循环体时,i=3,x=1.5;第四次执行循环体时,i=4,x=0.5<1.输出i=4,结束.答案:48.执行如图所示的程序框图,若输出的a值大于2 015,那么推断框内的条件应为________.解析:第一次循环:k=1,a=1,满足条件,所以a=4×1+3=7,k=1+1=2.SGKS87其次次循环:a=7<2 015,故连续循环,所以a=4×7+3=31,k=2+1=3.第三次循环:a=31<2 015,故连续循环,所以a=4×31+3=127,k=3+1=4.第四次循环:a=127<2 015,故连续循环,所以a=4×127+3=511,k=4+1=5.第五次循环:k=511<2 015,故连续循环,所以a=4×511+3=2 047,k=5+1=6.由于a=2 047>2 015,故不符合条件,输出a值.所以推断框内的条件是“k≤5?”.答案:k≤5?9.设计一个算法,求表达式12+22+32+…+102的值,并画出程序框图.解:算法如下:第一步,令S=0,i=1.其次步,推断i是否小于或等于10,若是,则执行第三步;若否,则输出S.第三步,令S=S+i2,并令i=i+1,然后返回其次步.程序框图如图:10.有一列数1,1,2,3,5,8,…,其规律是从第3个数开头,后一个数等于前两个数的和,画出计算这列数前20个数的和的程序框图.解:程序框图如图所示:[B.力量提升]1.(2022·高考北京卷)执行如图所示的程序框图,输出的S值为()A.1 B.3C.7 D.15解析:选C.S=20+21+22=7.2.(2022·高考福建卷)阅读如图所示的程序框图,运行相应的程序,输出的n的值为()A.1 B.2C.3 D.4解析:选B.当n=1时,21>12满足条件,连续循环得n=2,22>22不成立,不满足条件,所以输出n=2.3.(2022·高考湖北卷)阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出S的值为________.解析:由题意,程序运行如下:k=1<9,S=21+1=3,k=2<9;S=3+22+2=9,k=3<9;S=9+23+3=20,k=4<9;S=20+24+4=40,k=5<9;S=40+25+5=77,k=6<9;S=77+26+6=147,k=7<9;S=147+27+7=282,k=8<9;S=282+28+8=546,k=9≤9;S=546+29+9=1 067,k=10>9,输出S=1 067,程序结束.答案:1 0674.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为________.解析:i=1,S=0.第一次循环:S=0+lg 13=-lg 3>-1,连续循环,i =3;其次次循环:S=-lg 3+lg 35=-lg 5>-1,连续循环,i=5;第三次循环:S=-lg 5+lg 57=-lg 7>-1,连续循环,i=7;第四次循环:S=-lg 7+lg 79=-lg 9>-1,连续循环,i=9;第五次循环:S=-lg 9+lg 911=-lg 11<-1,结束循环,输出i=9.答案:95.画出计算1+13+15+17+…+12 015的值的一个程序框图.解:相加各数的分子都是1,而分母是有规律递增的,每次增加2,引入变量S表示和,计数变量i,i的值每次增加2,则每次循环都有S=S+1i,i=i+2,这样反复进行.程序框图如图所示:6.(选做题)设计一个求满足10<x2<1 000的全部正整数x的值的程序框图.解:可以从最小的正整数1开头进行推断,推断是否满足10<x2<1 000.若满足,则输出x的值;若不满足,则对1进行累加后再进行推断,依次下去,直到x2≥1 000为止,结束程序.程序框图如图所示:。

人教A版高中数学必修三课件:1-2-3

人教A版高中数学必修三课件:1-2-3
新课标导 学
数 学
必修③ ·人教 A版
第一章
算法初步
1.2 基本算法语句
1.2. 3 循环语句
1 2 3
自主预习 学 案 互动探究 学 案 课时作业 学 案
自主预习学案
• 循环是计算机解题的一个重要特征.由于 计算机运算速度快,最适宜做重复性质的 工作,所以当我们在进行程序设计时,总 是要把复杂的、不易理解的求解过程转换 为容易理解的、可操作的、多次重复的求 解过程.这样一方面降低了问题的复杂程 度,另一方面也减少了程序书写及输入的 工作量,同时也可以充分发挥计算机运算 速度快且可自动执行程序的优势.
[ 解析] 程序如下: S=1 i=2 DO S=S*i i=i+2 LOOP UNTIL i>100 PRINT S END
• 『规律总结』 UNTIL语句的适用类型及 执行方式
〔跟踪练习1〕 导学号 93750192 下面为一个求20个数的平均数的程序,在横线上应填充的语句为( A.i>20 C.i>=20 B.i<20 D.i<=20
[ 错解] 程序如下: S=5 000 i =0 WHILE S<40 000 S=S*1+0.1 i=i+1 WEND PRINT i END
• [辨析] 错解中的循环求出的S不是总销量
,而是每年的年销量.
• 用“m=m*(1+0. 1)”表示累乘,求出每
m=5000 年销量;用 “S=S+m”表示累加,求出 S=0 i=0 总销量. WHILE S<40000 S=S+ [正解 ]m 程序如下: m=m*1+0.1 i=i+1 WEND PRINT i END
[ 解析] 程序如下: i=2 p=0 DO p=p+i i=i+2 LOOP UNTIL i>99 PRINT P END
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
end end 点评:对于求不定方程的整数解的问题,利用循环语句和条件语句可以找出所有的解。 例 4:已知 n 个数排成一行如下:
a1 , a 2 , a 3 , , a n 1 , a n 其中下脚码表示 n 个数的排列位置。这一行数满足条件:
a1 a2 1 a n 2 2an an 1
编写求这行数的第 n 项的程序 。
2、程序: a=input("a=") b=input("b=") m=a;a=b;b=m; print(%io(2),a,b)
答案 A组
B组
1. 2. 2 条件语句 A组
.
精品文档
一、选择题:
1、下列关于 if 语句的叙述正确的是()
( A)if 语句中必须有 else 和 end;
(B) if 语句中可以没有 end; (C) if 语句中可以没有 else ,但必须以 end 结束;
一、 1 C 2 D 3 D
二、 4 字符 5 A=6
三、 6 程序: x=input("x=")
y=x^2+2*x-3
7 程序: a=input( “a=”)
b=input(
“b=”)
c=sqrt(a^2+b^2)
s=(a*b)/2
1、程序: r=input("r=") h=input("h=") V=1/3*3.14*r^2*h
end 结束循环体。
例 3:求 100 以内的勾股数。 精析:本题实际上是求不定方程
x2 y 2 z 2 的整数解问题, x 、y、z 的取值范围都是 1 到
100 的整数,可以利用三重循环结构和条件分支结构。
精品文档
解: for x=1:100 for y=1:100 for z=1:100 a=x^2;b=y^2;c=z^2; if a+b<>c else print(%io(2),x,y,z) end end
b=input("b=") ;
c=input("c=") ;
MAX=a;
If b>MAX
MAX=b;
end
if c>MAX
MAX=c;
end
print(%io(2),MAX)
若根据程序提示输入 a=4 b=2 c=-5 ,则程序运行结果是()
(A) max=a (B) max=b (C) max=c (D) max=4
度的程序语句 .
t 时刻的速
.
精品文档
7、任给三个数,按从大小顺序排序三个数 .
B组 1、某市的出租车标价为 1.20 元 /km,但事实上的收费标准如下:最开始 4km内不管车行驶 路程多少,均收费 10 元(即起步费) ,4km 后到 15km 之间,每公里收费 1.20 元, 15km后每 公里再加收 50%,即每公里 1.80 元。写出付费总数 f 与打车路程 x 之间的函数关系,并编 写出 scilab 程序。
100 为止。要求输出
2、编制 scilab 程序解百钱买百鸡问题: 用 100 元买 100 只鸡,其中公鸡每只 5 元,母鸡每
只 3 元,小鸡 3 只一元, 问能买多少只公鸡?多少只母鸡?多少只小鸡?(提示:
设 x 只公
鸡, y 只母鸡,则买小鸡的只数 z=100-x-y , 100 元最多买公鸡 20 只,买母鸡最多 33 只)
精品文档
.
精析:利用 while 循环语句。 解: n=input("n=")
A=1;B=1;k=2; while k<n
C=2*A+B; A=B;B=C; k=k+1; end C 点评:注意语句的最后有分号,表示不显示该语句的运行结果,没有则显示结果。
【过关评估】
1. 2.1 赋值、输入和输出语句
A组
一、选择题:
(D) if 语句中可以没有 end,但必须有 else.
2、已知一程序如下:
x=input("x=")
if x>=0
y=1
else y=-1
end
若输入 x=5,运行结果是()
(A) x=5 y=1(B) x=5 y=-1 (C) y=1 (D) y=-1 3、已知一程序如下:
a=input("a=") ;
学法指导: 通过模仿、操作、探索,将程序框图转变为程序语言,了解算法语言的基
本构成,理解几种基本算法语句,熟悉算法的三种基本结构。
【范例精析】
例 1:给定 x 的任一个值,求函数 f ( x)
x, x 0
x2
1, x
的值。
0
精析:属于条件分支结构,利用键盘输入语句和条件语句编程。 解: x=input("x=")
(D) 在程序语句中 x=input( “ chinese ” ) 表示把 chinese 赋给 x .
.
一、填空题:
4、 scilab 语言的输入语句“ input ”,不仅可以输入数值,也可以输入
5、程序: a=3; b=4; c=5;
s=(a+b+c)/2;
A=SQRT(s*(s-a)*(s-b)*(s-c))
2、 scilab 程序: c=1 ;
for I=1
:5
c=c*I ;
end
c
运行的结果是()
(A)c=5 (B)c=120 (C)c=1 (D) 显示程序错误
3、 scilab 程序: A=1 ; B=1;
while B<15
A=A+B;B=A+B;
end
C=A+B
.
精品文档
运行的结果是()
(A) C=2 (B)C=3 (C)C=15 (D)C=34
【学习目标】
1.2 基本算法语句
经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句——输 入语句、输出语句、赋值语句、条件语句、循环语句,体会算法的基本思想。
【知识网络】
输入语句
输出语句
基本算法语句
赋值语句
条件语句
【学路导引】
循环语句
学习重点: 输入语句、输出语句、赋值语句、条件语句、循环语句的用法 学习难点: 用SCILAB 语言来演示实现算法的三种基本结构
一、填空题:
4、在编制 scilab 程序中,条件语句和循环语句的结束必须都是
5、 scilab 语言中的循环语句有两种
循环和
二、解答题:
6、用循环语句编写求 2 n 的程序。
. 循环 .
7、已知 i 、 j 是正整数,求 i j 10 的所有正整数对 i 、 j 的程序 .
精品文档
B组 1、将 1, 3,5,…, 2n-1 ,… 等奇数顺序累加,直到其和等于或大于 累加的和以及累加的项数 .
2、编制 scilab 程序:从键盘上输入三个数, 如果这三个数能构成三角形的三边长,则输出 信息“ neng gou cheng san jiao xing ”,并求三角形的面积,否则输出信息“ bu neng gou cheng san jiao xing ”。
答案
A组
一、 1C 2A 3D
二、 4、 if select-case 5
一、 1C 2C 3D 二、 4 end 5 for while 三、 6 n=input("n=")
s=1; for i=1:n
s=s*2 end s 7 for i=1:9
for j=1:9 s=i+j; if s<10 print(%io(2),i,j) end
.
答案 A组
ห้องสมุดไป่ตู้
end end
B组 1 解: Sum=0,i=1,n=0
if x>0 y=x*x+1
else y=x end 点评:先编制程序框图,再根据框图编写程序。 例 2:求平方不超过 1000 的最大正整数。 精析:利用 while 循环语句 解: j=1; while j*j<1000
j=j+1; end j=j-1 点评:循环语句有 for 循环和 while 循环两种。循环语句的一定要以
1、在赋值语句中, “N=N+1”是()
(A)
没有意义的 (B)N 与 N+1 相等 (C) 将 N 的原值加 1 再赋给 N, N 的值增加 1 (D)
无法运行
2、 Scilab 程序: a=3 ; b=-4 ; c=8; a=b; b=c;c=a;
Print(%io(2) , a, b, c)
运行后结果是()
(A) a=3 b=-4 c=8 (B)a=-4 b=3 c=8 (C)a=-4 b=8 c=3 (D)a=-4 b=8 c=-4
1、 下列命题中错误的是()
( A)在程序语言中“=”是赋值号,与数学中的等号的意义不一样

(B) input 是键盘输入语句 ,控制屏幕输入;
(C) 程序语句 print(%(2),a,b) 中的参数% io ( 2)表示在屏幕上输出 ;
end
else
disp("bu neng gou cheng san jiao xing")
end
1. 2. 3 循环语句
A组 一、选择题:
1、 Scilab 程序: j=1 ;
while j*j<100
j=j+1 ;
end
j=j-1
的运行结果是()
(A)j=j-1(B)j=100 (C)j=10 (D)j=9
b=input("b=")
相关文档
最新文档