信道分类及工作原理
信道实验报告

一、实验目的1. 了解信道的基本概念和分类;2. 掌握信道特性参数的测量方法;3. 分析信道的频率响应和时延特性;4. 熟悉信道仿真软件的使用。
二、实验原理信道是指信号传输过程中所经过的媒介,如电缆、光纤、无线电波等。
信道特性参数主要包括信噪比(SNR)、频率响应、时延等。
信噪比是衡量信号质量的重要指标,频率响应反映了信道对不同频率信号的传输能力,时延是指信号在信道中传播的时间。
三、实验内容1. 信噪比测量(1)实验原理:信噪比(SNR)是指信号功率与噪声功率之比,通常用分贝(dB)表示。
信噪比越大,信号质量越好。
(2)实验步骤:① 将信号发生器产生的信号接入信道;② 使用频谱分析仪测量信号功率和噪声功率;③ 计算信噪比。
2. 频率响应测量(1)实验原理:频率响应是指信道对不同频率信号的传输能力。
频率响应的测量通常使用扫频信号。
(2)实验步骤:① 将扫频信号发生器产生的信号接入信道;② 使用频谱分析仪测量信道输出信号的频率响应;③ 分析频率响应特性。
3. 时延测量(1)实验原理:时延是指信号在信道中传播的时间。
时延的测量通常使用脉冲信号。
(2)实验步骤:① 将脉冲信号发生器产生的信号接入信道;② 使用示波器测量信号在信道中的传播时间;③ 计算时延。
4. 信道仿真(1)实验原理:信道仿真是指利用计算机软件模拟信道特性,分析信道的传输性能。
(2)实验步骤:① 选择信道仿真软件,如MATLAB、CST等;② 根据实验需求,建立信道模型;③ 设置仿真参数,如信号频率、带宽等;④ 运行仿真,分析信道的传输性能。
四、实验结果与分析1. 信噪比测量结果:实验测得信噪比为20dB,表明信号质量较好。
2. 频率响应测量结果:实验测得信道频率响应在1MHz至100MHz范围内,传输能力较好。
3. 时延测量结果:实验测得信道时延为0.5ms,表明信号传播速度较快。
4. 信道仿真结果:仿真结果表明,在相同条件下,信道的传输性能与实验结果基本一致。
通信原理(樊昌信)第4章信道

有线信道
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
结构:
纤芯 包层
按折射率分类:
阶跃型 梯度型
按模式分类:
多模光纤 单模光纤
无线信道
视线传播 line-of-sight
d
频率: > 30 MHz
h
发射
特性:直线传播、穿透电离层 天线 r
用途:卫星和外太空通信
传播途径
d
D
接收 天线
r
超短波及微波通信
视线传播方式
距离:与天线高度有关
h D2 D2 (m) 8r 50
D 为收发天线间距离(km)
例如 设收发天线的架设 高度均为40 m,则最 远通信距离为:
表 有线信道的线路种类、构造、特征和主要用途
线路种类 双绞线
同轴电缆 光纤
构造
特征
主要用途
便宜、构造简单,
传输频带宽,有漏 话现象,容易混入 杂音
电话用户线 低速LAN
价格稍高,传输
频带宽,漏话感应 少,分支、接头容 易
CATV分配电缆 高速LAN
低损耗,频带宽, 国际间主干线
重量轻,直径小,
国内城市间主
对流层:约 0 ~10 km 平流层:约 10~60 km 电离层:约 60~400 km
60 km
10 km 0 km
电磁波的传播方式:
地波 ground- wave
频率: < 2 MHz 特性:有绕射能力 距离:数百或数千米 用于:AM广播
通信原理信道与讲义噪声第3章

通信中常见的几种噪声
所谓白噪声是指它的功率谱密度函数在整个频率域(-∞<ω <+∞)内是常数,即服从均匀分布。我们称它为白噪声,因为它 类似于光学中包括全部可见光频率在内的白光。
理想的白噪声功率谱密度通常被定义为
Pn
()def
n0 2
( )
式中n0的单位是W/Hz 。
通常,若采用单边频谱,即频率在0到无穷大范围内时, 白噪声的功率谱密度函数又常写成
在通信理论分析中,常常通过求其自相关函数或方差来计算噪 声的功率。
高斯分布的密度函数
正态概率分布函数还经常表示成与误差函数相联系的形 式,所谓误差函数,它的定义式为
互补误差函数
er(fx) 2 xez2dz
π0
er(x f)c1er(xf)2 xez2dz
高斯型白噪声
所谓高斯白噪声是指噪声的概率密度函数满足正态分布 统计特性,同时它的功率谱密度函数是常数的一类噪声。
(a) 一对输入端, 一对输出端; (b) m对输入端,n对输出端
对于二对端的信道模型来说,它的输入和输出之间的关系 式可表示成
eo(t)f[ei(t) ]n(t)
式中, ei(t)——输入的已调信号; eo(t)——信道输出波形; n(t)——信道噪声(或称信道干扰); f[ei(t)]——表示信道对信号影响(变换)的某种函数关系
通信原理信道与噪声第3章
精品jin
3.1 信道特性
信道的定义 通俗地说,信道是指以Байду номын сангаас输媒介(质)为基础的信号通路。
具体地说,信道是指由有线或无线电线路提供的信号通路;抽 象地说,信道是指定的一段频带,它让信号通过,同时又给信 号以限制和损害。 信道的作用是传输信号。
通信原理(第四章)

27
第4章 信 道 章
四进制编码信道模型
0 0
1 送
端
发
1
收 端
接
2
2
3
3
28ቤተ መጻሕፍቲ ባይዱ
第4章 信 道 章
4.4 信道特性对信号传输的影响 恒参信道的影响 恒参信道对信号传输的影响是确定的或者 是变化极其缓慢的。因此,其传输特性可以 等效为一个线性时不变网络。 只要知道网络 的传输特性,就可以采用信号分析方法,分 析信号及其网络特性。 线性网络的传输特性可以用幅度频率特 性和相位频率特性来表征。 现在我们首先讨论 理想情况下的恒参信道特性。
平流层 60 km 对流层 10 km 0 km 地 面
6
第4章 信 道 章
电离层对于传播的影响 反射 散射
7
第4章 信 道 章
电磁波的分类: 电磁波的分类: 地波 频率 < 2 MHz 有绕射能力 距离: 距离:数百或数千千米 天波 频率: 频率:2 ~ 30 MHz 特点: 特点:被电离层反射 一次反射距离: 一次反射距离:< 4000 km 寂静区: 寂静区:
13
第4章 信 道 章
4.2 有线信道
明线
14
第4章 信 道 章
对称电缆:由许多对双绞线组成, 对称电缆:由许多对双绞线组成,分非屏蔽 (UTP)和屏蔽(STP)两种。 )和屏蔽( )两种。
塑料外皮
双绞线( 5对)
图4-9 双绞线
15
第4章 信 道 章
同轴电缆
16
第4章 信 道 章
n2 n1 折射率
25
第4章 信 道 章
4.3.2 编码信道模型
调制信道对信号的影响是通过k(t)和 使已调信号发生波形 调制信道对信号的影响是通过 和n(t)使已调信号发生波形 失真。 失真。 编码信道对信号的影响则是一种数字序列的变换, 编码信道对信号的影响则是一种数字序列的变换,即将 一种数字序列变成另一种数字序列。 一种数字序列变成另一种数字序列。误码 输入、输出都是数字信号, 输入、输出都是数字信号,关心的是误码率而不是信号 失真情况,但误码与调制信道有关, 失真情况,但误码与调制信道有关,无调制解调器时误码由 发滤波器设计不当及n(t)引起 引起。 收、发滤波器设计不当及 引起。 编码信道模型是用数字的转移概率来描述。 编码信道模型是用数字的转移概率来描述。
通信原理-信道-PPT课件

•编码信道模型: 二进制信号、无记忆信道,
0 P(0/1) 1 P(1/1)
P(0/0)
P(1/0)
0 1
其中,P(0/0), P(1/1) - 正确转移概率 P(0/1), P(1/0) - 错误转移概率 转移概率 - 决定于编码信道的特性 P(0/0) = 1 - P(1/0) P(1/1) = 1 - P(0/1)
13
通信卫 星
电离层
地—电离层 波导传 播
电离层
天波传 播
地球
地球 外大气 层及行星 际空间 电波传播
视距传 播 对流层 散射传播 电离层 散射传播 (b)
(a)
14
无线电中继
图1.4.4 无线电中继
15
静止卫星中继通信
16
平流层中继通信
HAPS(High
Altitude Platform Station)
11
(5)散射传播。 这是利用对流层或电离层介质中的不均匀体或流 星余迹对无线电波的散射作用而进行的传播。利用散 射传播实现通信的方式目前主要是对流层散射通信, 其常用频段为 0.2 ~ 5MHz ,单跳距离可达 100 ~ 500km 。 电离层散射通信只能工作在较低频段 30~60MHz, 单跳距离可达1000~2000km,但因传输频带窄,其应 用受到限制。 流星余迹持续时间短,但出现频繁,可用于建立 瞬间通信,常用通信频段为 30~70MHz,单跳通信可 达2000km。实际的流星余迹通信除了利用散射传播外, 还可利用反射进行传播。
3
通常, f [ei(t) ] 可以表示为:k(t) ei(t), 此时, eo(t) = k(t) ei(t) + n(t) 其中k(t)表示时变线性网络的特性 ,称为乘性干扰。
第4章_信道

32
4.3 信道的数学模型
内蒙古大学电子信息工程学院 《通信原理》
4.3.2 编码信道模型
由于信道噪声或其它因素的影响,将导致输出数字序列发生 错误,因此输入输出数字序列之间的关系可以用一组 转移概率 来表征。 转移概率:在二进制系统中,就是“0”转移为“1”的 概率和“1”转移为“0”的概率。
8
4.1 无线信道
内蒙古大学电子信息工程学院 《通信原理》
地波
频率在2MHz以下的电磁波,趋于沿弯曲的地球表面传 播,有一定的绕射能力。 地波在传播过程中要不断损失能量,而且频率越高损 失越大,因此传播距离不大,一般在数百千米到数千千米。
传播路径 传播路径
发射天线 发射天线
地面 地面
接收天线 接收天线
导体 绝缘层
图4-9 双绞线
21
4.2 有线信道
内蒙古大学电子信息工程学院 《通信原理》
传输电信号的有线信道主要有三类:
明线、对称电缆和同轴电缆。 同轴电缆
由内外两根同心圆柱导体构成,两根导体之间用绝缘体 隔离开。内导体多为实心导线,外导体是一根空心导电管或 金属编织网,在外导体外面有一层绝缘保护层。其优点是抗 干扰特性好。
增大视线传播距离的途径 卫星中继(卫星通信)
利用三颗地球同步卫星可以覆盖全球,从而实现全球通信。
利用卫星作为中继站能够增大一次 转发的距离,但是却增大了发射功 率和信号传输的延迟。 此外,发射卫星也是一项巨大的工 程。 故开始研究使用平流层通信。 图4-5 卫星中继
15
4.1 无线信道
发射天线 发射天线
地面 地面
接收天线 接收天线
图4-4
无线电中继
特点:容量大、发射功率小、稳定可靠等。
通信原理-第2章 信道与噪声

一、狭义信道和广义信道
1、狭义信道 、 (1) 狭义信道被定义为发送设备和接收设备之间用 以传输信号的传输媒质。 以传输信号的传输媒质。 (2) 狭义信道分为有线信道和无线信道两类。 两类。 狭义信道分为有线信道和无线信道两类 有线信道 2、广义信道 、 (1) 将信道的范围扩大为:除了传输媒质,还包 将信道的范围扩大为:除了传输媒质, 括有关的部件和电路。 括有关的部件和电路。这种范围扩大了的信道为广 义信道。 义信道。
Y
x1
y1
x2
y2
y3
y4
xL
多进制无记忆编码信道模型
yM
(4)当信道转移概率矩阵中的行和各列分别具有相 )当信道转移概率矩阵中的行和各列分别具有相 对称信道。 同集合的元素时 这类信道称为对称信道 同集合的元素时,这类信道称为对称信道。
p 1 − p P ( yi / xi ) = p 1 − p
11/66
(5)依据乘性噪声对信号的影响是否随时间变化而 依据乘性噪声对信号的影响是否随时间变化而 乘性噪声对信号的影响是否随时间变化 将信道分为恒参信道和随参信道。 将信道分为恒参信道和随参信道。
v i (t)
H(ω , t )
⊕
n(t)
v 0 (t)
v i (t)
H(ω )
⊕
n(t)
v 0 (t)
2.2
信道模型
信道可用一个时变线性网络来等效
V0(t) = f [V(t)]+n(t) i V(t)输 的 调 号 V0(t)信 总 出 形 i 入 已 信 , 道 输 波 n(t)加 噪 ; 性 声 f [V(t)]表 已 信 经 信 所 生 时 线 变 i 示 调 号 过 道 发 的 变 性 换
简明通信原理第3章信道

2021/7/23
3
3.Hale Waihona Puke 信道容量与香农公式信道容量
信道容量是指信道的极限传输能力,可用信道的最大信息传输速
率来衡量。
根据香农(Shannon)信息论可以证明,高斯白噪声背景下的连
续信道的容量为:
著名的香农 信道容量公式
CBlo2g 1N S
(b/s)
式中,B为信道带宽(Hz);S为信号功率(W); n0为噪声单边功率谱密度(W/Hz), N = n0B 为噪声功率(W)。
2021/7/23
2
3.5 信道模型
调制信道模型
调制信道对信号的影响程度取决于C(f)与n(t)的特性。 ❖ C(f)反映信道本身特性。对于信号来说,C(f)可看成是乘性干
扰; ❖ n(t)是独立于信号而始终存在的,因此可视之为加性干扰。
信道一般模型
一种简单而又常用的情况是 C(f)=1,加性噪声信道模型
2021/7/23
4
香农公式告诉我们以下结论:
(1)在给定信道带宽B和接收信噪比S/N的情况下,只要传输信息的速 率Rb≤C,即使信道有噪声,在理论上总能找到一种方法,实现无差错 传输。
(2)提供了B和S/N之间的互换关系。例如,对于给定的C,用增大带 宽B的方法,可以降低对S/N的要求。
香农公式指出了通信系统所能达到的理论极限,却没有指出这种通 信系统的实现方法。实践证明,系统要接近香农的理论极限,必须要借 助编码和调制等技术。
3.1 信 道 分 类
狭义信道——各种物理传输介质 有线信道—指明线、各种电缆和光纤。 无线信道—指可以传输电磁波的自由空间或大气。
广义信道——为方便研究通信系统的一些基本问题而定义。 调制信道—研究调制与解调问题;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中安
2014-11-16
下行的逻辑信道
BSS -> MS
COMMON CHANNELS
FCCH
BCH
SCH BCCH PCH
CCCH
AGCH
DEDICATED CHANNELS DCCH
SDCCH SACCH FACCH
Tห้องสมุดไป่ตู้H/F
TCH
TCH/H
6
中安
2014-11-16
上行的逻辑信道
COMMON CHANNELS
快速随路控制信道(FACCH):FACCH信道与一个业务信道TCH相 关。FACCH在话音传输过程中如果突然需要以比慢速随路控制信 道(SACCH)所能处理的高的多的速度传送信令消息,则需借用 20ms的话音突发脉冲序列来传送信令,这种情况被称为偷帧,如 在系统执行越局切换时。由于话音译码器会重复最后20ms的话音, 所以这种中断不会被用户察觉的。
公共控制信道(CCCH)寻呼(PCH),准许接
入(AGCH)小区广播控制信道(CBCH),随机接入信道(RACH)
寻呼信道(PCH),点对点传播,即寻找寻呼对象。 接入许可信道(AGCH):当网络收到处于空闲模式下MS 的信道请求后,就将给之分配一专用信道,AGCH通过根 据该指派的描述(所分信道的描述,和接入的参数), 向所有的移动台进行广播。属下行信道,点对多点传播。 小区广播控制信道(CBCH):它用于广播短消息和该小 区一些公共的消息(如天气和交通情况),它通常占用 SDCCH/8的第二个子信道,下行信道,点对多点传播。 随机接入信道(RACH):当MS想与网络建立连接时, 它会通过RACH信道来发起接入请求,请求消息包括3个 比特的建立的原因(如呼叫请求、响应寻呼、位置更新 请求、及短消息请求等等)和5个比特的用来区别不同 MS请求的参考随机数,属上行信道,点对点传播方式。
中安
2014-11-16
专用控制信道DCCH (1)
(DEDICATED CONTROL CHANNELS)
专用控制信道包括SDCCH、SACCH、FACCH,这些信道被用于 某一个具体的MS上,均为双向信道。 独立专用控制信道( SDCCH ): SDCCH 是一种双向的专用信 道,它主要用于传送建立连接的信令消息、位置更新消息、 短消息 (TCH 空闲时)、用户鉴权消息、加密命令及应答及各 种附加业务。
MS -> BSS
CCCH
RACH
DEDICATED CHANNELS
SDCCH
DCCH
SACCH FACCH
TCH
TCH/F TCH/H
7
广播控制信道(BCH)
定位,同步小区标示信息,及基站识别码,小区频点等信息
频率校正信道(FCCH)携带信道用于校正MS频率的消息,定位并解调 出同一小区的其他信息。 同步信道(SCH)在解调出SCH信道消息。给出需要同步的所有消息及 该小区的标示信息及基站识别码 广播控制信道(BCCH):MS在空闲模式下为了有效的工作需要大量的 网络信息。而这些信息都将在BCCH信道上来广播。信息基本上包括小 区的所有频点、邻小区的BCCH频点、LAI(LAC+MNC+MCC)
3
慢速随路控制信道( SACCH ): SACCH 是一种伴随着 TCH 和SDCCH的专用信令信道。在上行链路上它主要传递无线 测量报告和第一层报头消息(包括TA值和功率控制级别); 在下行链路上它主要传递系统消息type5、5bis 、5ter、6 及第一层报头消息。这些消息主要包括通信质量、 LAI 号、 CELLID、邻小区的标频信号强度等信息、NCC的限制、小 区选项、 TA值、功率控制级别。 TCH 忙时,由SACCH来传 送短信。