重金属消解与形态提取方法

合集下载

污泥中重金属的形态提取―BCR三态提取法

污泥中重金属的形态提取―BCR三态提取法

复杂体系分离分析结课报告污泥中重金属的形态提取—BCR三态提取法污泥中重金属的形态提取——BCR三态提取法摘要污泥中重金属的形态分析成为评估重金属可迁移性及生物可利用性的有效方式。

围绕其形态提取,西方研究者提出了多种提取方法。

BCR三态提取法逐渐被各国研究者接受,并在实际应用中的到推广。

这也为不同地域污泥重金属毒性评估提供了一个统一的标准。

关键词污泥重金属形态提取BCR三态提取法评估引言自1857年英国伦敦建立世界第一个污水处理厂以来,世界上污水处理业快速发展而不断产生新的废弃物一污泥,同时污泥的处理也成为政府管理中的一项重要问题。

目前,国内外应用比较广泛的污泥处理方式主要有4种,分别为填埋处理,填海处理,焚烧处理和土地利用。

各国在四种处理方式所占处理总量的比例不同。

污泥填埋处理是意大利、荷兰和德国对污泥的主要处理方式。

污泥填海处理的方法简单,不用花费大量能源,却可污染海洋,会导致全球环境问题,此方法目前已受到限制。

污泥的焚烧处理可以最大量地减少污泥体积,但设备和运行费用昂贵,易造成大气污染问题。

而污泥的土地利用能够实现其稳定化、无害化、资源化的目的,因此土地利用逐渐为人们所重视。

但是要实现污泥的土地利用,首先要检测、评估其重金属毒性。

1污泥重金属形态提取现状传统的对重金属的污染分析一般只是测定样品中待测元素的总量或总浓度。

然而,从20世纪70年代开始,人们认识到重金属的生物毒性和生物有效性不仅与其总量有关,而且更大程度上取决于该元素在环境中存在的化学形态及物理形态[1,2]。

因此,人们对环境介质中的重金属研究的侧重点也逐渐集中到确定重金属的形态分布及其影响方面。

颗粒物中重金属的形态分析是从土壤科学研究发展起来的,其方法是借用土壤中选择性提取金属的化学试剂逐级提取以确定污泥颗粒物中金属的形态[3]。

目前,国内外采用的重金属的形态连续提取技术多种多样,且由于采用的提取试剂以及操作方法的不同,从而也产生了由于缺乏统一标准而使实验数据难以比较状况和结论相差较大等问题。

BCR法提取重金属形态

BCR法提取重金属形态

BCR法对重金属形态进行提取,具体步骤如下:一HOAC溶解态。

称取0.2g冷冻干燥的土壤样品,置于30ml聚四氟乙烯离心管中,加入20ml0.1mol/L的醋酸,放在恒温震荡器中20-25度环境条件下震荡16h,转速30±10rpm,再加入10ml去离子水放在离心机中3000r/min震荡20min,分离上清液转移到50ml容量瓶中,稀释置刻度,摇匀。

用原子吸收分光光度计检测浓度表示为C1,残渣进行下一步形态提取。

二,可还原态。

将20ml0.1mol/L的盐酸羟胺(NH2OH.HCL)(HNO3酸化,PH=2,当天配置),加入(一)所剩残渣中,放在恒温震荡器中20-25度环境条件下震荡16h,再加入10ml去离子水放在离心机中3000r/min震荡15min,分离上清液转移到50ml容量瓶中,稀释置刻度,摇匀。

用原子吸收分光光度计检测浓度表示为C2,残渣进行下一步形态提取。

三,可氧化态。

向(二)中加入10ml 8.8mol/LH2O2(HNO3酸化,PH=2)室温下静置1h (间隔15min用手摇荡),用水浴加热至(85度±2)消化1h,蒸发至近干再加入6ml 8.8mol/L 的H2O2(HNO3酸化,PH=2),重复上述操作,冷却至室温后,再加入20ml1mol/L的NH4OA C (HNO3酸化,PH=2)(在PH=2)放在恒温震荡器中20-25度环境条件下震荡16h,放在离心机中3000r/min震荡15min,分离上清液转移到50ml容量瓶中,稀释置刻度,摇匀。

用原子吸收分光光度计检测浓度表示为C3,残渣进行下一步形态提取。

四,总量及残渣态,盐酸-高氯酸-氢氟酸消解:往(三)中残渣加入10mlHCL,设定消解炉的温度为100度,加热至样品剩余少量后取下冷却。

加入5mlHNO3,5mlHF,3mlHCLO4加盖,设定消解温度为170度,升温1h后冷却加盖,继续加热挥发硅,升温到200度,待白烟冒出至少量后,取下冷却,液体呈透明,倒出,清洗,稀释待测。

重金属样品的前处理及分析技术

重金属样品的前处理及分析技术
方法适用于滤膜中铅、镉的测定。 注意滤膜空白。
滤膜和滤筒 消解方法11
取适量滤膜或滤筒样品(大张滤膜可取1/8,小张 圆滤膜取整张,滤筒取整个)剪碎+10.0mL消解混 酸(500mL水+55.5mL浓硝酸+167.5mL浓盐酸定容至 1L,酸用量可适当增加),使滤膜(筒)浸没其中, 加盖, 200℃持续时间为15分钟。冷却后取出消解 罐,以试剂水淋洗内壁,加入约10mL试剂水,静置 半小时进行浸提,过滤,定容至50.0mL,待测。
方法适用于铜、铅、锌、镉、铬、砷的ICP-AES、 ICP-MS法测定。
注意滤筒或滤膜空白。
滤膜 消解方法12
(第四版)取试样滤膜置于四氟乙烯烧杯中+浓硝 酸5ml+30%双氧水5ml浸泡2h以上,电热板加热至沸 腾保持微沸10min后冷却,加入30%双氧水10ml,沸 腾至近干后冷却,加入1%硝酸溶液20ml加热沸腾 10min,趁热抽滤,滤饼用1%热硝酸洗涤数次后定 容至50ml。
(第四版)50ml水样(或A法消解好水样)加入1mol/L 的KI溶液10ml,摇匀后加入5%抗坏血酸5ml,摇匀;加 入MIBK10ml,摇1min,测试有机相。
方法适用于测定水中总铜、总铅、总镉。样品中含其 他强氧化剂会严重干扰测定。萃取温度对结果影响较 显著。
水样 消解方法5、6
(第四版)100ml水样+2.5ml硫酸(使得样品中硫酸含量为 0.5mol/L=2.5%;9%=2 mol/L;13.5%=3 mol/L;38%=10 mol/L; 98%=36.7 mol/L)+(1+1)硝酸2.5ml + 5%高锰酸钾4ml(保证溶液 15min内是紫色,褪去应继续加入,总量少于30ml)+ 5% 过硫酸钾溶

浅谈食品重金属测定中的几种样品消解方法

浅谈食品重金属测定中的几种样品消解方法

浅谈食品重金属测定中的几种样品消解方法摘要:食品和食品加工过程中,重金属的混入会对人体健康造成严重的危害。

随着人们对食品安全问题的重视以及健康意识的提高,食品重金属检测工作得到了人们的广泛关注,也是目前食品安全工作的重点内容。

样品消解是食品重金属检测的重要基础,对检测准确性有直接影响,因此合理选择样品消解方法十分必要。

基于此,本文对食品重金属测定中常用的几种样品消解方法进行分析。

关键词:食品;重金属;样品消解现如今随着社会经济的飞速发展,环境问题愈发恶劣,一些有害的重金属元素通过多种化学形态排入环境,对空气、土壤与水造成严重污染,同时导致各类食品受到污染。

重金属对人体健康有严重的威胁,如果人体摄入过多重金属将会引发神经系统、生殖系统病变,导致心血管疾病,甚至存在致癌风险。

因此对食品中重金属含量进行准确检测对于保证食品质量安全具有重要意义,样品消解是食品重金属检测的重要基础,对检测结果的准确性有直接影响,选择科学合理的消解方法,不但能够缩短消解时间,同时能够提高检测质量与效率。

本文对目前常用的几种样品消解方法进行总结,对不同方法的优势、不足进行分析,为食品重金属检测样品消解方法的选择提供参考。

1.食品重金属测定中的几种样品消解方法1.1干法灰化该方法需要在一定的温度环境下加热,促进待检测物质的分解、灰化,余留的残渣通过相应的溶剂溶解。

结合灰化条件的差异性,干法灰化主要包括以下两种:首先,选择充满氧气的密闭瓶,通过电火花引燃有机试样,瓶内可以使用适量吸收剂有效吸收燃烧产物,之后采取合理的方法检测,该方法便是氧瓶燃烧法,对于卤素、硫、磷等有机物元素的测定具有明显作用。

其次,将试样放置于蒸发皿或者坩埚中,在空气环境下,在相应的温度范围内进行加热、分解、灰化,获得残渣通过适量溶剂溶解后进行检测,该方法被称作定温灰化法,多用于食品中铅、镉等重金属含量的检测。

1.2 湿式消解主要指将氧化性强酸放于适量的食品中,并且加热消煮,促进有机物质分解氧化为二氧化碳,水和各种气体,同时促进氧化,能够同时加入多种催化剂,这类破坏食品中有机物的方法便是湿式消解法。

浅析食品重金属测定中的几种样品消解方法

浅析食品重金属测定中的几种样品消解方法

科技论坛2017年9期︱333︱ 浅析食品重金属测定中的几种样品消解方法罗砚文遵义市产品质量检验检测院,贵州 遵义 563000摘要:食品安全直接关乎人们身体健康,在当前社会快速进步和发展下,对于食品卫生安全提出了更高的要求。

做好食品卫生安全检测工作十分关键,尤其是食品中的重金属物质检测,重金属物质可能通过水源、土壤和空气进入到食品中,在食品加工和存储中同样会产生严重的重金属污染,人们在食用重金属物质超标的食品后,将会损坏人体器官,诱发神经性疾病、心脑血管疾病和生殖系统疾病,严重情况下可能致癌。

故此,为了保证食品卫生安全,需要选择合理的检测方法。

确保食品卫生安全。

本文就食品重金属测定中的几种样品消解方法展开深入分析,从多种角度进行剖析,总结当前常见的样品消解方法。

关键词:食品卫生安全;重金属测定;样品消解方法中图分类号:TS201.6 文献标识码:B 文章编号:1006-8465(2017)09-0333-01伴随着社会经济的持续增长,环境污染问题愈加严重,相应的带来了一系列食品安全问题,很多有害重金属物质通过化学形态进入到自然环境,对水源、土壤和空气产生污染,进而导致食品出现重金属污染问题。

对于食品重金属含量的检测和分析,直接影响着人们的身体健康,这就需要选择合理的样品消解方法,深入分析和检测重金属物质,缩短样品消解时间的同时,可以有效提升检测效率和检测质量,为后续食品卫生安全提充分参考依据。

由此,加强食品重金属测定的有效样品消解方法分析,有助于提升样品测定效率,推动社会和谐稳定发展。

1 样品消解方法 1.1 干法灰化 此种方法强调在特定温度下加热处理,物质分解和灰化后残留的物质可以选择适当溶剂溶解。

结合灰化条件差异,主要包括两种。

一种是在充满氧气的密闭瓶中,通过电火花引燃样品,使用吸收剂来吸收燃烧后产生的物质,用相配套的方法进行测定,此种方法称之为氧瓶燃烧法,可以用于硫、硼和磷物质的检测;另一种则是将检测样品放置在蒸发皿中,在500℃~800℃范围内加热处理,样品分解、灰化的产物使用特定溶剂溶解后测定,此种方法可以有效提升样品物质测定质量和效率。

重金属土壤样品消解总结

重金属土壤样品消解总结

重金属土壤样品消解总结重金属是指相对于环境中的常见元素而言,具有较高的密度和相对原子质量的金属元素。

它们包括铅、汞、镉、铬、砷等。

重金属的存在及其对环境和人体的危害引起了广泛关注。

了解土壤中重金属的含量和分布对环境管理和食品安全具有重要意义。

而对土壤中重金属含量的测定,通常需要进行土壤样品的消解。

土壤样品消解是将土壤样品中的重金属元素从固体形态转化为可溶性形态的过程。

通过消解可以提高重金属元素的测定准确性和灵敏度。

常用的土壤样品消解方法包括干燥研磨法、酸溶解法和微波消解法等。

干燥研磨法是将土壤样品进行干燥后,使用研磨仪将其研磨成细粉末状,再进行测定。

这种方法简单易行,但对于含有有机质较多的土壤样品效果不佳,因为有机质会干扰重金属元素的测定。

酸溶解法是将土壤样品与稀酸进行反应,将重金属元素溶解为可测定的形态。

常用的酸包括盐酸、硝酸和氢氟酸等。

酸溶解法可以较好地溶解土壤样品中的重金属元素,但存在溶解不完全和酸负荷过大的问题。

微波消解法是将土壤样品与酸一同置于微波辐射下加热,利用微波的热效应和催化作用加速重金属元素的溶解。

这种方法具有操作简便、溶解迅速、溶解效果好的优点,但需要使用特殊的微波消解仪器。

在进行土壤样品消解时,需要注意一些操作细节。

首先,选择合适的消解剂和消解方法。

不同的土壤样品可能需要不同的消解条件,需要根据具体情况进行选择。

其次,样品的准备要充分,避免杂质的干扰。

对于含有植被残渣、石块等杂质的土壤样品,需要进行预处理。

最后,消解过程中要注意安全操作,避免酸溅出或产生有害气体。

消解后的土壤样品可用于重金属元素的测定。

常见的测定方法包括原子吸收光谱、电感耦合等离子体质谱和荧光光谱等。

这些方法可以准确地测定土壤样品中的重金属元素含量,为环境监测提供重要依据。

总结来说,土壤样品消解是测定土壤中重金属元素含量的重要步骤。

选择合适的消解方法和消解剂,注意操作细节和安全操作,可以获得准确可靠的结果。

底泥中重金属各形态的提取方法

底泥中重金属各形态的提取方法

底泥中重金属各形态的提取用比较成熟的Tessier[29] Tessier A,Campbel P G C,Bisson M .Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51:84—851.TESSIER A, CAMPBELL P G C, B ISSON M. Sequential extraction procedure for the specification of particulate trace metals [J]. Anal Chem. 1979, (51): 844 - 850.五步连续提取法来提取底泥中各重金属的形态,并用原子吸收法测各重金属的不同形态的含量,分析各元素形态的分布情况[1]。

可交换态(S1):平行取经过干燥、过筛的各采样点的底泥样品1.0g于20mL离心管中,加入 1.0mol/LMgCl2溶液(稀氨水和稀盐酸调节pH=7.0)10.0mL,在25℃恒温水浴振荡器中以200次/min的速度不断振荡1h,然后以4000r/min的速度离心30min,取出上清夜,待测,沉淀留在原离心管中。

碳酸盐结合态(S2):在原来离心管中加入1.0mol/L CH3COONa溶液(CH3COOH调节pH=5)10.0mL,25℃下恒温水浴中以200次/min的速度连续振荡1.5h,然后改变振荡速度至100次/min振荡16h,然后在离心机上以4000r/min离心30min,取出上清夜,用试剂空白,待测。

沉淀留在原离心管中。

铁锰氧化物结合态(S3):在原离心管中加入0.04m0l/L NH2OH-HCl溶液(以浓度为25%的CH3COOH定容)20+0mL,在恒温箱中保温96±30℃,3h,期间每隔10min搅动一次,然后4000r/min离心30min,取出上清夜待测,用试剂空白,沉淀留在原离心管中。

不同消解方法检测土壤重金属含量研究

不同消解方法检测土壤重金属含量研究

不同消解方法检测土壤重金属含量研究土壤中的重金属污染是一种严重的环境问题,对生态系统和人类健康均会造成严重影响。

因此,及时准确地检测土壤中重金属的含量对于环境保护和人类健康至关重要。

目前,检测土壤中重金属含量的方法有很多种,其中不同的消解方法在一定程度上影响着检测结果的准确性。

本文将对不同的消解方法进行探讨,以便更好地检测土壤中重金属的含量。

一、酸消解法酸消解法是目前应用最为广泛的土壤重金属检测方法之一、其原理是将土壤样品加入适量的酸溶液中,通过加热消解土壤中的有机物和无机物,使重金属元素转化为可溶性的离子,然后用各种分析方法测定重金属元素的含量。

酸消解法的优点在于简单易行,但缺点是可能会影响检测结果的准确性,因为不同的酸对重金属元素的消解效果有所差异。

二、碱熔融法碱熔融法是一种较为粗糙的土壤重金属检测方法,其原理是将土壤样品与碱性熔剂进行高温熔融,使土壤中的有机物和无机物完全溶解,然后用不同的萃取剂将重金属元素从熔融液中提取出来进行检测。

碱熔融法的优点在于能够将土壤中的重金属元素完全溶解,提高检测的准确性,但缺点是操作复杂,容易引起误差。

三、微波消解法微波消解法是一种高效、快速的土壤重金属检测方法,其原理是利用微波能量使样品中的有机物和无机物迅速升温,将重金属元素溶解在消解液中,然后用合适的分析方法进行检测。

微波消解法的优点在于操作简单快速,可以提高检测效率和准确性,但缺点是需要昂贵的设备和专业的操作技能。

四、高温熔融法高温熔融法是一种较为粗糙的土壤重金属检测方法,其原理是将土壤样品置于高温熔炉中加热,使土壤中的有机物和无机物溶解,然后用适当的酸或碱进行调节,将重金属元素提取出来进行检测。

高温熔融法的优点在于可以将土壤中的重金属元素完全溶解,但缺点是操作复杂,需要高温环境,容易引起误差。

综上所述,不同的消解方法在检测土壤中重金属含量时各有优缺点,需要根据具体情况选择合适的方法。

在实际应用中,可以结合多种方法进行检测,以提高检测结果的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.三酸消煮(测土壤重金属全量或是残渣态):准确称取0.25g (准确到0.0001)风干土样于聚四氟乙烯坩埚中,用几滴水润湿后,加入10ml HF(破坏土壤晶格)消煮至黑褐色,加入5ml HClO4(氧化钝化),并加热至黑烟冒尽使之变成黄色含珠状,即粘稠不流动,加入5mlHNO3,继续消煮之接近无色,一般都有淡黄色,取下稍冷却,加水使之全部溶解,冲洗内壁,温热溶解残渣,在50ml容量瓶中过滤、定容。

每一批样品都要做空白。

开始可用高温,等温度上去后用中低温,以使之消煮完全。

5.实验步骤
(1)弱酸提取态:准确称取通过100目筛的风干土壤样品1.0000g 置于100mL离心管中,加入40mL 0.1mol/L HOAc,放在恒温振荡器中22℃±5℃下连续震荡16h,然后放入离心机中3000r/min下离心20min。

将离心管中的上清液移入50mL容量瓶中,用水稀释到刻度,摇匀。

用原子吸收分光光度计测量浓度,表示为C1
(2)可还原态:向上一步残渣中加入40mL 0.5mol/L 的NH4OH • HCl, 放在恒温振动器中22℃±5℃下连续震荡16h,然后放入离心机中3000r/min下离心20min。

将离心管中的上清液移入50mL容量瓶中,用水稀释到刻度,摇匀。

用原子吸收分光光度计测量浓度,表示为C2。

(3)可氧化态:向上一步残渣中加入10mL H2O2(pH值2~3),搅拌均匀后室温下静置1h后用水浴加热至85℃±2℃,再加入10mL H2O2 ,在恒温水浴箱中保持85℃±2℃ 1h. 加入50mL 1mol/L NH4OAc,放在恒温振动器中22℃±5℃下连续震荡16h,然后
3000r/min 下离心20min 。

将上清液移入50mL 容量瓶中,用水稀释到刻度,摇匀。

用原子吸收分光光度计测量浓度,表示为C3。

(4)残余态:分别加入10mLHNO3 和 4mLHF, 使酸和样品充分混合均匀。

把装有样品的消解管放进干净的高压消解罐中,拧上罐盖,进行微波消解。

微波消解仪消解系统的最佳条件 ( 见表 1)。

消解后取出消解管,置于智能控温电加热器上 140℃赶酸至近干,将管中溶液转移至 50mL 容量瓶中,用纯水定容。

用原子吸收分光光度计测量浓度,表示为C4.
(5)总量:准确称取过100目筛的风干土壤样品0.5000g ,分别加入5mL HNO3 和 2mLHF ,微波消解方法同上。

用原子吸收分光光度计测量浓度,表示为C0。

6.数据处理
(1)土壤各形态Cr 含量W i (mg/kg)按下式计算:
)
1(f m V c W i -⋅= 式中:
c ——试液的吸光度减去空白溶液的吸光度,然后在校准曲线上查得的铬的
含量(mg/kg)
V ——试液定容的体积,ml ;
m ——称取试样的重量,g ;
f ——试样中水分的含量,%。

相关文档
最新文档