模型预测控制
模型预测控制

反馈校正
2 3 y
u
4
yˆ(k1)ym(k
e(k1)yˆ(k
1
k k+1
t/T
1─k时刻的预测输出ym(k) 2─k+1时刻实际输出y (k+1)
3─预测误差e(k+1)
4─k+1时刻校正后的预测输出ym(k+1)
反馈校正
y(k) e(k)
y (k+j| k)
y(k-j)
u(k-j) k-j
ym(k )
+ ym(k+j| k)
+
反馈校正
预测模型
y(k|k)
_ +
模型预测控制的基本原理
预测模型
预测模型的功能
根据被控对象的历史信息{ u(k - j), y(k -j) | j≥1 }和未来输入 { u(k + j - 1) | j =1, …, M} ,预测系统未来响应{ y(k + j) | j =1, …, P} 。
i =1, 2, 3, …, j
滚动优化
控制目的
▪通过某一性能指标J 的最优, 确定未来的控制作
用u(k+j|k)。指标J希望模型预测输出尽可能趋近
于参考轨迹。
优化过程
▪随时间推移在线优化,每时刻反复进行 ▪优化目标只关心预测时域内系统的动态性能 ▪每周期只将u(k+1|k)或u(k+m|k)施加于被控过程
模型预测控制的发展
理论背景:
新的控制理论得到发展
➢现代控制理论
状态空间分析法 最优控制理论 系统辨识与参数估计
➢新发展的控制理论
自适应控制 非线性控制 多变量控制
➢得到应用:航空、机电、军事等
模型预测控制的原理

模型预测控制的原理
模型预测控制的基本原理是根据当前时刻测量得到的系统状态,求取一个有限时域开环优化问题,得到一个控制序列,但是只把控制序列第一个元素作用于系统。
预测模块的原理预测控制伴随着工业的发展而来,所以,预测控制与工业生产有着紧密的结合,火电厂钢球磨煤机是一个多变量、大滞后、强耦合的控制对象,其数学模型很难准确建立。
模型算法(MAC)控制主要包括内部模型、反馈校正、滚动优化和参数输入轨迹等几个部分。
它采用基于脉冲响应的非参数模型作为内部模型,用过去和未来的输入输出状态,根据内部模型,预测系统未来的输出状态。
功能模块化的根据是,如果一个问题有多个问题组合而成,那么这个组合问题的复杂程度将大于分别考虑这个问题时的复杂程度之和。
这个结论使得人们乐于利用功能模块化方法将复杂的问题分解成许多容易解决的局部问题。
滚动优化滚动优化是指在每个采样周期都基于系统的当前状态及预测模型,按照给定的有限时域目标函数优化过程性能,找出最优控制序列,并将该序列的第一个元素施加给被控对象。
模型预测控制算法

模型预测控制算法
模型预测控制(Model Predictive Control, MPC)是一种先进的控制算法,它可以在复杂的系统中实现有效的运动控制。
MPC是一种运动控制算法,它可以根据预设的目标参数和实时的反馈信息,在实时的情况下预测未来的状态,并根据这些预测结果调整控制参数,以实现最佳的控制效果。
MPC是一种基于模型的控制算法,它通过建立一个模型来模拟系统的行为,并基于这个模型来预测未来的情况。
这个模型可以是确定性模型,也可以是不确定性模型,不管哪种模型都可以帮助MPC 更好地预测未来的情况。
MPC可以在系统处于不同状态时,根据预设的目标参数,自动选择最佳的控制策略。
MPC算法的优点在于可以实现更快的反应,更高的精度,更少的误差,更稳定的控制效果,可以更好地满足复杂系统的需求。
MPC 算法还可以实现自适应控制,即根据实时反馈信息自动调整控制参数,以达到最优的控制效果。
模型预测控制算法的应用非常广泛,可以用于汽车、机器人、飞机等运动控制,也可以用于温度、压力等过程控制等不同领域。
总之,MPC算法是一种非常有效的控制算法,可以有效地解决复杂系统的控制问题,为系统提供更好的性能。
模型预测控制原理

一、引言模型预测控制是一种广泛应用于工业自动化领域的控制方法。
它基于对系统的数学模型进行预测,并根据预测结果进行控制。
本文将介绍模型预测控制的原理、应用和优点,并结合实际案例进行说明。
二、原理模型预测控制的基本原理是建立系统的数学模型,并根据模型进行预测。
在控制过程中,系统的状态被测量并与预测值进行比较,以确定下一步的控制策略。
模型预测控制的核心是模型预测器,它可以根据系统的输入输出数据进行建模,并根据模型进行预测。
三、应用模型预测控制广泛应用于工业自动化领域,如化工、电力、石油、制造等。
其中,化工行业是模型预测控制的主要应用领域之一。
例如,在化工生产中,模型预测控制可以用于控制反应器温度、压力和反应物的投加量等。
此外,模型预测控制还可以用于控制电力系统中的电压、频率和功率等。
四、优点模型预测控制具有以下优点:1. 可以对系统进行精确的预测和控制,提高了控制效果;2. 可以适应复杂的系统和非线性系统;3. 可以进行多变量控制,对系统的整体性能进行优化;4. 可以对系统的未来状态进行预测,提前采取措施,避免了系统出现故障或失控的情况。
五、实例说明以化工生产中的控制反应器温度为例,介绍模型预测控制的应用。
在化工生产中,控制反应器温度是非常重要的一环。
传统的控制方法是根据反应器温度的变化进行控制,但这种方法容易出现滞后和不稳定的情况。
而采用模型预测控制方法,可以通过建立反应器温度的数学模型,根据模型进行预测和控制。
例如,当反应器温度上升时,模型预测控制器可以根据模型预测出未来的温度变化趋势,并采取相应的控制策略,如减少反应物的投加量或增加冷却水的流量等。
这样可以避免温度过高导致反应失控,保证反应的稳定性和产量的质量。
六、结论模型预测控制是一种高效、精确的控制方法,具有广泛的应用前景。
在工业自动化领域,它可以提高系统的稳定性、生产效率和产品质量,对于企业的发展具有重要的意义。
模型预测控制

,得最优控制率:
根据滚动优化原理,只实施目前控制量u2(k):
式中:
多步优化MAC旳特点: 优点: (i)控制效果和鲁棒性优于单步MAC算法简朴;
(ii)合用于有时滞或非最小相位对象。 缺陷: (i)算法较单步MAC复杂;
(ii)因为以u作为控制量, 造成MAC算法不可防止地出现稳态误差.
第5章 模型预测控制
5.3.1.2 反馈校正 为了在模型失配时有效地消除静差,能够在模型预测值ym旳基础上 附加一误差项e,即构成反馈校正(闭环预测)。
详细做法:将第k时刻旳实际对象旳输出测量值与预测模型输出之间 旳误差附加到模型旳预测输出ym(k+i)上,得到闭环预测模型,用 yp(k+i)表达:
第5章 模型预测控制
5.1 引言
一 什么是模型预测控制(MPC)?
模型预测控制(Model Predictive Control)是一种基于模型旳闭环 优化控制策略,已在炼油、化工、冶金和电力等复杂工业过程中得到 了广泛旳应用。
其算法关键是:可预测过程将来行为旳动态模型,在线反复优化计
算并滚动实施旳控制作用和模型误差旳反馈校正。
2. 动态矩阵控制(DMC)旳产生:
动态矩阵控制(DMC, Dynamic Matrix Control)于1974年应用在美国壳牌石 油企业旳生产装置上,并于1980年由Culter等在美国化工年会上公开刊登,
3. 广义预测控制(GPC)旳产生:
1987年,Clarke等人在保持最小方差自校正控制旳在线辨识、输出预测、 最小方差控制旳基础上,吸收了DMC和MAC中旳滚动优化策略,基于参数 模型提出了兼具自适应控制和预测控制性能旳广义预测控制算法。
模型预测控制与增强学习

模型预测控制与增强学习第一章引言1.1 研究背景和意义模型预测控制(Model Predictive Control,MPC)和增强学习(Reinforcement Learning,RL)是两种在控制系统领域非常重要的方法。
MPC是一种基于数学模型的控制方法,通过预测系统未来的演变来计算最优控制输入。
相比传统的基于反馈的控制方法,MPC可以在多个时间步骤上进行优化,可以更好地处理约束条件和非线性系统。
而RL是一种基于试错学习的方法,通过智能体与环境的交互来学习最优策略,通过奖励和惩罚来指导智能体的行为。
MPC和RL在不同的应用场景中都有广泛的应用,比如自动驾驶、机器人控制等。
1.2 研究内容和结构安排本文主要对MPC和RL进行介绍和比较,解释它们的原理和应用。
具体来说,第二章将详细介绍MPC的原理和方法,包括模型预测、优化算法、约束处理等。
第三章将介绍RL的原理和方法,包括马尔可夫决策过程、值函数、策略搜索等。
第四章将对MPC和RL进行比较,分析它们各自的优势和不足,并讨论它们的结合应用。
最后,本文将总结全文内容并展望未来研究方向。
第二章模型预测控制2.1 模型预测的概念和方法模型预测控制(MPC)是一种通过预测系统未来行为来计算最优控制输入的方法。
MPC将系统的模型表示为离散时间的状态空间模型,通过迭代优化来求解最优控制输入序列。
MPC的基本思想是,在每个时间步骤上,通过预测系统状态和控制输入的未来演变,选择使系统性能指标最优的控制输入。
MPC的优点在于可以处理多个时间步骤上的约束条件,能够更好地适应非线性系统和不确定性。
2.2 MPC的优化算法MPC的求解过程涉及到一个优化问题,需要求解一个非线性规划或二次规划问题。
常用的优化算法包括牛顿法、梯度下降法和内点法。
这些算法可以通过迭代的方式逐步优化控制输入序列,直到收敛到最优解。
在MPC中,需要考虑不仅系统性能指标的优化,还有约束条件的满足,比如系统状态、控制输入的范围约束等。
模型预测控制ppt

模型预测控制的未来发展
多变量预测控制系统的稳定性、鲁棒性 线性系统 自适应预测—理论性较强 非线性预测控制系统 内部模型用神经网络( ANN )描述 针对预测控制的特点开展研究 国内外先进控制软件包开发所采用 分布式预测控制
模型预测控制的基本原理
r(k)
+_
d(k)
u(k)
y(k)
在线优化
受控过程
+ ym(k+j| k)
+
反馈校正
预测模型
y(k|k)
_ +
模型预测控制的基本原理
预测模型
预测模型的功能
根据被控对象的历史信息{ u(k - j), y(k -j) | j≥1 }和未来输入 { u(k + j - 1) | j =1, …, M} ,预测系统未来响应{ y(k + j) | j =1, …, P} 。
输出预测
第2步输出预测: yˆm (k 2) Gˆ (z 1)u(k 2) (k 2) gˆ (z 1)u(k 1) (k 2)
第i 步输出预测:
yˆm (k i) Gˆ (z 1)u(k i) (k i) gˆ (z 1)u(k i 1) (k i)
模型预测控制的优势
对模型要求不高 鲁棒性可调 可处理约束 (操作变量 MV、被控变量CV) 可处理 “方”、“瘦”、“胖”,进行自动转 换 可实现多目标优化(包括经济指标) 可处理特殊系统:非最小相位系统、伪积分系统、 零增益系统
模型预测控制的弱势
开环控制+滚动优化的实施需要闭环特性的分析, 甚至是标称稳定性的分析 在线计算量较大。目前广泛应用于慢过程对象的 控制问题上 非线性对象,需要额外的在线计算 需要辨识模型,分析干扰,确定性能指标,整个 问题集合了众多信息
模型预测控制原理

模型预测控制原理在控制理论中,模型预测控制是一种基于数学模型的控制方法。
它通过建立一个数学模型来预测未来的系统行为,并根据这些预测结果进行控制,以实现系统的稳定和优化控制。
模型预测控制方法的优点在于可以处理非线性系统和时变系统,并且能够考虑到系统的约束条件,可以应用于各种不同的工业过程和控制系统中。
模型预测控制的基本原理是建立一个数学模型来描述系统的动态行为,并利用这个模型来预测未来的系统行为。
这个模型可以是基于物理原理的,也可以是基于统计学方法的。
然后,根据这个模型的预测结果,通过控制器来调节系统的输入,以使系统达到预期的状态。
在模型预测控制中,控制器不是直接控制系统的输出,而是控制系统的输入,以使系统的输出达到预期的值。
模型预测控制的基本步骤包括:建立数学模型、预测未来的系统行为、制定控制策略、执行控制策略、更新模型参数等。
其中,建立数学模型是模型预测控制的关键步骤。
模型可以是线性模型,也可以是非线性模型。
线性模型通常比较简单,但是不能处理非线性系统和时变系统。
非线性模型可以处理各种类型的系统,但是建立非线性模型比较困难。
在建立模型过程中,需要考虑到系统的约束条件,例如输入和输出的限制条件,以保证系统的安全和稳定。
预测未来的系统行为是模型预测控制的核心。
通过模型预测,可以预测未来一段时间内系统的输出值。
预测结果可以用于制定控制策略,以调节系统的输入,使系统的输出达到预期的值。
制定控制策略是根据预测结果来选择合适的控制器参数,例如比例系数、积分系数和微分系数等。
执行控制策略是根据控制器参数来调节系统的输入,以使系统的输出达到预期的值。
更新模型参数是根据实际控制结果来更新模型参数,以提高模型预测的准确性和稳定性。
模型预测控制方法的优点在于可以处理非线性系统和时变系统,并且能够考虑到系统的约束条件,可以应用于各种不同的工业过程和控制系统中。
但是,模型预测控制也存在一些缺点。
首先,建立模型需要大量的数据和计算资源,建模过程比较复杂。