平行关系的性质
2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。
空间几何中的平行与垂直

空间几何中的平行与垂直空间几何是研究三维空间中的几何关系的学科,其中平行和垂直是两个重要的概念。
平行和垂直关系是我们日常生活和工作中常常接触到的概念,它们在建筑设计、物体摆放和路线规划等方面都有着广泛的应用。
本文将围绕空间几何中的平行和垂直展开讨论。
一、平行概念与性质在空间几何中,平行是指两个直线或两个平面始终保持相互平行的关系。
如图所示,直线l和m平行,用符号表示为l∥m。
平行关系具有以下性质:1. 平行关系是一个等价关系,即自反性、对称性和传递性。
自反性指一条直线自己与自己平行,对称性是指如果直线l与直线m平行,则直线m与直线l也平行,传递性是指如果直线l与直线m平行,直线m与直线n平行,则直线l与直线n平行。
2. 如果一条直线与一个平面平行,那么该直线上的任意一点与该平面上的任意一点的连线垂直于该平面。
3. 平行关系与直线的切比雪夫性质密切相关。
切比雪夫性质是指在点P到直线l上的一点A的距离与点P到直线l上另一点B的距离之比,在A与B的所有可能位置之间都保持不变。
二、垂直概念与性质在空间几何中,垂直是指两个直线或两个平面相交成直角的关系。
垂直关系也称为垂直关系或直角关系。
如图所示,直线l和m垂直,用符号表示为l⊥m。
垂直关系具有以下性质:1. 垂直关系也是一个等价关系,即自反性、对称性和传递性。
自反性指一条直线与自己垂直,对称性是指如果直线l与直线m垂直,则直线m与直线l也垂直,传递性是指如果直线l与直线m垂直,直线m与直线n垂直,则直线l与直线n垂直。
2. 如果两个平面相交成直角,那么这两个平面互相垂直。
3. 垂直关系与直线的切比雪夫性质也存在关联。
在垂直关系中,点P到直线l上的一点A的距离与点P到直线l上另一点B的距离之比,与A与B的位置无关。
三、平行和垂直的判断方法在实际问题中,判断两条直线或两个平面是否平行或垂直是非常重要的。
以下是常见的判断方法:1. 对于直线而言,可以通过观察其斜率来判断平行关系。
空间平行

空间中的平行关系1·直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
(线线平行⇒线面平行)线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(线面平行⇒线线平行) 2·平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行。
两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。
(面面平行→线线平行)空间中的平行关系练习题1.若直线a 平行于α,直线b 平行于α,则直线a,b 的位置关系为( )(A)平行 (B)相交 (C)异面 (D)以上三种情况都有可能2. 平面//,a b αβαβ⊂⊂,,则直线a,b 的位置关系是( )(A)平行 (B)相交 (C)异面 (D)平行或异面3. 对于直线m 、n 和平面α,下面命题中的真命题是( )(A)如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n(B)如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交(C)如果m n m ,//,αα⊂、n 共面,那么n m //(D)如果m n m ,//,//αα、n 共面,那么n m //4. 下列命题中,错误的命题是( )(A)平行于同一直线的两个平面平行(B)平行于同一平面的两个平面平行(C)一条直线与两个平行平面中的一个相交,那么这条直线必和另一个平面相交(D)一个平面与两个平行平面相交,交线平行5.在正方体ABCD -A 1B 1C 1D 1中,E 是AB 的中点,则(1)和平面DBB 1D 1平行的棱有;(2)和平面C 1ED 1平行的棱有;(3)和平面C 1DB 平行的面对角线有.6、如图所示,四棱锥P —ABCD 中, AB ⊥AD, CD ⊥AD, PA ⊥底面ABCD , PA= AB=AD=12CD =2,M 为PC 中点. 求证: BM ∥平面PAD;7. 在正方体ABCD ——A 1B 1C 1D 1中,E 、F 分别是棱BC 与C 1D 1的中点.求证:EF//平面BDD 1B 1.9.已知正方体ABCD-A 1B 1C 1D 1中,M,N,E 分别是棱DC, BC,CC 1 的中点。
投影几何学中的平行关系与距离计算

投影几何学中的平行关系与距离计算投影几何学是几何学的一个分支,研究的是空间中的平面、直线、点等几何体在投影变换下的性质和关系。
在投影几何学中,平行关系和距离计算是两个重要的概念和计算方法。
本文将介绍投影几何学中的平行关系以及如何计算平行线之间的距离。
一、平行关系的定义在投影几何学中,平行关系是指两条直线在平面上永远不相交,无论它们延伸到多远。
平行线具有以下性质:1. 平行线的斜率相等:如果两条直线的斜率相等,那么它们就是平行线。
斜率可以通过直线上两个点的坐标来计算,即斜率等于纵坐标的差值除以横坐标的差值。
2. 平行线的法向量相等:如果两条直线的法向量相等,那么它们就是平行线。
直线的法向量可以通过直线的一般方程来计算,即直线的一般方程为Ax + By + C= 0,法向量为(A, B)。
3. 平行线的截距相等:如果两条直线在同一平面上,且与该平面的两条平行线的距离相等,那么它们就是平行线。
截距可以通过直线的截距式方程来计算,即直线的截距式方程为x/a + y/b + z/c = 1,截距为(a, b, c)。
二、平行线之间的距离计算在投影几何学中,计算平行线之间的距离是一个常见的问题。
有多种方法可以计算平行线之间的距离,下面将介绍两种常用的方法。
1. 点到直线的距离公式平行线可以看作是同一平面上的两条直线,因此可以使用点到直线的距离公式来计算平行线之间的距离。
点到直线的距离公式如下:d = |Ax + By + C| / √(A^2 + B^2)其中,(x, y)为平面上的任意一点,A、B、C为直线的一般方程的系数。
2. 平行线之间的距离公式平行线之间的距离可以通过两条直线的截距式方程来计算。
假设两条平行线的截距式方程分别为x/a + y/b + z/c = 1和x/a' + y/b' + z/c' = 1,那么它们之间的距离可以通过以下公式计算:d = |1/c - 1/c'| / √(1/a^2 + 1/b^2 + 1/c^2)其中,a、b、c和a'、b'、c'分别为两条直线的截距。
空间几何中的平行关系

空间几何中的平行关系在空间几何中,平行关系是一种重要而基础的数学概念。
平行关系常常出现在我们的日常生活和工作中,例如平行线、平行四边形等。
本文旨在介绍空间几何中平行关系的定义和性质,并探讨平行关系在实际问题中的应用。
一、平行关系的定义在空间几何中,平行关系是指两条或多条线段或线的方向相同,永不相交的关系。
给定两条直线l1和l2,在平面上,如果l1和l2除了一个公共点之外,其他点都不相交,那么我们就说l1和l2平行。
同样地,在空间中,如果两条直线l1和l2除了一个公共点之外,其他点都不相交,那么我们就说l1和l2平行。
二、平行关系的性质1. 平行关系是传递的。
如果直线l1与直线l2平行,直线l2与直线l3平行,则直线l1与直线l3也平行。
2. 平行关系是对称的。
如果直线l1与直线l2平行,则直线l2与直线l1平行。
3. 平行关系是自反的。
任意一条直线与自身平行。
4. 如果两个平行线分别与一条横截线相交,那么所得的对应角相等。
基于以上性质,我们可以利用平行关系进行推理和证明。
在解决几何问题时,通过判断线段或线的平行关系,我们可以简化问题,找到更加简洁和优雅的解决方法。
三、平行关系在实际问题中的应用在日常生活和工作中,平行关系的应用广泛而深入。
以下是一些平行关系的典型应用示例:1. 建筑工程:在建筑设计和施工中,平行关系的应用非常常见。
例如,在设计一座桥梁时,需要确保桥墩和主梁是平行的,以保证结构的稳定性和美观性。
2. 路网规划:在城市交通规划中,平行道路的设计可以提高交通效率和道路利用率。
平行的道路可以更好地满足不同方向的交通需求,减少交通堵塞和拥堵。
3. 平行投影:在工程和科学领域中,平行投影广泛应用于制图和测量中。
通过选择适当的平行方向,我们可以更准确地表达三维物体的形状和大小。
4. 机械设计:在机械设计中,平行关系的应用可以确保机器部件的精确安装和运动。
例如,在设计一台车床时,需要保证主轴和工作台的平行关系,以确保加工的精度和质量。
空间直线的平行与垂直关系

空间直线的平行与垂直关系直线的平行与垂直关系是几何学中的基本概念之一,这个概念在我们日常生活中也是无处不在的。
在建筑、设计、城市规划、工程等领域中,了解直线的平行与垂直关系至关重要。
本文将介绍直线的平行与垂直的定义、性质以及应用。
首先,我们来看直线的平行关系。
当两条直线在平面上永不相交,且在同一平面上的任意两点之间连线都与这两条直线相交,我们可以说这两条直线是平行的。
以字母 "||" 表示直线的平行关系,如果直线a || 直线b,则可以写作 a || b。
直线的平行关系有以下几个重要性质:1. 平行性质一:如果两条直线都与同一平面上的第三条直线平行,那么这两条直线必定平行。
2. 平行性质二:如果两条直线分别与同一平面上的两条平行线平行,那么这两条直线也平行。
3. 平行性质三:如果直线a与b平行,直线b与c平行,那么直线a与c平行。
直线的垂直关系与平行关系相对应。
当两条直线在平面上相交且交角为90度,我们可以说这两条直线是垂直的。
以一个类似于 "⊥" 的符号表示直线的垂直关系,如果直线a ⊥直线b,则可以写作 a ⊥ b。
直线的垂直关系也有几个重要性质:1. 垂直性质一:如果两条直线都与同一平面上的第三条直线垂直,那么这两条直线必定垂直。
2. 垂直性质二:如果一条直线与平面上的一条直线垂直,那么与该平面上的另一条直线平行的直线也与该直线垂直。
3. 垂直性质三:如果直线a与b垂直,直线b与c垂直,那么直线a与c平行。
直线的平行与垂直关系在很多领域中都有广泛的应用。
以下是几个常见的应用实例:1. 建筑和设计:在建筑和设计中,了解平行和垂直关系对于设计合理的建筑和室内布局至关重要。
例如,在设计房间时,我们应该确保墙壁平行或垂直于地面,以获得更美观的效果。
2. 道路和交通:平行和垂直关系在规划和设计道路和交通系统时也非常重要。
道路的平行布局可以提高交通流畅性,而垂直的交叉路口可以确保交通的安全。
空间中的平行关系

(1)试确定F的位置;
(2)求三棱锥A-CDF的体积.
解 (1)连接BE交AD于点O,连接OF,因为CE∥平面ADF,CE⊂平面BEC,平面
ADF∩平面BEC=OF,
所以CE∥OF.
因为O是BE的中点,所以F是BC的中点.
(2)因为 BC 与平面 ABD 所成角为 30°,BC=AB=1,
D.既不充分也不必要条件
答案 B
解析 因为直线a,b,平面α,β,a⊂α,b⊂α,由a∥β,b∥β,得α,β平行或相交;
由α∥β,得a∥β,b∥β,
所以a∥β,b∥β是α∥β的必要不充分条件.故选B.
3.(多选)在正方体ABCD-A1B1C1D1中,下列结论正确的是有(
A.AD1∥BC1
B.平面AB1D1∥平面BDC1
所以 C 到平面 ABD 的距离为 h=BC·
sin
1
30°= .
2
因为 AE=2,F 是 BC 的中点,
所以
1
1
1
VA-CDF=VF-ACD= VB-ACD= VC-ABD=
2
2
2
1
3
× ×
1
1
×1×2×
2
2
=
1
.
12
解题心得在应用线面平行的性质定理进行平行转化时,一定注意定理成立
的条件,通常应严格按照定理成立的条件规范书写步骤,如:把线面平行转
α,β相交于点A,B,C,D,若PA=4,PB=5,PC=3,则
PD=
答案
.
15
4
解析 由题意,平面 α∥平面 β,则
Hale Waihona Puke 所以·PD=
=
3×5
平行和垂直认识平行线和垂直线的关系

平行和垂直认识平行线和垂直线的关系平行和垂直是几何学中常用的概念,用于描述线之间的关系。
平行线是指在同一个平面内永远不相交的两条直线,而垂直线则是指两条直线相交且形成直角的现象。
本文将详细介绍平行线和垂直线的特征以及它们之间的关系。
1. 平行线的特征和性质在平面几何中,两条直线若在同一个平面内永远不相交,那么它们就被称为平行线。
平行线的特征和性质如下:1.1. 永远不相交:平行线永远不会相交,无论它们在平面上的位置如何调整。
1.2. 等间距:平行线之间的距离是恒定的,沿着两条平行线的任意一点,到另一条线的距离始终相等。
1.3. 同向性:两条平行线的方向是一致的,无论它们是向上延伸还是向下延伸。
1.4. 平行线的斜率相等:对于直线上的两个点A(x1, y1)和B(x2, y2),若直线上的两点斜率相等,则这两条直线是平行线。
2. 垂直线的特征和性质垂直线是指两条直线相交,并且相交的角度为直角的线。
垂直线的特征和性质如下:2.1. 相交于直角:垂直线的交点处形成一个90度的角,也称为直角。
2.2. 互不平行:垂直线不可能平行,因为至少相交于一个点。
2.3. 斜率之乘积为-1:对于两条直线的斜率为k1和k2,如果k1 * k2 = -1,则这两条直线是垂直线。
3. 平行线和垂直线的关系3.1. 平行线与垂直线的关系:如果两条平行线和一条垂直线相交,那么垂直线与平行线的任意一条线都会形成相同的角度。
3.2. 垂直线的平行线:如果一条线与另一条垂直线相交,并且又与第三条线相交,那么这两条相交线即使平行线,也与第三条线垂直。
3.3. 平行线的垂直线:如果两条平行线分别与一条第三条线相交,那么这两条平行线与第三条线之间形成的角度是相等的。
通过对平行线和垂直线的特征和关系的研究,我们可以应用它们来解决几何学和实际生活中的问题。
例如,在建筑设计中,平行线和垂直线的概念被应用于布局和构造,以确保建筑物的结构牢固和稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行关系的性质
【学习目标】
1.理解平行关系的性质定理,并能运用平行关系的性质定理证明一些简单命题;
2.通过对平行关系的性质定理的探究和运用过程,进一步提高空间想象能力和逻辑思维能力;
3.亲身经历数学定理的形成过程,体验探索的乐趣,增强学习数学的兴趣。
【学习重点】
平行关系的性质定理的理解和运用
【学习难点】
平行关系的性质定理的理解和运用
【课前预习案】
课本助读
以长方体为背景,先直观感知,再进行推理论证,然后抽象概括出线面平行和面面平行的性质定理(先用自己的的语言归纳,不要忙于看课本来照抄定理的内容);明确定理的作用,通过练习逐步熟练应用..
1.观察图1(1)(2)的长方体,回答下列问题:
图1
①图1(1)(2)中,直线a //平面α,经过a 的平面β与α的
交线是b ,这时直线a //b .
一般地,直线l //平面α, l ≠⊂平面β, b αβ=(如图2),
这时直线l 与b 平行吗?为什么? 图2
②请你根据①的结论进行抽象概括,归纳出直线与平面平行的性质定理:
2.观察图3(1)(2)的长方体,回答下列问题:
图3
①图3(1)(2)中,平面α//平面β,平面γ分别与α, β交于直线,a b ,
这时直线a //b .一般地,平面α//平面β,平面,a b γαγβ== (如
图4 ),这时,直线a 与直线b 平行吗?为什么? 图4
②请你根据①的结论进行抽象概括,归纳出平面与平面平行的性质定理:
3.平行关系之间的相互转化:
( )−−−−→←−−−−线在面外 线面平行−−−−−−→←−−−−−−线不在多相交就行( )
【课堂探究案】
1.如图5,平面α//平面β,平面γ与α交于直线a , γ与β交于直线b ,直线c 在β 内,且c //b .
(1)判断c 与a 的位置关系,并说明理由; (2)判断c 与α的位置关系,并说明理由.
图5
2.木工小罗在处理如图6所示的一块木料时,
发现该木料表面ABCD 内有一裂纹DM ,已知B C ''平
行于平面AC. 他打算经过点M 和棱B C ''将木料锯开,
却不知如何画线,你能帮助他解决这个问题吗?
图6
3.如图7所示,四棱锥P-ABCD 中,四边形ABCD 是平
行四边形,M 是PC 的中点,在DM 上取一点G,过G 和AP
作平面交平面BDM 于GH.求证:AP//GH.
图7
【课后检测案】
1.设,m n 是平面α外的两条直线,给出三个论断:①//m n ②//m α ③//n α,以其中两个为条件,余下的一个为结论构成三个命题,写出你认为正确的一个命题______________________________________________
2.已知,m n 是两条直线,,,αβγ表示平面,
下列命题正确的是______________ ① 若==////m n m n αγβγαβ⋂⋂, 且,则
② 若,m n 相交且都在,αβ内,//, m//,//,//,//m αβαβαβ n n 则
③ 若//, m//,//m αβαβ 则 ④ 若//, n//,////m αβαβ 且m n 则
3.如图,平面α//平面β,平面γ与α交于直线a ,γ与β交于直线b
,直
线c在β内,且c//b
①判断c与a的位置关系,并说明理由
②判断c与α的位置关系,并说明理由
4.如果三个平面把空间分成4个部分,那么这3个平面有怎样的位置关系?如果3个平面把空间分成6部分,那么这3个平面有怎样的位置关系?3个平面还能把空间分成几部分?
αβ=.求证:
5.如图9所示,已知:直线a// 平面α,直线a// 平面β,且b
a//b.
(提示:过直线a作两个平面分别与平面α和β交于直线c
和d)
图9
6.已知: 平面α// 平面β// 平面γ,且直线l与α,β,γ分别交于点A,B,C,直线m与α,β,γ分别交于点D,E,F, AB=8, BC=4, EF=5,求DE的长.
图10。