高中数学——平行关系的性质
高中数学知识点精讲精析 平行关系的判定

1.5.1 平行关系的判定(一)直线与直线平行的判定方法1.利用定义:在同一个平面内,不相交的两条直线互相平行;2.判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行. 推理模式:3.判定方法:○1○1证明直线和这个平面内的一条直线相互平行;○2○2证明这条直线的方向量和这个平面内的一个向量相互平行;○3○3证明这条直线的方向量和这个平面的法向量相互垂直.4.利用平行公理:空间中平行于同一条直线的两条直线互相平行;5.利用直线与平面平行的性质定理:直线和平面平行,经过该直线的平面与已知平面相交,则该直线和交线平行;6.利用平面和平面平行的性质定理:两个平面互相平行,和第三个平面相交,它们的交线互相平行;7.利用直线和平面垂直的性质:垂直于同一个平面的两条直线互相平行;8.利用直线和平面平行的性质:一直线和两相交平面平行,则该直线和这两个平面的交线平行.a l a l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα,,////a b a b a ααα⊄⊂⇒α ab(二)直线与平面平行的判定方法1.利用定义:直线与平面无公共点,则该直线和该平面平行;2.利用直线与平面平行的判定定理:平面外一条直线和平面内一条直线平行,则该直线和该平面平行(线线平行,则线面平行).3.利用平面和平面平行的性质:两个平面互相平行,则一个平面内任意一条直线都平行于第二个平面.(三)平面和平面平行的判定方法1.利用定义:两个平面没有公共点,则这两个平面平行;2.利用平面与平面平行的判定定理:一个平面内有两条相交直线分别与另一个平面内两条相交直线平行,则这两个平面平行;符号表示:a βb βa ∩b = P β∥α a ∥α b ∥α3.证明两平面平行的方法:(1)利用定义证明.利用反证法,假设两平面不平行,则它们必相交,再导出矛盾. (2)判定定理:一个平面内有两条相交直线都平行于另一个平面,则这两个平面平行,这个定理可简记为线面平行则面面平行.用符号表示是:a ∩b ,a α,b α,a ∥β,b ∥β,则α∥β.(3)垂直于同一直线的两个平面平行.用符号表示是:a ⊥α,a ⊥β则α∥β. (4)平行于同一个平面的两个平面平行.//,////αβαγβγ⇒4.利用平面与平面平行的判定:一个平面内有两条相交直线分别平行于另一个平面,则这两个平面平行;5.利用平面与平面平行的传递性:平行于同一个平面的两个平面互相平行.6.利用直线与平面垂直的性质:垂直于同一条直线的两个平面互相平行;例1 如右图,平行四边形EFGH 的分别在空间四边形ABCD 各边上,求证:BD//平面EFGH.证明:∵EH // FG , EH Ë平面BCD ,FG Ì平面BCD ,∴EH // 平面BCD .又∵EH 在平面ABD内,∴EH // BD .又∵ EH 在平面 EFGH内 , BD 不在平面 EFGH内 ,∴ BD // 平面 EFGH .点评:转化思维链是“由已知线线平行→线面平行→线线平行→线面平行”. 此题属于教材(必修②人教A 版)中第64 页的3 题的演变, 同样还可证 AC // 平面EFGH . 例2.正方形ABCD和正方形ABEF所在平面互相垂直,点M,N分别在对角线AC和BF上,且AM=FN求证:MN∥平面BEC分析:证线面平行⇐线线平行,需找出面BEC 中与MN 证法(一):作NK ∥AB 交BE 于K ,作MH ∥AB 交BC 于H ∴MH ∥NK∵ABCD 与ABEF 是两个有公共边AB 的正方形 ∴它们是全等正方形 ∵AM=FN ∴CM=BN又∠HCM=∠KBN ,∠HMC=∠KNB ∴△HCM ≌△KBN ∴MH=NK ∴MHKN 是平行四边形 ∴MN ∥HK ∵HK ⊂平面BEC MN ⊄平面BEC ∴MN ∥平面BEC证法(二):分析:利用面面平行⇒线面平行 过N 作NP ∥BE ,连MP ,∵NP ∥AF ∴FN/FB=AP/AB ∴AM=FN ,AC=BF ∴FN/FB=AM/AC ∴AP/AB=AM/AC ∴MP ∥BC ∴平面MNP ∥平面BCE ∴MN ∥平面BCE例3(1)空间三条直线两两相交可确定几个平面?(2)空间四条平行直线可确定几个平面?(3)空间一条直线和直线外三点,可确定几个平面? 答案:(1)1个或3个(2)1个,4个或6个 (3)1个,3个或4个[例2]在正方体ABCD-A1B1C1D1中,E.F 分别为棱BC.C1D1 的中点. 求证:EF ∥平面BB1D1D.证明:连接AC 交BD 于O ,连接OE ,则OE ∥DC , OE=1/2DC. ∵ DC ∥D1C1, DC=D1C1 , F 为D1C1 的中点,∴ OE ∥D1F , OE=D1F , 四边形D1FEO 为平行四边形.F EN KA P BM HD C∴ EF∥D1O.又∵ EF不在平面BB1D1D, D1O不在平面BB1D1D,∴ EF∥平面BB1D1D.例4 已知直线l//平面α,m 为平面α内任一直线,则直线l 与直线m 的位置关系是().A.平行B. 异面C. 相交D. 平行或异面答案;D。
新版高中数学北师大版必修2课件1.5.2平行关系的性质

5.2 平行关系的性质
首页
Z H 自主预习 IZHUYUXI
合作学习
EZUOXUEXI
D当堂检测 ANGTANG JIANCE
探究一
探究二
易错辨析
正解取D1D的中点G,连接EG,GC, ∵E是A1A的中点,G是D1D的中点,∴EG������ AD. 由正方体性质知AD������ BC,∴EG������ BC. ∴四边形EGCB是平行四边形,∴EB������ GC.① 又∵G,F分别是D1D,C1C的中点,∴D1G������ FC. ∴四边形D1GCF为平行四边形,∴D1F������ GC.② 由①②知EB������ D1F,∴四边形BED1F是平行四边形. 纠错心得1.立体几何问题只有在转化为平面几何问题后才能直
-6-
5.2 平行关系的性质
首页
Z H 自主预习 IZHUYUXI
合作学习
EZUOXUEXI
D当堂检测 ANGTANG JIANCE
做一做2 平面α∥平面β,平面γ∥平面δ,且 α∩γ=a,α∩δ=b,β∩γ=c,β∩δ=d,则交线a,b,c,d的位置关系是 ( )
A.互相平行 B.交于一点 C.相互异面 D.不能确定 解析:由面面平行的性质定理,可知答案为A. 答案:A
探究一
探究二
易错辨析
探究二平面与平面平行的性质及其应用
【例2】 如图所示,在三棱柱ABC-A1B1C1中,平面ABC∥平面 A1B1C1.若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面 AB1C1?并证明你的结论.
分析:先找出过DE与平面AB1C1平行的平面,可直接找出过D、E 与△AB1C1的三边平行的直线,进而确定平面,然后确定其与棱AB的 交点,即可找出E点位置,然后利用定理进行证明即可.
第9讲 平行的判定和性质教师

证明 连接 BC1,则由 E,F 分别是 BC,CC1 的中点知,EF∥BC1.
又 AB 綊 A1B1 綊 D1C1, 所以四边形 ABC1D1 是平行四边形, 所以 BC1∥AD1,所以 EF∥AD1. 又 EF⊄平面 AD1G,AD1⊂平面 AD1G, 所以 EF∥平面 AD1G. 2.如图,正方体 ABCD-A1B1C1D1 中,AB=2,点 E 为 AD 的中点,点 F 在 CD 上,若 EF∥ 平面 AB1C,则线段 FE 的长度等于________.
证明 如图,连接 B1C. 由已知得 A1D∥B1C,且 MN∥B1C,∴MN∥A1D.
又∵MN⊄平面 A1BD,A1D⊂平面 A1BD, ∴MN∥平面 A1BD. 连接 B1D1,同理可证 PN∥平面 A1BD. 又∵MN⊂平面 MNP,PN⊂平面 MNP,且 MN∩PN=N, ∴平面 MNP∥平面 A1BD. 例 5 如图,已知 E,F 分别是正方体 ABCD-A1B1C1D1 的棱 AA1,CC1 的中点,求证:四边 形 BED1F 是平行四边形.
玩转数学
高一同步系列
安老师培优课堂
∴PA∥平面 BMD,又∵PA⊂平面 PAHG,平面 PAHG∩平面 BMD=GH,∴PA∥GH. 又 PA⊂平面 PAD,GH⊄平面 PAD,∴GH∥平面 PAD. 题型三 平面与平面平行的判定和性质 例 4 如图所示,在正方体 AC1 中,M,N,P 分别是棱 C1C,B1C1,C1D1 的中点,求证: 平面 MNP∥平面 A1BD.
C.平行于同一直线的两个平面一定相互平行
D.如果一个平面内的无数多条直线都平行于另一平面,那么这两个平面平行
答案 B
解析 如果一个平面内任何一条直线都平行于另一个平面,即两个平面没有公共点,则两平
高中数学-直线与平面平行、平面与平面平行的性质

【证明】证法一:如图所示,分别取AA1,A1B1 的中点M,N,连接MN,NQ,MP.
∵P,Q分别是面AA1 D1D,面A1B1C1D1的中点,
∴MP∥AD, MP=
NQ=
1 2
A1D1.
1 2
AD,NQ∥A1D1,
∴MP∥NQ且MP=NQ.
∴四边形PQNM为平行四边形.
∴PQ∥MN.
∵MN AA1B1B,
∵CQ∥
∴CQ∥MN.
∵EF是△ABC的中位线,∴M是PC的中点,
则N是PQ的中点,即PQ被平面EFGH平分.
【点评】P,C,Q三点所确定的辅助平面是解决本题的 核心.有了面PCQ,就有了连接CD与面EFGH的桥梁, 线面平行的性质才能得以应用.
返回
如图2-3-4所示,已知ABCD是平行四边形,点P是平面 ABCD外一点,M是PC的中点,在DM上取一点G,过G 和AP作平面交平面BDM于GH.求证:AP∥GH.
.
∴AC∥MN∥AC,且AC= 13AC.
∴AC∥平面ABC.
同理,A′B′∥平面ABC.
又∵AC∩A′B′=A′,
∴平面A′B′C′∥平面ABC.
1
1
(2)同理A′B′= AB3 , B=C BC3 ,
∴△A′B′C′∽△ABC.
∴S△A′B′C′
S△ABC =1:9.
返回
1.如何理解线面平行的性质定理?
表示平面的平行四边形的外面,并且使它与平行四边形的一 边或平行四边形内的一条线段平行.
返回
2.如何理解两个平面平行的性质定理?
平面平行的性质是根据面面平行、线面平行、线线平行的 定义直接给出的;判定直线与直线平行,进而判定直线与 平面平行和平面与平面平行,或者反过来由后者判定前者, 是立体几何最基本又最常见的一类问题.证明线面平行往往 转化为证明面面平行.
高二数学 空间平行关系

高二数学空间平行关系知识要点(一)直线与直线平行的判定方法1、利用定义:在同一个平面内,不相交的两条直线互相平行;2、利用平行公理:空间中平行于同一条直线的两条直线互相平行;3、利用直线与平面平行的性质定理:直线和平面平行,经过该直线的平面与已知平面相交,则该直线和交线平行;4、利用平面和平面平行的性质定理:两个平面互相平行,和第三个平面相交,它们的交线互相平行;5、利用直线和平面垂直的性质:垂直于同一个平面的两条直线互相平行;6、利用直线和平面平行的性质:一直线和两相交平面平行,则该直线和这两个平面的交线平行。
(二)直线与平面平行的判定方法1、利用定义:直线与平面无公共点,则该直线和该平面平行;2、利用直线与平面平行的判定定理:平面外一条直线和平面内一条直线平行,则该直线和该平面平行(线线平行,则线面平行)。
3、利用平面和平面平行的性质:两个平面互相平行,则一个平面内任意一条直线都平行于第二个平面。
(三)平面和平面平行的判定方法1、利用定义:两个平面没有公共点,则这两个平面平行;2、利用平面与平面平行的判定定理:一个平面内有两条相交直线分别与另一个平面内两条相交直线平行,则这两个平面平行;3、利用平面与平面平行的判定:一个平面内有两条相交直线分别平行于另一个平面,则这两个平面平行;4、利用平面与平面平行的传递性:平行于同一个平面的两个平面互相平行.5、利用直线与平面垂直的性质:垂直于同一条直线的两个平面互相平行;(四)直线与平面平行的性质1、性质定理:直线和平面平行,经过该直线的平面与已知平面相交,则该直线和交线平行;2、直线和平面平行的性质:一直线和两相交平面平行,则该直线和这两个平面的交线平行。
(五)平面与平面平行的性质1、平面与平面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
2、平面与平面平行的性质:两个平面互相平行,则一个平面内任意一条直线均平行于第二个平面。
高中数学-直线平面平行的性质及判定

一、空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π=二、空间几何体的体积1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 hS S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=三、直线、平面平行的判定与性质1、直线与平面平行的判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行, 用符号表示为a ⊄α,b ⊂α,且a ∥b ⇒a ∥α。
(1)运用直线与平面平行的判定定理时,必须具备三个条件: ①平面外一条直线;②平面内一条直线;③两条直线相互平行.(2)直线与平面平行的判定定理的关键是证明两直线平行,证两直线平行是平面几何的问题,所以该判定定理体现了空间问题平面化的思想.(3)判定直线与平面平行有以下方法:一是判定定理;二是线面平行定义;三是面面平行的性质定理.【例1】 如右图所示,已知P 、Q 是单位正方体ABCD —A 1B 1C 1D 1的面A 1B 1BA 和面ABCD 的中心.求证:PQ ∥平面BCC 1B 1.证:如右图,取B 1B 中点E ,BC 中点F ,连结PE 、QF 、EF , ∵△A 1B 1B 中,P 、E 分别是A 1B 和B 1B 的中点, ∴PE12A 1B 1.同理QF 12AB .又A 1B 1AB ,∴PE QF .∴四边形PEFQ 是平行四边形. ∴PQ ∥EF .又PQ ⊄平面BCC 1B 1,EF ⊂平面BCC 1B 1, ∴PQ ∥平面BCC 1B 1.222r rl S ππ+=2、平面与平面平行的判定定理一个平面内的两条相交直线与另一个平面相交直线,则这两个平面平行.用符号表示为:a ⊂β,b ⊂β,a∩b=P ,a ∥α,b ∥α⇒β∥α(1)运用判定定理证明平面与平面平行时,两直线是相交直线这一条件是关键,缺少这一条件则定理不一定成立.(2)证明面与面平行常转化为证明线面平行,而证线面平行又转化为证线线平行,逐步由空间转化到平面.(3)证明平面与平面平行的方法有:判定定理、线面垂直的性质定理、定义. (4)平面与平面的平行也具有传递性.【例2】 如右图所示,正三棱柱ABC —A 1B 1C 1各棱长为4,E 、F 、G 、H 分别是AB 、AC 、A 1C 1、A 1B 1的中点, 求证:平面A 1EF ∥平面BCGH .思晨分析:本题证面面平行,可证明平面A 1EF 内的两条相交直线分别与平面BCGH 平行,然后根据面面平行的判定定理即可证明. 证明:△ABC 中,E 、F 分别为AB 、AC 的中点, ∴EF ∥BC .又∵EF ⊄ 平面BCGH ,BC ⊂平面BCGH , ∴EF ∥平面BCGH .又∵G 、F 分别为A 1C 1,AC 的中点,∴A 1G FC .∴四边形A 1FCG 为平行四边形. ∴A 1F ∥GC .又∵A 1F ⊄平面BCGH ,CG ⊂平面BCGH , ∴A 1F ∥平面BCGH . 又∵A 1F ∩EF =F ,∴平面A 1EF ∥平面BCGH .3、直线与平面平行的性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线 与该直线平行。
高中数学课件:直线、平面平行的判定与性质

(2)连接FH,OH, ∵F,H分别是PC,CD的中点,∴FH∥PD. ∵PD⊂平面PAD,FH⊄平面PAD,∴FH∥平面PAD. 又∵O是AC的中点,H是CD的中点,∴OH∥AD, 又∵AD⊂平面PAD,OH⊄平面PAD, ∴OH∥平面PAD. 又FH∩OH=H,∴平面OHF∥平面PAD. 又∵GH⊂平面OHF,∴GH∥平面PAD.
的角为 60°,转化为三角形的一个角有关的问题 还缺少所需要用的三角形,可连接 AD,取 AD 的中 差什么 点 M,连接 ME,MF,得三角形 MEF,利用平行 找什么 关系可找到 ME 与 MF 所成的角,然后利用余弦定 理求解即可
[解题方略] 证明面面平行的常用方法
(1)面面平行的定义,即证两个平面没有公共点(不常用); (2)面面平行的判定定理:如果一个平面内有两条相交直线 都平行于另一个平面,那么这两个平面平行(主要方法); (3)利用垂直于同一条直线的两个平面平行(客观题常用); (4)如果两个平面同时平行于第三个平面,那么这两个平面 平行(客观题常用); (5)利用“线线平行”“线面平行”“面面平行”的相互转 化进行证明.
所以四边形BDC1D1为平行四边形, 所以BD1∥C1D. BD1⊄平面AC1D,C1D⊂平面AC1D, 所以BD1∥平面AC1D, 又因为A1B∩BD1=B, 所以平面A1BD1∥平面AC1D.
2.如图,四棱锥P-ABCD中,AD∥BC,AB=BC
=
1 2
AD,E,F,H分别为线段AD,PC,CD的
考法(二) 直线与平面平行性质定理的应用 [例2] 如图所示,四边形ABCD是平行四 边形,点P是平面ABCD外一点,M是PC的中 点,在DM上取一点G,过G和AP作平面交平面 BDM于GH. 求证:AP∥GH.
26高中数学“直线与直线平行”知识点详解

高中数学“直线与直线平行”知识点详解一、引言在高中数学中,直线与直线平行的概念是一个非常重要的知识点。
掌握直线与直线平行的性质和判定方法,不仅有助于学生解决各种几何问题,还能够培养学生的空间想象能力和逻辑推理能力。
本文将详细解析直线与直线平行的相关知识点,并通过实例和解析帮助学生更好地掌握这一内容。
二、直线与直线平行的定义两条直线平行的定义是:在同一平面内,不相交的两条直线叫做平行线。
平行用符号“∥”表示,如“直线l₁与直线l₂平行”记作l₁∥l₂。
三、直线与直线平行的性质1.同一平面内:平行的两条直线必须在同一平面内。
如果两条直线不在同一平面内,即使它们不相交,也不能称之为平行线。
2.不相交性:两条平行线永远不会相交,无论延长多少都不会相遇。
3.平行线的传递性:如果一条直线与另外两条直线分别平行,那么这两条直线也一定平行。
即如果l₁₁l₁且l₁₁l₁,则l₁₁l₁。
4.同位角相等:两直线平行时,一对同位角相等。
5.内错角相等:两直线平行时,一对内错角相等。
6.同旁内角互补:两直线平行时,一对同旁内角互补,即它们的角度和为180°。
四、直线与直线平行的判定方法1.同位角判定法:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简记为“同位角相等,两直线平行”。
2.内错角判定法:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简记为“内错角相等,两直线平行”。
3.同旁内角判定法:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简记为“同旁内角互补,两直线平行”。
4.平行线的性质逆定理:如果两条直线满足平行线的性质中的任意一条,那么这两条直线平行。
五、应用举例1.证明两直线平行:在几何题目中,经常需要证明两条直线是平行的。
这时可以利用上述的判定方法,通过证明同位角、内错角或同旁内角满足相应的条件来证明两直线的平行关系。
2.求解角度问题:在已知两直线平行的条件下,可以利用平行线的性质来求解相关的角度问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、两平面平行的判定定理? 如果一个平面内有两条相交直线分别平 行于另一个平面,那么这两个平面平行. 3、推论: 如果一个平面内的两条相交直线分别平 行于另一个平面内的两条直线,那么这两个 平面平行.
引入新知
平面与平面平行的性质
若 / /, 且 a ,则 与 的位置关系如何?
(A) 0 (B) 1 (√C) 0或1 (D) 1或2
2. 平面M∥平面N,直线a M,直线b N, 下面四种情形: (1)a ∥ b (2)a ⊥ b
3. (3)a与b异面 (4)a与b相交
其中可能出现的情形有 ( )
(A)1种 (B) 2种 (√C)3种 (D)4种
例题讲解
例2、如图,设AB、CD为夹在两个平行平面 、
因 为 //, 所 以 B D //A C .
因 此 , 四 边 形 A B C D 是 平 行 四 边 形 . 所以,ABCD.
归纳小结
两个平面平行的其它性质 性质:夹在两个平行平面间的平行 线段相等.
性质:经过平面外一点有且只有一 个平面和已知平面平行.
课内练习 1. 经过平面外两点可作该平面的平 行平面的个数为( )
γ
a
b
α
β
例题讲解
例1、求证: 夹在两个平行平面间的
平行线段相等.Βιβλιοθήκη 如 图 ,//,A B//C D , A
D
且A,C,
B ,D .
求 证 : A B C D B
C
例题讲解
证 明 : 因 为 AB//CD ,
所 以 过 A B , C D 可 作 平 面 ,
且 平 面 与 平 面 和 分 别 相 交 于 A C 和 B D .
平 面 //平 面 NM//平 面
N M 与 N P 相 交 于 点 N
平 面 P N M //平 面 直 线 M P//平 面 .
课堂小结
1. 复习了平面与平面平行的 概念及判定;
2. 学习并掌握平面与平面平 行的性质.
课后作业
课本第34页 习题1-5 B组第2、3题.
谢谢
设b, 则直线a、b的位置 关系如何?为什么?
引入新知
性质定理 如果两个平行平面同时和 第三个平面相交, 那么它们 的交线平 行.
αa
β
b
γ
课内练习
(1)设 //, A, 过点A作直线
l //,则l与的位置关系如何?么为?什
αA l
β
课内练习
(2) 若平面α、β都与平面γ相交,且交 线平行,则α∥β吗?
之间的线段,且直线AB、CD为异面直线,M、P 分别
为AB、CD 的中点,
A
求证:直线MP // 平面 .
C
NP
M
D
B
例题讲解
证 明 :连 接 B C , 设 其 中 点 为 N ,
连 接 M N, NP, M P
在 B C D 中 , N P / / B D , N P / / 平 面
在 B C A 中 , N M //A C , N M //平 面