高中数学 不等式的基本性质
高中数学知识点精讲精析 不等式的基本性质

4.1不等式的基本性质1.不等式的基本性质: ①对称性:a>b b<a; ②传递性:a>b,b>c a>c; ③可加性:a>b a+c>b+c; ④加法法则:a>b,c>d a+c>b+d; ⑤可乘性:a>b,c>0 ac>bc; a>b,c<0 ac<bc; ⑥乘法法则:a>b>0,c>d>0 ac>bd;⑦倒数法则:a>b,ab>0 ; ⑧乘方法则:a>b>0 an>bn;⑨开方法则:a>b>0 ;⑩绝对值不等式的性质: |a|-|b|≤|a+b|≤|a|+|b| 2.基本不等式(以下√表示根号,^表示指数)如果a 、b 都为实数,那么a 平方+b 平方≥2ab,当且仅当a=b 时等号成立 证明如下: ∵(a-b)^2≥0 ∴a^2+b^2-2ab≥0 ∴a^2+b^2≥2ab如果a 、b 、c 都是正数,那么a+b+c≥3*3√abc,当且仅当a=b=c 时等号成立 如果a 、b 都是正数,那么(a+b )/2 ≥√ab ,当且仅当a=b 时等号成立。
(这个不等式也可理解为两个正数的算数平均数大于或等于它们的几何平均数,当且仅当a=b 时等号成立。
)和定积最大:当a+b=S 时,ab≤S^2/4(a=b 取等) 积定和最小:当ab=P 是,a+b≥2√P(a=b 取等)ba 11<⇒nn b a >⇒均值不等式:如果a,b 都为正数,那么√(( a 平方+b 平方)/2)≥(a+b )/2 ≥√ab≥2/(1/a+1/b)(当且仅当a=b 时等号成立。
)( 其中√(( a 平方+b 平方)/2)叫正数a,b 的平方平均数也叫正数a,b 的加权平均数;(a+b )/2叫正数a,b 的算数平均数;√ab 正数a,b 的几何平均数;2/(1/a+1/b)叫正数a,b 的调和平均数。
高中数学《不等式的基本性质》导学案

1.1不等式的基本性质导学案1.掌握两个实数比较大小的理论依据;2.理解并掌握不等式的性质;3.会利用不等式的基本性质证明不等式和比较大小;【重点、难点】教学重点:不等式的性质;教学难点:不等式性质的应用.二、学习过程【情景创设】1.在必修5中,我们学习了不等式的基本性质,这些性质是我们解不等式及证明不等式或者求一个变量的范围的理论依据;2.在必修5中学到的两个实数比较大小的原理及不等式的基本性质是怎样的?3.这些性质及原理是如何应用的?应用时应注意什么?【导入新课】1.不等关系是自然界中存在着的基本数学关系。
2. 实数的运算性质与大小顺序的关系: 数轴上右边的点表示的数总 左边的点所表示的数,可知: 0ba b a -⇔> 0ba b a -⇔=0b a b a -⇔<结论:要比较两个实数的大小,只要考察它们的差的符号即可。
3. 不等式的基本性质:10. 对称性:b a >⇔ ;20. 传递性:⇒>>c b b a , ; 30. 同加性:⇒>b a ;推论:加法法则:⇒>>d c b a , ; 40. 同乘性:⇒>>0,c b a ,⇒<>0,c b a ; 推论1:乘法法则:⇒>>>>0,0d c b a ; 推论2:乘方性:⇒∈>>+N n b a ,0 ; 推论3:开方性:⇒∈>>+N n b a ,0 ;推论4:可倒性:⇒>>0b a .☆比较两数大小的一般方法: 与 .三 、典例分析【例1】 判断下列各题的对错(1)c a <c b且c >0⇒a >b ( ). (2)a >b 且c >d ⇒ac >bd ( ).(3)a >b >0且c >d >0⇒a d >b c(4)a c 2>b c2⇒a >b ( ). 【例2】 比较下列各组中两个代数式的大小:(1)x 2+3与3x ;(2)已知a ,b 为正数,且a ≠b ,比较a 3+b 3与a 2b +ab 2的大小.分析:我们知道,a -b >0a >b ,a -b <0a <b ,因此,若要比较两式的大小,只需作差并与0作比较即可.【例3】已知0,0,a b c >><求证: c c a b>。
高中数学不等式知识点总结

高中数学不等式知识点总结一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
扩展资料高中数学不等式知识点总结:1、用符号〉,=,〈号连接的式子叫不等式。
2、性质:①如果x>y,那么y<z;如果yy;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑥如果x>y>0,m>n>0,那么xm>yn;⑦如果x>y>0,那么x的.n次幂>y的n次幂(n为正数),x的n 次幂<y的n次幂(n为负数)。
或者说,不等式的基本性质有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。
3、分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
高中数学不等式知识点

高中数学不等式知识点在高中数学的学习中,不等式是一个重要的知识板块。
它不仅在数学学科内有着广泛的应用,对于我们解决实际问题也具有重要的意义。
不等式的定义很简单,用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子就是不等式。
首先,我们来了解一下不等式的基本性质。
性质 1:如果 a > b,那么 a + c > b + c ;如果 a < b,那么 a +c < b + c 。
这意味着在不等式两边同时加上或减去同一个数,不等号的方向不变。
性质 2:如果 a > b 且 c > 0,那么 ac > bc ;如果 a > b 且 c < 0,那么 ac < bc 。
也就是说,不等式两边同时乘以(或除以)同一个正数,不等号方向不变;不等式两边同时乘以(或除以)同一个负数,不等号方向改变。
性质 3:如果 a > b 且 b > c,那么 a > c 。
这是不等式的传递性。
掌握这些基本性质是解决不等式问题的基础。
接下来,我们看看常见的一元一次不等式。
形如 ax + b > 0 或 ax+ b < 0 (其中a ≠ 0)的不等式就是一元一次不等式。
解一元一次不等式的步骤与解一元一次方程类似,但要特别注意不等式两边乘以(或除以)负数时,不等号方向的变化。
例如,解不等式 2x 5 < 7 。
首先,将-5 移到右边得到 2x < 7 +5 ,即 2x < 12 。
然后两边同时除以 2 ,得到 x <6 。
再来说说一元二次不等式。
形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0 (其中a ≠ 0)的不等式就是一元二次不等式。
解一元二次不等式,需要先求出对应的一元二次方程 ax²+ bx + c = 0 的根,然后根据二次函数的图像来确定不等式的解集。
例如,对于不等式 x² 3x + 2 > 0 ,先解方程 x² 3x + 2 = 0 ,因式分解得到(x 1)(x 2) = 0 ,所以方程的根为 x = 1 和 x = 2 。
高中不等式知识点总结

高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。
不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。
例如,x > y表示x大于y,x < y表示x小于y。
二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。
1.对称性:如果x > y,则y < x。
这就是说,不等式两边同时改变符号,不等式的方向不会改变。
2.传递性:如果x > y,且y > z,则x > z。
这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。
3.可加性:如果x > y,且a > 0,则x + a > y + a。
这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。
4.乘法原则:如果x > y,且m > 0,则x * m > y * m。
这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。
三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。
1.作差比较法:如果x > y,则x - y > 0。
我们可以通过作差来比较两个数的大小。
2.作商比较法:如果x > y,则x / y > 1。
我们可以通过作商来比较两个数的大小。
3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。
我们可以通过韦达定理来比较两个数的大小。
完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
高一基本不等式的知识点

高一基本不等式的知识点在数学学科中,不等式是我们经常遇到的一类问题,也是解决实际问题和推理证明的常用工具。
在高中数学的学习中,如何正确处理和应用不等式是非常重要的。
本文将介绍一些高一阶段常见的基本不等式的知识点,希望能够对同学们的学习有所帮助。
一、正数不等式的基本性质正数不等式是我们在学习不等式时最常见的一种形式。
正数不等式的基本性质有以下几点:1. 加减同项,不等号方向不变。
例如,若a>b,则a+c>b+c,a-c>b-c。
2. 乘除同正数,不等号方向不变。
例如,若a>b,且c>0,则ac>bc,a/c>b/c。
3. 乘除同负数,不等号方向改变。
例如,若a>b,且c<0,则ac<bc,a/c< b/c。
二、平方不等式的知识点平方不等式是高一阶段经常遇到的一个重要内容。
对于大多数正实数和负实数,我们可以使用平方不等式进行简化和推导。
以下是一些常见的平方不等式知识点:1. 平方不等式基本性质:对于任意实数a和b,若a>b,那么a^2>b^2。
这是由于当a和b都为正数或负数时,平方操作不改变不等关系;而当a为正数,b为负数时,平方操作会改变不等关系。
2. 平方不等式求解方法:对于形如x^2-c>0的平方不等式,我们可以通过因式分解法或配方法将其转化为(x-a)(x-b)>0的形式,然后根据零点的位置关系进行讨论求解。
三、绝对值不等式的知识点绝对值不等式也是高一数学中重要的内容之一。
绝对值不等式的处理方法与普通的不等式稍有不同,需要注意以下几个方面:1. 绝对值不等式基本性质:对于任意实数a和b,若|a|>|b|,那么a^2>b^2。
这是因为绝对值的定义决定了当a和b的符号不同时,|a|>|b|必然意味着a^2>b^2。
2. 绝对值不等式求解方法:对于形如|ax+b|>c或|ax+b|<c的绝对值不等式,我们可以根据绝对值的定义将其转化为不等式组形式进行求解。
不等式的基本性质

从而a<c<b。当b-c=0,即b=c时,因为bc>a2,
所以b2>a2,即b≠a。又a2-2ab+b2=(a-b)2=0,所以a=b,
与前面矛盾,故b≠c.所以a<c<b.
14
• • • • • • • • • • •
小结
小结:理解并掌握不等式的六个基本性质
作业
一、课本 P10 3
2、求证:
1 1 (1)如果a>b, ab>0,那么 ; a b (2)如果a>b>0,c<d<0,那么ac<bd。
3、选做题:设a≥b,c≥d,
3.已知 a 0,比较 (a 2 2a 1)( a 2 2a 1) 与 (a a 1)(a a 1) 的大小.
a2 c2 且 0, c>0。 a>0,所以b= 2a
因为(a-c)2=a2-2ac+c2=2ab-2ac=2a(b-c )≥0,所以b-c≥0. 2 2 a c a2 c2 2 2 c a , , bc a , 当b-c>0,即b>c时,b= 得 2a 2a 所以a2c+c3 >2a3即a3-c3+a3-a2c<0,(a-c)(2a2+ac+c2)<0
• 例2、比较
【典型例题】
例3、比较以下两个实数的大小:
1 (1)16 与18 ; ( 2) 与2 n (n N* ) n1 n
18 16
(3)比较a b 和a b 的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学不等式的基本性质不等式的基本性质
1.不等式的定义:a-b0ab,a-b=0a=b,a-b0a
①其实质是运用实数运算来定义两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
2.不等式的性质:
①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1)abb
(2)ab,bcac(传递性)
(3)aba+cb+c(cR)
(4)c0时,abacbc
c0时,abac
运算性质有:
(1)ab,cda+cb+d。
(2)ab0,cd0acbd。
(3)ab0anbn(nN,n1)。
(4)ab0(nN,n1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励
他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。
对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。
长期坚持,不断训练,幼儿说话胆量也在不断提高。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文
水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中
学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。