高中数学基本不等式教案
人教A版高中数学必修5《基本不等式》精品教案

人教A版高中数学必修5《基本不等式》精品教案课题: 基本不等式:2ba ab +≤(第一课时)教材:人教版高中课程标准实验教科书《数学·必修5》第三章第四节 1 教材分析本节书介绍了两个不等式定理:(1)、如果R b R a ∈∈,,那么ab b a 222≥+①;(2)、如果0,0>>b a ,那么2ba ab +≤②。
这两个定理是解决一些数学问题和实际应用问题的重要的数学方法。
本节书教学共需3课时,这是第一课时,主要是了解探索基本不等式的证明过程,熟悉基本不等式的结构,为下节基本不等式的应用做准备(以下用①②代替两个定理)。
2 学生分析有了前面“不等式性质”的学习,学生要理解这两个定理难度并不大。
针对学生求知欲旺盛的特点,在教学中,以思考、探索、讨论为主要方法,适当加以讲解,使学生自己收获结论、总结方法,动手解决实际问题,并且增强学习数学的的信心。
3 教学策略(1)、以“孔融选蛋糕”为例引入,课件辅助,引导学生探究①的证明,并总结证明方法;利用正方形和弦图让学生了解①的几何意义,同时介绍“国际数学家大会”,培养学生的民族自豪感和使命感。
(2)、利用①式,通过“换元法”练习引入定理②,引导学生从不同角度探究②的证明过程,利用“半径和半弦的关系”让学生了解②的几何意义,并强调①②的联系与区别。
(3)、巩固练习。
设置三道习题由浅到深让学生对基本不等式逐渐熟悉,应用它们去比较大小、解决生活常见问题,最后让学生通过替换定理中的字母发现更多②式有趣的变形式,为下一节课铺垫。
4 教学目标(1)、知识目标了解不等式①②的证明过程和方法;了解不等式①②的几何意义;初步应用基本不等式比较大小,熟悉其变形式。
(2)、能力目标通过探究结果的汇报以及讨论活动,提高学生语言表达能力;在对不等式①②的证明过程中培养学生发现、比较、论证、转化等分析问题和解决问题的能力;通过掌握不等式①②的结构特点和运用不等式①②的适当变形,培养学生的思维能力和创新精神。
基本不等式教案范文

基本不等式教案范文一、教学目标1.知识与技能目标a.掌握基本不等式的定义和基本性质;b.掌握不等式的加减乘除性质;c.能够解决基本不等式的证明和计算问题。
2.过程与方法目标a.通过例题引导学生发现不等式的性质;b.引导学生进行探究性学习,提高独立解决问题的能力;c.培养学生的逻辑思维和推理能力。
3.情感态度目标a.培养学生的数学思维和抽象思维能力;b.培养学生的合作意识和团队精神;c.培养学生的实际问题解决能力。
二、教学重点1.不等式的加减和乘除性质;2.不等式的证明和计算方法。
三、教学难点1.不等式的证明方法;2.复杂不等式的解决方法。
四、教学方法1.探究教学法:通过解决例题引导学生发现不等式的性质;2.讲授教学法:通过讲解和示范的方式,介绍不等式的性质和解决方法;3.案例分析法:通过分析实际问题的案例,引导学生解决不等式问题。
五、教学过程1.引入a.导入问题:小明计划购买一款手机,他想知道自己有多少钱可以花在手机上。
请问该怎样计算?b.引导学生讨论,并给予提示,引出不等式的概念。
2.探究不等式的性质a.通过解决一些简单的例题,让学生发现不等式的性质。
b.给出以下几个例题:(1)若a>b,b>0,则a+b>b;(2)若a > b,b > 0,则ab > b;(3)若a>b,b>0,则a/b>1c.让学生在小组内讨论,并找出规律。
d.分组展示结果,学生进行交流与讨论。
e.教师总结不等式的加减和乘除性质。
3.不等式证明a.讲解不等式证明的一般方法,包括逆否命题法、反证法等。
b.通过案例讲解不等式证明的具体步骤和技巧。
c.给出以下例题:(1)证明:若a>b,b>0,则a+b>0。
(2)证明:对于任意实数x,都有x>-1c.引导学生运用之前学到的证明方法进行解答,然后进行讨论。
4.解决不等式问题a.讲解不等式的解决方法,包括绝对值法、区间法等。
3.2基本不等式-北师大版高中数学必修第一册(2019版)教案

3.2 基本不等式-北师大版高中数学必修第一册(2019版)教案一、教学目标1.了解不等式的概念,并掌握基本不等式的证明方法。
2.能够运用基本不等式求解基础数学题目。
二、教学重点1.基本不等式的概念。
2.基本不等式的证明方法。
3.基本不等式的应用。
三、教学难点1.基本不等式的证明方法。
2.基本不等式的应用。
四、教学内容和方法1. 教学内容1.不等式的概念。
2.基本不等式的证明方法。
3.基本不等式的应用。
4.案例演练。
2. 教学方法1.讲授法。
2.案例演练法。
3. 具体步骤(1) 不等式的概念1.引入不等式的概念,并让学生了解不等式的基本性质。
2.提供一些例题,让学生掌握不等式的基础知识。
(2) 基本不等式的证明方法1.讲解基本不等式的证明方法,并让学生理解证明思路。
2.给出一些例题,让学生通过案例演练掌握证明方法。
(3) 基本不等式的应用1.讲解基本不等式的应用,并通过案例演练让学生掌握应用方法。
2.提供一些综合应用的例题,让学生能够运用所学知识解题。
五、教学评估1.进行课堂测试,测试学生对基本不等式的理解和掌握程度。
2.打分并评估学生的学习成果和教学效果。
六、教学进度安排本次课时为2学时,具体安排如下:1.第一学时:讲解不等式的概念和基本性质,并提供例题进行练习,时间1学时。
2.第二学时:讲解基本不等式的证明方法和应用,提供案例练习和综合例题进行讲解,时间1学时。
七、教学资源准备1.基本不等式的教材教辅。
2.讲解PPT。
3.相关练习题和测试题。
高中数学基本不等式教案设计.doc

高中数学《基本不等式》教学设计方案一、 【教学目标】1、 知识与技能目标(1) 掌握基本不等式陌S 凹,认识其运算结构;2(2) 了解基木不等式的几何意义及代数意义;(3) 能够利用基本不等式求简单的最值。
2、 过程与方法目标(1) 经历由几何图形抽象岀基本不等式的过程;(2) 体验数形结合思想。
3、 情感、态度和价值观目标(1) 感悟数学的发展过程,学会用数学的眼光观察、分析事物;(2) 体会多角度探索、解决问题。
二、 【能力培养】培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力, 分析问题、解决问题的能力。
三、 【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式V^<— 的2 证明过程。
四、 【教学难点】基本不等式陌5凹等号成立条件。
2五、 【教学方法】教师启发引导与学生自主探索相结合六、 【教学工具】课件辅助教学、实物演示实验七、 【教学流程】八、【教学过程设计】 创设情景,引入新课如图是在北京召开的第24届国际数学家大会的会标, 据赵爽弦图而设计的。
用课前折好的赵爽弦图示范,比较实物演示引入课题 观察、发]现问题引例练习这是根4个直角三角形的面积和与大止方形的面积,你会得到怎样的相等关系?等和不赵爽弦图1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形的边长为V7市。
这样,4个直角三角形的而积的和是2ab,正方形的而积为/+方2。
由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:a2 +b2 > lab。
当直角三角形变为等腰直角三角形,即护b时,正方形EFGH缩为一个点,这时有a2+b2=2ab.2.得到结论:一般的,如果a,be R,那么a1 ^b~ > 2ab(^且仅当a = b时取”=”号)3.思考证明:你能给岀它的证明吗?证明:因为a2 +/?2 - 2ab = (a-b)2当aH 附,(a-b)2〉0,当d =册,(°一/?)2 =0,所以,(a-b)2 >0, BP (a2+b2)>2ab.4.基木不等式1)特别的,如果a>0, b>0,我们用分别代替a、b ,可得亦,通常我们把上式写作:V^<-^(a>0,b>0)22)从不等式的性质推导基木不等式凹显然,(4)是成立的。
高中数学《基本不等式》公开课优秀教案

高中数学《基本不等式》公开课教案教学三维目标:1.知识与能力目标:掌握基本不等式及会应用基本不等式求最值 2.过程与方法目标:体会基本不等式应用的条件:一正,二定,三相等;体会应用基本不等式求最值问题解题策略的构建过程。
3.情感态度与价值观目标:通过解题后的反思逐步培养学生养成解题反思的习惯教学重难点:重点:基本不等式在解决最值问题中的应用难点:基本不等式在解决最值问题中的变形应用及等号成立的条件一、新课讲解1.基本不等式:①0,0>>b a ,ab ba ≥+2(当且仅当b a =时,取等号) 变形:ab b a 2≥+,ab b a ≥+2)2(,2≥+abb a②重要不等式:如果R b a ∈,,则ab b a 222≥+(当且仅当b a =时,取“=”号) 2.最值问题: 已知y x ,是正数,①如果积xy 是定值P ,则当y x =时,和y x +有最小值P 2;②如果和y x +是定值S ,则当y x =时,积xy 有最大值241S .利用基本不等式求最值时,要注意变量是否为正,和或积是否为定值,等号是否成立,以及添项、拆项的技巧,以满足均基本不等式的条件。
3.称2y x +为y x ,的算术平均数,称xy 为y x ,的几何平均数。
二、例题讲解:例1.已知0<x ,则xx 432++的最大值是________. 例2.已知0,0>>y x ,且082=-+xy y x ,求(1)xy 的最小值;(2)y x +的最小值。
例3.求下列函数的最小值(1))1(11072->+++=x x x x y (2)已知0,0>>y x ,且,1243=+y x 求y x lg lg +的最大值及相应的x ,y 的值。
例4. 围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x (单位:元)。
高中数学5个不等式教案

高中数学5个不等式教案
课题:高中数学不等式
目标:学生能够理解和解决各种不等式问题,掌握不等式的基本性质和解法方法。
一、引入:
通过一个简单的问题引入不等式的概念,让学生明白不等式的意义和作用。
二、基本性质:
1. 不等式的基本性质:大小关系、加减乘除,等不等式的性质。
2. 不等式的转化:加减法转化、乘除法转化等。
3. 不等式的表示:解集表示法、图示法等。
三、解不等式:
1. 一元一次不等式:解一元不等式常用的方法和技巧。
2. 一元二次不等式:解一元二次不等式的方法和步骤。
3. 复合不等式:解复合不等式的方法和技巧。
四、不等式的应用:
1. 不等式在几何中的应用:三角形不等式等。
2. 不等式在实际问题中的应用:最大最小值问题、优化问题等。
五、综合练习:
安排一些综合性的练习题,让学生运用所学知识解决问题。
六、总结:
对本节课所学的内容进行总结,强化学生对不等式知识的理解和掌握。
七、作业:
布置适量的作业,巩固所学内容。
以上是一份高中数学不等式教案范本,教师可根据实际情况和教学需要进行具体调整和安排。
人教A版高中数学必修五《基本不等式》精品教案

《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。
②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。
③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。
让学生享受学习数学带来的情感体验和成功喜悦。
二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。
教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。
三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。
以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。
以多媒体作为教学辅助手段,加深学生对基本不等式的理解。
四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。
2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。
教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。
2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。
)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。
五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。
《基本不等式》教案

《基本不等式》教学设计教材:人教版高中数学必修5第三章一、教学目标1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想;2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力;3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想;4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的能力,体会方法与策略.以上教学目标结合了教学实际,将知识与能力、过程与方法、情感态度价值观的三维目标融入各个教学环节.二、教学重点和难点重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式的证明过程;难点:在几何背景下抽象出基本不等式,并理解基本不等式.三、教学过程:1.动手操作,几何引入如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、形数统一、代数和几何是紧密结合、互不可分的.探究一:在这张“弦图”中能找出一些相等关系和不等关系吗?在正方形中有4个全等的直角三角形.设直角三角形两条直角边长为,那么正方形的边长为.于是,4个直角三角形的面积之和,正方形的面积.由图可知,即.探究二:先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折叠).假设两个正方形的面积分别为和(),考察两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?通过学生动手操作,探索发现:2.代数证明,得出结论根据上述两个几何背景,初步形成不等式结论:若,则.若,则.学生探讨等号取到情况,教师演示几何画板,通过展示图形动画,使学生直观感受不等关系中的相等条件,从而进一步完善不等式结论:(1)若,则;(2)若,则请同学们用代数方法给出这两个不等式的证明.证法一(作差法):,当时取等号.(在该过程中,可发现的取值可以是全体实数)证法二(分析法):由于,于是要证明,只要证明,即证,即,该式显然成立,所以,当时取等号.得出结论,展示课题内容基本不等式:若,则(当且仅当时,等号成立)若,则(当且仅当时,等号成立)深化认识:称为的几何平均数;称为的算术平均数基本不等式又可叙述为:两个正数的几何平均数不大于它们的算术平均数3.几何证明,相见益彰探究三:如图,是圆的直径,点是上一点,,.过点作垂直于的弦,连接.根据射影定理可得:由于Rt中直角边斜边,于是有当且仅当点与圆心重合时,即时等号成立.故而再次证明:当时,(当且仅当时,等号成立)(进一步加强数形结合的意识,提升思维的灵活性)4.应用举例,巩固提高例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)对于,(1)若(定值),则当且仅当时,有最小值;(2)若(定值),则当且仅当时,有最大值.(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)例2.求的值域.变式1.若,求的最小值.在运用基本不等式解题的基础上,利用几何画板展示的函数图象,使学生再次感受数形结合的数学思想.并通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.练一练(自主练习):1.已知,且,求的最小值.2.设,且,求的最小值.5.归纳小结,反思提高基本不等式:若,则(当且仅当时,等号成立)若,则(当且仅当时,等号成立)(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法.媒体展示,渗透思想:若将算术平均数记为,几何平均数记为利用电脑3D技术,在空间坐标系中向学生展示基本不等式的几何背景:平面在曲面的上方6.布置作业,课后延拓(1)基本作业:课本P100习题组1、2题(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.(3)探究作业:现有一台天平,两臂长不相等,其余均精确,有人说要用它称物体的重量,只需将物体放在左右托盘各称一次,则两次所称重量的和的一半就是物体的真实重量.这种说法对吗?并说明你的结论.《基本不等式》教学设计说明一、内容和内容解析本节课是人教版高中数学必修5中第三章第4节的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《基本不等式》教学设计方案
人教版(A 版) 普通高中课程标准试验教科书必修第五册
【教学目标】
1、知识与技能目标
(12
a b +≤,认识其运算结构; (2)了解基本不等式的几何意义及代数意义;
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标
(1)经历由几何图形抽象出基本不等式的过程;
(2)体验数形结合思想。
3、情感、态度和价值观目标
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;
(2)体会多角度探索、解决问题。
【能力培养】
培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
【教学重点】
2
a b +≤的证明过程。
【教学难点】
2
a b +≤等号成立条件。
【教学方法】
教师启发引导与学生自主探索相结合
【教学工具】
课件辅助教学、实物演示实验
【教学过程设计】
一、 创设情景,引入新课
如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。
用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系?
赵爽弦图
1.探究图形中的不等关系
将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形
的边长为。
这样,4个直角三角形的面积的和是2ab,
正方形的面积为。
由于4个直角三角形的面积小于正
方形的面积,我们就得到了一个不等式:。
当直角三角形变为等腰直角三角形,即a=b时,正
方形EFGH缩为一个点,这时有。
2.得到结论:一般的,如果
3.思考证明:你能给出它的证明吗?
证明:因为
当
所以,,即
4.基本不等式
1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得,通常我们把上式写作:2)从不等式的性质推导基本不等式
用分析法证明:
要证 (1)
只要证≥
+b
a ab
2 (2)要证(2),只要证 a+b-ab
20 (3)要证(3),只要证(a-b)0
≥(4)显然,(4)是成立的。
当且仅当a=b时,(4)中的等号成立。
3)理解基本不等式的几何意义
如图所示:AB是圆的直径,点C是AB上一点,AC=a,BC=b。
过点C作垂直于AB的弦DE,连接AD、BD。
你能利用这个图形得出基本不等式的几何解释吗?
引导学生发现:表示圆的半经,表示半弦长CD,得到不等关系:≤()
易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB
即CD=.
这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.
几何意义:半弦长不大于半径长。
我们称ab为正数b
a,的几何平均数,称
2b
a+
为正数b
a,的算术平均数。
代数意义:几何平均数小于等于算术平均数
5.随堂练习
已知a、b、c都是正数,求证:(a+b)(b+c)(c+a)≥8abc
分析:对于此类题目,选择定理:(a >0,b >0)灵活变形,可求得结果。
解:∵a ,b ,c 都是正数
∴a +b ≥2>0
b +
c ≥2>0
c +a ≥2>0
∴(a +b )(b +c )(c +a )≥2·2·2=8abc
即(a +b )(b +c )(c +a )≥8abc .
【课时小结】
本节课,我们学习了重要不等式;两正数a 、b 的算术平均数(),几何平均数(ab )及它们的关系().它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具。
我们还可以用它们下面的等价变形来解决问题:
222b a ab +≤,2)2
(b a ab +≤. 思想方法技巧:
(1)数形结合思想、“整体与局部”
(2)换元法、分析法
(3)配凑等技巧。