变频器抗干扰的解决方案

合集下载

变频器如何抗干扰变频器干扰解决方法

变频器如何抗干扰变频器干扰解决方法

变频器如何抗干扰变频器干扰解决方法一、变频器干扰的原因变频器在工作过程中会产生一定的电磁干扰,主要有以下几个原因:1.高频脉冲干扰:变频器由电机驱动器和电子器件组成,电子器件工作时会产生高频脉冲干扰,对周围电子设备产生辐射干扰。

2.电磁辐射:变频器中的电路部件和电机线圈会产生电磁场辐射,导致周围电子设备受到电磁干扰。

3.电源线干扰:变频器需要接入电源,当供电电源线路不稳定或存在电磁干扰时,会影响变频器正常工作并产生干扰。

二、变频器抗干扰的解决方法1.优化变频器布局:合理安排变频器及其接线的位置,将尽量远离其他敏感设备,减少电磁辐射对其它设备的干扰。

2.使用屏蔽电缆:通过使用屏蔽电缆连接变频器与电机,减少电磁辐射和电磁感应,从而减小干扰。

3.安装滤波器:安装电力滤波器来滤除变频器输出端的高频脉冲干扰,减少对周围设备的辐射。

4.增加电磁隔离屏蔽:在变频器周围添加金属屏蔽罩或者设施屏蔽屏蔽间隔来减少电磁波的辐射,从而保护周围设备。

5.优化供电电源:通过增加稳压器、滤波电容、终端电阻等措施,保证供电线路稳定,减少电源线干扰。

6.地线连接优化:保证变频器、电机、控制系统等设备都接地良好,减少电磁波的辐射和对其他设备的干扰。

7.使用额外的电磁屏蔽材料:在关键部位使用电磁屏蔽材料,如电磁屏蔽垫、屏蔽套管等,减少电磁波干扰。

8.添加滤波和降压器:通过在变频器的输入端添加滤波器,滤除电网的高频干扰信号,降低输入电源的干扰。

9.使用低噪声电源:选择低噪声的电源供应系统,减少输入变频器的电源噪声。

三、变频器干扰预防1.确保变频器本身具备较低的辐射性和敏感性,选择正规生产厂家和合格产品。

2.在购买变频器时,要选择具有良好抗干扰能力的产品,并参考其抗干扰性能指标。

3.对变频器进行适当的屏蔽和隔离设计,加强变频器周围环境的电磁兼容性。

4.在使用变频器时,要仔细阅读和遵守变频器的使用说明书,正确安装和接线,避免出现安装错误和使用不当的情况。

变频器电磁干扰的解决方案

变频器电磁干扰的解决方案

变频器电磁干扰的解决方案标题:变频器电磁干扰的解决方案引言概述:变频器在工业生产中广泛应用,但其工作过程中常常会产生电磁干扰,给设备和系统稳定运行带来困扰。

本文将详细介绍变频器电磁干扰的解决方案,帮助读者更好地理解和解决这一问题。

一、电磁屏蔽措施1.1 金属屏蔽箱的使用:金属屏蔽箱能有效阻挡变频器产生的电磁辐射,减少对周围设备的干扰。

选择合适的金属材料和屏蔽结构,确保屏蔽效果。

1.2 电磁屏蔽罩的应用:对于特定的设备或系统,可以使用电磁屏蔽罩来隔离变频器产生的电磁干扰。

这种罩子通常由导电材料制成,能够有效地吸收和隔离电磁波。

1.3 电磁屏蔽材料的选择:在设计和制造过程中,选择合适的电磁屏蔽材料非常重要。

常见的电磁屏蔽材料包括铁氧体、铜箔、导电涂层等,根据具体需求选用合适的材料。

二、滤波器的应用2.1 输入滤波器的使用:安装输入滤波器可以有效减少变频器输入端的电磁干扰。

输入滤波器能够滤除高频噪声,确保电源电压的稳定性。

2.2 输出滤波器的应用:输出滤波器能够滤除变频器输出端的高频噪声,减少对周围设备的干扰。

选择合适的滤波器参数和类型,确保滤波效果。

2.3 滤波器的维护和调整:定期检查和维护滤波器的工作状态,确保其正常运行。

根据实际情况调整滤波器的参数,以达到最佳的滤波效果。

三、接地措施3.1 变频器的接地:合理的变频器接地可以有效降低电磁干扰。

将变频器接地导线与设备的共同接地点连接,确保接地的稳定性和可靠性。

3.2 设备的接地:除了变频器的接地,设备本身的接地也非常重要。

确保设备的接地导线良好连接,并与变频器接地导线连接在一起,形成良好的接地系统。

3.3 接地电阻的测量:定期测量接地电阻,确保接地系统的良好工作状态。

如果接地电阻过大,应及时采取措施进行修复。

四、电缆布线和屏蔽4.1 电缆的选择:选择合适的电缆类型和规格,能够有效减少电磁干扰。

屏蔽电缆对于抑制电磁辐射和抗干扰能力较强,是较好的选择。

变频器抗干扰方法

变频器抗干扰方法

变频器抗干扰方法变频器是一种用来控制电动机转速的装置,广泛应用于工业生产中。

然而,由于变频器的调节过程中涉及到高频开关过程,就会产生电磁干扰,对其它电子设备和通信系统造成干扰。

因此,为了减少变频器的电磁干扰对周围设备的影响,需要采取一系列抗干扰措施。

首先,为了降低变频器的辐射干扰,可以采取以下措施:1.优化布线:合理布设电源线、控制线和信号线,使其远离敏感的模拟控制线路和通信线路,减少干扰的传递。

2.使用屏蔽线缆:将电源线、以及输入输出信号线采用带有屏蔽层的线缆,以减少干扰的辐射和传递。

3.增加滤波器:在变频器输入端安装滤波器,能够滤除高频噪声,减少干扰的辐射。

4.安装金属屏蔽罩:在变频器周围安装金属屏蔽罩,能够有效屏蔽辐射干扰。

其次,为了降低变频器的传导干扰,需要采取以下措施:1.使用滤波器:在变频器输入端和输出端都安装滤波器,以减少输入输出电缆的传导干扰。

2.分开供电:变频器的电源线和控制信号线分开供电,减少共模干扰。

3.添加低噪声电源:为变频器提供低噪声的电源,减少变频器输出端的电磁噪声。

4.选择合适的电缆:使用屏蔽效果好的电缆线材以减少传导干扰。

此外,为了提高变频器的抗干扰能力,还可以采取以下措施:1.优化地线:建立良好的接地系统,确保变频器和其它设备的共同接地,减少干扰的传导。

2.合理设置工作频率:选择合适和规范的工作频率范围,减少对其它设备的干扰。

3.添加滤波电容:在变频器输入端和输出端添加滤波电容,以降低高频噪声和干扰。

4.合理布置设备:将变频器和其它设备互相隔离,减少干扰传递。

最后,为了保证变频器的抗干扰性能,需要进行电磁兼容性测试和评估。

这样能够及早发现问题,并对干扰源进行识别和消除。

总结来说,为了降低变频器的电磁干扰对周围设备的影响,我们可以从减少辐射干扰、传导干扰和提高抗干扰能力等方面进行考虑。

通过合理的设备布局,优化的电路设计以及合适的滤波措施,能够有效地降低变频器的干扰程度,确保其正常稳定的运行。

高压变频器抗干扰的措施

高压变频器抗干扰的措施

高压变频器抗干扰的措施1.物理层面措施:a.线缆隔离:采用屏蔽电缆或防干扰型电缆,能有效地阻挡外界干扰信号。

b.设备隔离:将高压变频器与其他可能产生干扰信号的设备进行隔离,避免互相影响。

c.地线处理:保证变频器的接地良好,以减少或消除地线回路的干扰信号。

d.电磁屏蔽:对高压变频器进行电磁屏蔽,减少电磁泄漏,降低相互干扰的可能性。

e.涂线处理:对高压变频器内部的线路进行涂敷处理,防止信号的外泄和互相干扰。

2.电子层面措施:a.滤波器:在高压变频器的输入端和输出端都安装滤波器,减少输入和输出信号中的高频噪声和尖峰电压。

b.绝缘处理:对高压变频器内部的电子器件进行绝缘处理,避免干扰信号的传播和扩散。

c.场效应管:选用具有较低开关损耗的场效应管替代普通的开关管,减少开关过程中的干扰噪声。

d.控制算法:改进高压变频器的控制算法,优化PWM调制技术,减少开关频率的干扰。

e.接口设计:合理设计高压变频器的输入输出接口,充分考虑干扰信号的抗干扰能力,采取合适的线路和防护措施。

3.地线处理:a.单点接地:采用单点接地,减少地线的回路干扰。

b.地线阻抗控制:控制地线的阻抗,确保地线回路的稳定性和良好接地。

c.地线设计:合理设计高压变频器的地线连接方式,减少共模干扰和电磁干扰。

4.综合性措施:a.屏蔽措施:对高压变频器进行屏蔽处理,减少电磁泄漏和外界电磁干扰。

b.系统布线:合理规划和优化系统的布线,避免信号线和电源线的交叉干扰。

c.温度控制:控制高压变频器的工作温度,降低温度对器件性能的影响,减少工作异常和干扰信号的产生。

d.绝缘性能:保证高压变频器的绝缘性能良好,减少绝缘故障对系统的干扰。

总之,高压变频器抗干扰的措施需要综合考虑物理层面和电子层面的因素,通过合理的设计和控制方案,来减少干扰信号的产生和传播,提高设备的稳定性和抗干扰能力。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言随着现代工业的发展,变频器作为一种重要的电力调节设备,被广泛应用于各个行业中。

然而,变频器在工作过程中会产生一定的电磁干扰,对其他电子设备和系统造成影响,给工业生产和通信带来一定的困扰。

因此,本文将对变频器产生的干扰进行分析,并提出相应的解决方案。

二、变频器产生的干扰1. 电磁辐射干扰变频器在工作时会产生高频电磁辐射,这种辐射会干扰附近的电子设备和系统。

例如,变频器的高频辐射可能会干扰无线通信设备的正常工作,导致通信质量下降。

2. 电磁感应干扰变频器在工作时会产生电磁场变化,这种变化会感应到附近的电子设备和系统,引起电磁感应干扰。

例如,变频器的电磁感应干扰可能导致传感器信号的失真,影响工业自动化系统的精度和稳定性。

3. 电源干扰变频器在工作时需要从电源中提取电能,这会对电源系统造成一定的干扰。

例如,变频器的电源干扰可能导致电源电压波动,影响其他设备的正常运行。

三、解决方案1. 电磁屏蔽为了减少变频器产生的电磁辐射干扰,可以采取电磁屏蔽措施。

例如,在变频器的外壳上添加金属屏蔽罩,可以有效地阻挡电磁辐射的传播。

此外,还可以采用金属隔离板或金属屏蔽罩将变频器与其他电子设备隔离,减少电磁辐射的传递。

2. 滤波器的应用为了减少变频器产生的电磁感应干扰,可以在变频器的输入和输出端口处安装滤波器。

滤波器可以滤除高频噪声,减少电磁感应干扰的影响。

例如,可以采用LC滤波器、RC滤波器或磁性滤波器等。

3. 接地措施良好的接地系统可以有效地减少变频器产生的电源干扰。

可以采用单点接地或多点接地的方式,确保电源系统的接地电阻足够低,减少电源干扰的传递。

此外,还可以采用屏蔽接地的方式,将变频器的外壳与地线连接,以提高接地效果。

4. 信号隔离为了减少变频器对其他设备的干扰,可以采用信号隔离的方式。

例如,在变频器的输入和输出信号线路中加入光电隔离器或变压器隔离器,可以有效地隔离变频器的干扰信号,保护其他设备的正常工作。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案1. 引言变频器是一种用于调节机电转速的设备,广泛应用于工业生产中。

然而,变频器在工作过程中会产生电磁干扰,对其他设备和系统造成不利影响。

本文将详细介绍变频器产生的干扰及解决方案。

2. 变频器产生的干扰变频器产生的干扰主要包括电磁辐射干扰和电源线干扰两个方面。

2.1 电磁辐射干扰变频器工作时,机电和变频器之间的电缆会产生电磁辐射,通过空气传播到周围设备和系统中。

这种干扰可能导致其他设备的电子元件受损、通信中断或者数据丢失。

2.2 电源线干扰变频器通过电源线接入电网,其高频脉冲信号会通过电源线传播到其他设备和系统中,引起电源线上的电压和电流波动,导致其他设备的正常工作受到干扰。

3. 解决方案为了解决变频器产生的干扰问题,可以采取以下几种方案:3.1 滤波器安装滤波器是减少电磁辐射干扰的有效方法。

滤波器可以在变频器的电缆和电源线上安装,通过滤波器的滤波作用,将高频噪声滤除,减少电磁辐射干扰的传播。

3.2 屏蔽措施为了减少电磁辐射干扰的传播,可以采取屏蔽措施。

在变频器和机电之间的电缆上使用屏蔽材料包裹,阻挡电磁辐射的传播。

此外,还可以在设备周围建立金属屏蔽罩,进一步减少电磁辐射的泄漏。

3.3 接地措施良好的接地系统可以有效减少电磁辐射干扰。

通过建立良好的接地网络,将变频器和其他设备的接地点连接在一起,减少电磁辐射的泄漏。

此外,还可以使用接地屏蔽器,将电磁辐射导向接地,减少对其他设备的干扰。

3.4 选择合适的电缆选择合适的电缆也可以减少电磁辐射干扰。

使用屏蔽效果好的电缆,能够有效地阻挡电磁辐射的传播。

此外,还可以选择带有抗干扰能力的电缆,减少电源线干扰对其他设备的影响。

3.5 距离隔离在设计设备布局时,可以将变频器与其他敏感设备保持一定的距离,减少电磁辐射干扰的传播。

通过合理的布局,将变频器放置在远离其他设备的位置,可以有效降低干扰的程度。

4. 结论变频器产生的干扰对其他设备和系统的正常工作造成为了一定的影响,但通过采取相应的解决方案,可以有效减少干扰的程度。

变频器抗电磁干扰措施有哪些

变频器抗电磁干扰措施有哪些

变频器抗电磁干扰措施有哪些变频器是一种用于调节电动机转速的设备,它通过改变电源频率来控制电机的转速。

然而,由于其工作原理和电磁特性,变频器在工作过程中容易受到电磁干扰的影响。

为了保证变频器的正常工作和延长设备的使用寿命,必须采取一定的措施来抗电磁干扰。

1. 电磁屏蔽。

电磁屏蔽是最常见的抗电磁干扰措施之一。

通过在变频器的外壳和内部电路上添加屏蔽层,可以有效地阻止外部电磁波对设备的干扰。

屏蔽层通常采用导电材料制成,如铜箔、铝箔等,能够有效地吸收和屏蔽外部电磁波,保护设备的正常工作。

2. 地线连接。

良好的接地是抗电磁干扰的重要措施之一。

通过将变频器的外壳和内部电路与地线连接,可以有效地排除设备内部的静电和电磁干扰,保证设备的正常运行。

此外,地线连接还可以减少设备与外部环境的电磁耦合,提高设备的抗干扰能力。

3. 滤波器。

在变频器的输入端和输出端添加滤波器是抗电磁干扰的有效措施之一。

输入端滤波器主要用于滤除电源输入端的高频干扰信号,输出端滤波器主要用于滤除电机输出端的高频干扰信号。

通过滤波器的作用,可以有效地减少电磁干扰对设备的影响,保证设备的正常运行。

4. 等效电路设计。

在变频器的电路设计中,采用合理的等效电路设计是抗电磁干扰的重要手段之一。

通过合理设计电路的布局和连接方式,可以减少电路间的电磁耦合,减小电磁干扰的影响。

此外,合理设计电路的等效电路参数,可以提高电路的抗干扰能力,保证设备的正常工作。

5. 屏蔽电缆。

在变频器和电机之间采用屏蔽电缆连接是抗电磁干扰的有效措施之一。

屏蔽电缆通常具有导电屏蔽层,可以有效地阻止外部电磁波对信号传输的干扰,保证信号的准确传输。

此外,屏蔽电缆还可以减少电磁波对设备的影响,提高设备的抗干扰能力。

6. 环境监测。

定期对变频器周围的电磁环境进行监测是抗电磁干扰的重要手段之一。

通过监测周围的电磁干扰情况,可以及时发现和排除电磁干扰的影响,保证设备的正常运行。

此外,监测环境的变化还可以为设备的抗干扰措施提供参考依据,保证设备的稳定运行。

变频器有效的抗干扰措施

变频器有效的抗干扰措施

变频器有效的抗干扰措施变频器是一种电力设备,主要用于控制电动机的转速和频率。

由于其工作原理的特殊性,变频器在使用过程中容易受到干扰,从而影响工作的稳定性和性能。

为了提高变频器的抗干扰能力,下面列举了一些有效的措施。

1.地线连接良好:变频器的金属外壳和内部的各个部件都需要通过地线进行连接,确保设备的安全接地。

地线是变频器有效抗干扰的基础,良好的接地可以有效地降低干扰电压和干扰电流。

2.电源滤波:变频器电源端通常会存在电源波动、杂散干扰等问题,可以通过选用电源滤波器来过滤这些干扰。

电源滤波器可以将电源端的高频噪声滤掉,使得输入电源稳定,从而提高变频器的抗干扰能力。

3.屏蔽措施:通过给变频器的各个输入输出端口进行屏蔽处理,可以有效地防止外界的电磁干扰。

具体的屏蔽方式可以采用金属屏蔽罩、屏蔽隔离光耦、屏蔽线缆等。

屏蔽措施可以减少变频器对外界的敏感度,提高其抗干扰能力。

4.选择合适的电缆:变频器的输入输出端口通常需要连接电缆,合适的电缆选择可以降低电磁干扰的影响。

选用屏蔽性能好的电缆,并且尽量缩短电缆的长度,可以有效减少电磁干扰。

5.避免共模干扰:变频器内部的电源和控制信号线路之间通常会存在共模干扰问题,其中一种常见的共模干扰是电源端的地线干扰。

为了避免共模干扰,可以采用双层绕线、降低绕线电阻、增加绕线间距等措施。

6.引入滤波器:在变频器的输入端和输出端引入滤波器可以有效地降低电磁干扰的影响。

输入端滤波器可以将外界电磁干扰滤掉,使得变频器在供电稳定的情况下运行;输出端滤波器则可以减少变频器对外界设备的电磁干扰。

7.防止回流干扰:变频器在工作过程中会产生回流,即原电源线上产生的噪声通过电源线传播回来影响其它设备。

为了防止回流干扰,可以使用阻抗匹配网络、电源滤波器等措施,将回流电流的传播途径阻断,从而降低干扰的影响。

总结起来,变频器有效的抗干扰措施包括地线连接良好、电源滤波、屏蔽措施、选择合适的电缆、避免共模干扰、引入滤波器、防止回流干扰等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lily/HVACR
9
总谐波电压畸变的危害?
非线性负载:
开关型电源, Electronic lighting ballasts, UPS, VSD
电压畸变
U=R*I 系统阻抗
电流畸变
由电压畸变引起的问题:
• 多零点穿越: • 电器设备故障 •电器设备刹车 • 瞬间发电 • 增加 EMI
• 对其它设备的影响: •增加电机中涡流损耗 • 电机转矩波动 •振荡产生
13th 0,13%
3
变频器的原理图 谐波干扰
EMC干扰和du/dt干扰
整流
AC交流
DC直流
逆变器
DC直流
AC交流
26/08/2020
Lily/HVACR
4
6脉波全波整流桥的谐波电流
~ ~ ~
IDC
Vab
Vac
Vbc
a1
2
3
b
IDC
c
4
5
6
Ia
➢ 从电源处汲取的是非正
Ib
弦波形的电流
➢器
///
PWM-整流器 前置有源
没有任何解决方案的变频器,其产生的总谐波电流大概为80-110%。
解决方案:外加输入侧交流电抗器或直流电抗器
~
~
~
~
~
~
HARMONIC CURRENT ANALYSIS
HARMONIC CURRENT ANALYSIS
------------------------------------------------
➢ 变压器阻抗将会随谐波的高次基波频率比例增加: ... 谐波电压的畸变将会影响到负载2
Zn = n x Z1
以及系统上其它的用电设备
➢ 当谐波电流畸变量大到足以产生明显的电压谐波
畸变时,这将会对整个电源系统用电端造成影响
THVD
100% nmax V(n) 2 V(1)
n2
26/08/2020
15
7
6
2.5
1.4
20%
谐波电压限制
应用领域
THVD
特殊应用(医院、机场)
3%
普通应用
8%
26/08/2020
专业应用(100%变频器负载)
Lily/HVACR
12%
11
谐波治理的解决方案?
无源: ///
///
///
///
///
有源:
///
///
///
电抗器
/// ///
///
多脉波整流桥
有源滤波器
谐波电流限制
❖IL:公共连接点的最大需量负荷电流(基波分量)
Isc/IL
n<11 11<n<17 17<n<23 23<n<35 35<n
TDD
<20
4
2
1.5
0.6
0.3
3%
20<50
7
3.5
2.5
1
0.5
8%
50<100
10
4.5
4
1.5
0.7
12%
100<1000
12
5.5
5
2
1
15%
>1000
• 设备的误操作
由电流畸变引起的问题:
• 增加变压器中涡流损耗 •增加变压器中杂散负载损耗 • 断路器跳闸 • 不利于 PF补偿电容,更糟糕的是可能引起振荡 • 设备的误操作和跳闸 • 导体的集肤效应 • 中性线过载 (单相) • 电缆和变压器的过载
谐波的国际标准
国际标准 IEEE519-1992❖Isc:公共连接点的最大短路电流
26/08/2020
Lily/HVACR
6
总谐波电流畸变
THID: 总谐波电流畸变(产品量测谐波性能的指标)
由负载1所产生的电流谐波…
中压侧
低压侧
非线性负载1
变压器
变压器阻抗
➢ 电流谐波所影响的范围为本地到本地 ➢ 电流谐波将不影响独立负载2 ➢ 电流谐波只会对非线性负载1的电缆及相连之变 压器…产生损失
26/08/2020
Lily/HVACR
负载2
... 与负载2无关
I rms
n
I
2 n
n 1
2
THID
nmax In n2 I1
100%
7
总谐波电流畸变的危害?
非线性负载:
开关型电源,
荧光灯, UPS, VSD
电流畸变
由电流畸变引起的问题:
• 增加变压器中涡流损耗 •增加变压器中杂散负载损耗 • 断路器跳闸 • 不利于 PF补偿电容,更糟糕的是可能引起振荡 • 设备的误操作和跳闸 • 导体的集肤效应 • 中性线过载 (单相)
• 电缆和变压器的过载
总谐波电压畸变
THVD:总谐波电压畸变(系统量测谐波性能的指标)
中压侧
低压侧
非线性负载之谐波电流将 会流过变压器之阻抗
非线性负载1
变压器
变压器阻抗 Z1 + Z5 + Z7 + ...
负载 2
➢ 电感元件的阻抗值=2 x x f x L,即与频率成正

... 由阻抗所造成的电压降,会产生 变压器上电压端波型畸变
7’th Harmonic 23.64 A 11’th Harmonic 10.01 A 13’th Harmonic 5.07 A ------------------------------------------------
Lily/HVACR
5th -0,79%
7th 0,61%
11th -0,26%
第一种干扰:谐波
丹佛斯:xxx
何为谐波?
凡是可用基波分量的整数倍周期正弦函数之和表示的周期信号称为谐波。 这样有机会可用交流电路理论处理所有的信号。
1’st (fundamental) 5.th 7.th 11.th 13.th
S f (t) ah sin(h1t)
谐波是将一个信号分解成不同的频率(基波的 整数倍)
HARMONIC CURRENT ANALYSIS
------------------------------------------------
Fund. Current 38.57 A
THiD
104.52%
RMS current 55.79 A (45%)
S 5’th Harmonic f (3t0).41Aah sin(h1t)

变频器产生哪些谐波?
• 谐波取决于整流器的拍数。
• H = (P*N) +/- 1 • (P= 拍数; N = 任意整数) 因此在任意的六拍系统, H=((6x1) – 1)= 5.
5th(250Hz)/7th(350Hz)/11th/13th etc....
• 理论上,谐波的幅值将随频率的上升而下降 (1/n) e.g. 5th = 1/5 = 20%.
26/08/2020
Lily/HVACR
5th -0,79%
7th 0,61%
11th -0,26%
13th 0,13%
2
何为谐波?
凡是可用基波分量的整数倍周期正弦函数之和表示的周期信号称为谐波。 这样有机会可用交流电路理论处理所有的信号。
26/08/2020
1’st (fundamental) 5.th 7.th 11.th 13.th
相关文档
最新文档