微元法及其在物理中的应用(大 整理好)
微元法在高中物理中的运用及技巧简说

微元法在高中物理中的运用及技巧简说微积分在高中要求不是很高,但它的思想可以说贯穿了整个高中物理。
比如瞬时速度、瞬时加速度、感应电动势、匀变速直线运动位移公式、重力做功的特点等都用到了微元法的思想,学会这种研究问题的方法可以丰富我们处理问题的手段,拓展我们的思维,特别是在解决高层面物理问题时,常常起到事半功倍的效果。
微元法,即在处理问题时,从事物的极小部分(微元)分析入手,达到解决事物整体问题的方法。
微元法基本思想内涵可以概括为两个重要方面:一是“无限分割”(取微元);二是“逼近”(对微元作“低细节”描述)。
用微元法解决问题的特点是“大处着眼,小处着手”,具体说即是对事物作整体客观观察后,必须取出该事物的某一小单元,即微元进行分析,通过微元构造“低细节”的物理描述,最终解决整体问题。
所以微元法解决问题的两要诀就是取微元与对微元作“低细节”描述。
如何取微元呢?主要有这么几种:对整体对象进行无限分割得到“线元”、“面元”、“体元”、“角元”等;也可以分割一段时间或过程,得到“时间元”、“元过程”;还可以对各种物理量进行分割,得到诸如“元电荷”、“元功”、“元电流”等相应的元物理量;这些微元都是通过无限分割得到的,要多么小就有多么小的“无穷小量”,解决整体问题就要从它们入手。
对微元作“低细节”描述,即通过对微元性质作合理近似描述,在微元是无穷小量的前提下,通过求取极限,达到向精确描述的逼近。
关于逼近有这么常见的几种逼近:①“直”向“曲”的逼近。
例如质量为m的物体由A沿曲线运动到B时,计算重力做的功。
我们将曲线AB细分成n段小弧,任意一段元弧可以近似地看成一段直线,则重力做的元功为Wi=mglicosθ=mgHi,在无限分割下,即n→∞的条件下,WG=ΣWi=mgH;②平均值向瞬时值的逼近。
例如瞬时速度的求解,设某时刻t至邻近一时间点t’长度为△x,则物体在时间△t内平均速度为■=■,当△t→0时,该时间元的平均速度即时刻的瞬时速度。
微元法在高中物理中应用

微元法在高中物理中应用微元法是一种以计算机模拟和分析实际现象的方法,在若干学科中,如力学、热力学、流体力学、电磁学、材料力学等有广泛的应用。
物理学也是其中的重要应用领域,微元法在高中物理教学中的应用是一种新兴的教学方法,它可以使物理实验更加直观、实用和深入,也可以有效提高学生的学习效率。
一、微元法的基本原理微元法是一种基于数值模拟的方法,它将物理实验中的复杂现象分解为若干基本现象,然后逐一计算,从而获得结果。
它的基本思想是:将实际情况分解为多个简单的微元,将每个微元的物理量用数值代替,经过一系列的计算,可以得出实验结果。
二、微元法在高中物理教学中的应用1、模拟物理实验微元法可以用来模拟各种物理实验,提供学生更直观的实验体验,更加直观地理解物理现象。
比如,在学习曲线运动时,可以用微元法模拟出曲线运动的过程,使学生能够更加直观地理解曲线运动的物理原理。
同时,微元法还可以用来模拟物理实验,可以替代传统的实验方式,节省采购实验器材的时间和成本。
2、开展深入的物理探究微元法可以模拟出物理实验的过程,让学生可以更深入地探究物理现象。
比如,在学习静电场时,可以用微元法模拟出电荷在静电场中的运动,更深入地理解静电场的物理原理。
3、提高学生的学习效率微元法可以用来计算物理实验的结果,可以极大地提高学生的学习效率,节省实验时间。
比如,在学习电磁学时,可以用微元法模拟出电磁波的传播,而不需要耗费大量的时间来实验,更有效地掌握电磁学的知识。
三、微元法的不足微元法虽然在高中物理教学中有着广泛的应用,但也存在一些不足。
首先,微元法要求计算机具备较高的计算能力,而不是所有的学校都能满足这一要求;其次,微元法要求有一定的编程能力,因此,学习微元法需要耗费较多的学习时间;最后,微元法模拟的物理实验结果可能会有误差,因此,学生应该在理解物理原理的基础上,更加细致地检查模拟的结果。
总之,微元法是一种新兴的教学方法,它可以使物理实验更加直观、实用和深入,也可以有效提高学生的学习效率,但也有一定的不足,所以,在开展微元法的应用时,应该注意避免其缺陷,以取得最佳的教学效果。
方法4:微元法在物理解题中的应用

方法四:微元法在物理解题中的应用一.方法介绍利用微分思想的分析方法称为微元法。
它是将研究对象[物体或物理过程]进行无限细分,从其中抽取某一微小单元进行讨论,从而找出被研究对象变化规律的一种思想方法。
这是一种深刻的思维方法,是先分割逼近,找到规律,再累计求和,达到了解整体。
是对某事件做整体的观察后,取出该事件的某一微小单元进行分析,通过对微元的细节的物理分析和描述,最终解决整体的方法。
微元法就是将研究对象分割成许多微小的单元,或从研究对象上选取某一微元加以分析,从而可以化曲为直,化变为恒。
微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
二.典例分析例1:空间某一静电场的电势在x轴上分布如图所示,x轴上B、C两点电场强度在x方向上的分量分别是E B、E C,下列说法中正确的有()A.E B的大小大于E C的大小B.E B的方向沿x轴正方向C.电荷在o点受到的电场力在x方向上的分量最大D.负电荷沿x轴从B移到C的过程中,电场力先做正功,后做负功三、选取研究对象时利用微元法例2:如图所示,一个半径为R的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,A端固定在球面的顶点,B端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A端受的拉力T.拓展1、电量Q均匀分布在半径为R的圆环上如图所示,求在圆环轴线上距圆心O点为x处的P点的电场强度。
四、选取研究过程时利用微元法:例3:如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B=1 T,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d=0.5 m,现有一边长l=0.2 m、质量m=0.1 kg、电阻R=0.1 Ω的正方形线框MNOP以v0=7 m/s的初速从左侧磁场边缘水平进入磁场,求:线框能穿过的完整条形磁场区域的个数n。
谈微元法在高中物理解题中的应用

谈微元法在高中物理解题中的应用
谈微元法在高中物理解题中的应用
微元法是一种解决科学和工程问题的方法,它是基于微元法的工程分析和应用。
微元法是一种基于有限元的工程模拟方法。
它采用小的模型对实际结构的运动特性进行建模,从而可以用来模拟复杂的结构体的运动特性,以及对工程结构进行处理和分析。
高中物理解题是一种基础性的物理学习,内容包括力、运动、动能和势能以及物理运动过程中的各种物理现象,这些概念都要求学生理解和认识,以便能够更好地解决物理问题。
在解决实际问题时,学生要运用一定的物理原理来推导和解释物理现象,以达到预期的解决方案。
在这种情况下,微元法可以提供一种有效的解决方案,通过它可以更加直观地理解和解释物理运动过程,从而更好地解决物理问题。
在物理解题方面,微元分析可以使物理问题更加深入地推导,从而更好地理解物理现象。
例如,当讨论惯性力的大小时,可以根据给定的情况,结合动量定理以及惯性定律,来推导惯性力的大小。
而采用微元分析,则可以通过构建模型得出结论,从而更加直观地了解惯性力的大小和它对物理运动的影响。
此外,微元法还可以帮助学生们更加全面而准确地认识物理现象,正如采用微元法处理热传导这一问题所能得到的结果,即可以更好地认识和理解热传导现象的性质和特征。
从而帮助学生深入分析和推导物理问题,以达到更好地理解和解决问题的目的。
总而言之,微元法可以帮助高中物理学习者更好地理解和解决物
理问题,以及更全面和准确地认识物理现象,从而提高高中生的物理知识和解答能力。
微元法在物理习题中的应用(全)

电磁感应中的“微元法”和“牛顿第四定律”江苏省特级教师,江苏省丰县中学——戴儒京所谓:“微元法”所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。
1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。
2. 关于微元法。
在时间t ∆很短或位移x ∆很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以x t v ∆=∆,s x l t lv ∆=∆=∆。
微元法体现了微分思想。
3. 关于求和∑。
许多小的梯形加起来为大的梯形,即∑∆=∆S s ,(注意:前面的s 为小写,后面的S 为大写),并且0vv v -=∆∑,当末速度0=v 时,有∑=∆0v v ,或初速度00=v 时,有∑=∆v v ,这个求和的方法体现了积分思想。
4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法.如果既可以用动量定理也可以用动能定理解。
对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。
微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。
电磁感应中的微元法一些以“电磁感应”为题材的题目。
可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生感应电动势为BL v E =,感应电流为RB L vI =,受安培力为v RL B B I L F 22==,因为是变力问题,所以可以用微元法.1.只受安培力的情况例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场。
质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。
(1) 求导体棒刚滑到水平面时的速度0v ;(2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关系,并画出x v -关系草图。
微元法在物理中的应用

微元法在物理中的应用积分知识在物理中的应用主要是围绕at v =研究的。
一般情况下,知道其中的两个量,就可以轻易地求出第三个量,或也可以从能量角度求解v 。
但有时,加速度a 并不是一直不变的,而是随着v 或t 的变化而变化的,此时一般的思维讲不再适用。
[简单模型]某辆汽车从静止开始以加速度kv a =做加速直线运动,其中k 为常数,当运动时间为t 时,汽车通过的位移为S ,求此时小车的速度大小。
[解析]:因为此题中加速度a 是随着v 不断变化的,所以要想利用aS v 202=-求解是不可能的;若从能量角度分析,根本就求不出汽车受力的做功情况,所以也不可以解出,对于此类a 在不断变化的提型,应该应用微元法进行求解。
t a v ∆⋅=∆瞬∴t kv v ∆=∆∑∑∆⋅=∆t kvv 瞬∴kS v =所以解得t 时刻时速度大小为kS v =。
这中积分思想在考试中通常放在电磁感应中考查,同学们认为这种题型难度很大,其实不然,我认为被这种题型吓到的主要原因不是因为这真正有多大难度,而是被它所特有的“微元〞思想吓怕,事实上,真v ∆表示一小段路程。
t ∆表示很小的一段时间,瞬a 表示加速度的瞬时值,在很小的一段时间内,瞬a 可以看作t ∆内的平均加速度,v ∆则表示在t ∆ 时间内速度的变化量kv a =瞬,k 为常数,瞬v 表示某一时刻速度的瞬时值。
此式两边同时求和,依然相等为求和符号""∑v ∆为很小的一段速度,若将运动过程中所有的v ∆都加起来,结果就是总速度v ,即v v =∆∑。
v 就表示t 时刻的速度。
t ∆为很小的一段时间,一个t v ∆瞬表示很小的一段位移,若将所有的 t v ∆瞬相加,则得到总位移S ,即S t v =∆∑瞬 求和过程中常数可以直接移出,例如∑∑∆=∆⋅t v k t kv 瞬瞬正理解的上述的“简单模型〞,积分思想也是比较容易掌握的。
[典型例题讲解]1.如图所示,质量为m 导体棒垂直放在光滑足够长的U 型导轨的底端,导体棒电阻为r ,其余电阻不计,导轨宽度为l 。
微元法在高中物理中的应用

微元法在高中物理中的应用微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
它是将研究对象(物体或物理过程)进行无限细分,从其中抽取某一微小单元即“元过程”,进行讨论,每个“元过程”所遵循的规律是相同的。
对这些“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法可以把一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化,从而起到巩固知识、加深认识和提高能力的作用。
一、挖掘教材中微元素材,认知微元思想微元法思想在新课标教材(人教版)上时有渗透。
如在引入瞬时速度的概念时,教材从平均速度出发,提出从t到t+△t这段时间间隔内,△t越小运动快慢的差异也就越小,运动的描述就越精确。
在此基础上,再提出若△t趋向于零时,就可以认为△t的平均速度就是t 时刻的瞬时速度。
正是这种无限分割的方法,可以使原来较为复杂的过程转化为较简单的过程。
再如,我们要推导匀变速直线运动的位移公式,显然不能直接用s=vt,原因就在于速度本身是变化的,不能直接套用匀速直线运动的公式。
但是我们可以想象,如果我们把整个过程的时间分成无数微小的时间间隔,我们分得愈密,每一份的时间间隔也就愈小,此间隔内,速度的变化亦就愈小,如果分得足够细,就可以认为速度几乎不变,此时就可将每一份按匀速直线运动来处理,完毕之后,再累加即可。
必修2第五章第四节《重力势能》中,计算物体沿任意路径向下运动时重力所做的功时,先将物体运动的整个路径分成许多很短的间隔,由于每一段都很小很小,就可以将每一段近似地看做一段倾斜的直线,从而就能利用功的定义式计算出每一小段内重力的功,再累加得到整个过程重力的总功。
第五节《弹性势能》中关于在求弹簧弹力所做的功时,先将弹簧拉伸的整个过程分成很多小段,在足够小的情况下,每一小段位移中可以认为拉力是不变的,从而也能直接利用功的定义式来计算每一小段内拉力所做的功,再累加得到整个过程拉力的总功。
微元法物理意义

微元法物理意义摘要:1.微元法的概念及应用领域2.微元法的物理意义3.微元法在物理学中的重要作用4.微元法在实际工程中的应用案例5.总结与展望正文:微元法是一种数学方法,主要用于解决连续系统的问题。
在物理学领域,它具有重要的意义。
本文将介绍微元法的物理意义,应用领域以及在实际工程中的应用案例。
一、微元法的概念及应用领域微元法是将一个复杂的连续系统分解为无数个微小的部分,通过对这些微小部分的分析,来研究整个系统的性质。
这种方法适用于各种连续介质,如固体、液体和气体等。
其应用领域广泛,包括力学、热力学、电磁学、量子力学等。
二、微元法的物理意义微元法的物理意义在于,通过对系统进行微小分割,可以更好地研究系统在宏观和微观尺度上的性质。
在物理学中,许多现象和规律都可以通过微元法来阐述。
例如,在力学中,我们可以通过微元法研究物体的受力情况和运动状态;在热力学中,我们可以通过微元法分析热量的传递和转换过程;在电磁学中,我们可以通过微元法研究电场和磁场的分布规律。
三、微元法在物理学中的重要作用微元法在物理学中具有重要作用。
首先,它为研究者提供了一种处理复杂系统的方法,使得许多难以求解的问题变得易于处理。
其次,微元法揭示了许多自然界中的规律和定律,如牛顿三定律、热力学第一和第二定律等。
此外,微元法还为工程技术领域提供了理论依据,如结构力学、流体力学等。
四、微元法在实际工程中的应用案例在实际工程中,微元法有着广泛的应用。
例如,在建筑结构设计中,通过对结构进行微元分析,可以评估结构的稳定性和安全性;在航空航天领域,微元法可以帮助设计师优化飞行器的设计,提高飞行性能;在材料科学中,微元法可以用于研究材料的力学性能和疲劳寿命等。
五、总结与展望总之,微元法作为一种数学方法,在物理学领域具有重要的地位。
它为研究者提供了一种处理复杂系统的方法,揭示了自然界中的许多规律,并为实际工程应用提供了理论支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、举例例2:如图3—2所示,一个半径为R 的四分之一光 滑球面放在水平桌面上,球面上放臵一光滑均匀铁链,其 A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位 长度的质量为ρ.试求铁链A 端受的拉力T.解析:以铁链为研究对象,由由于整条铁链的长度不 能忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况.在铁链上任取长为△L 的一小段(微元)为研究对象, 其受力分析如图3—2—甲所示.由于该元处于静止状态, 所以受力平衡,在切线方向上应满足:θθθθT G T T +∆=∆+cos θρθθcos cos Lg G T ∆=∆=∆由于每段铁链沿切线向上的拉力比沿切线向下的拉力大 △T θ,所以整个铁链对A 端的拉力是各段上△T θ的和, 即 ∑∑∑∆=∆=∆=θρθρθcos cos L g Lg T T观察 θcos L ∆的意义,见图3—2—乙,由于△θ很小,所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R , 所以∑=∆R L θcos 可得铁链A 端受的拉力 ∑=∆=gR L g T ρθρcos例5:半径为R 的光滑球固定在水平桌面上,有一质量 为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈 的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上, 使弹性绳圈水平停留在平衡位臵上,如图3—5所示,若 平衡时弹性绳圈长为R π2,求弹性绳圈的劲度系数k.解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m 两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m 作为研究对象,进行受力分析.但是△m 受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙.先看俯视图3—5—甲,设在弹性绳圈的平面上,△m 所对的圆心角 是△θ,则每一小段的质量 M m πθ2∆=∆ △m 在该平面上受 拉力F 的作用,合力为2sin2)2cos(2θθπ∆=∆-=F F T 因为当θ很小时,θθ≈sin 所以θθ∆=∆=F FT 22 再看正视图3—5—乙,△m 受重力△mg ,支持力N ,二力的合力与T 平衡.即 θtan ⋅∆=mg T现在弹性绳圈的半径为 R R r 2222==ππ 所以 ︒===4522sin θθR r 1tan =θ因此T=Mg mg πθ2∆=∆ ①、②联立,θπθ∆=∆F Mg 2, 解得弹性绳圈的张力为: π2MgF =设弹性绳圈的伸长量为x 则 R R R x πππ)12(2-=-=所以绳圈的劲度系数为:RMgR Mg x F k 222)12()12(2ππ+=-==例6:一质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张力为T ,求此圆环可以绕几何轴旋转的最大角速度.解析:因为向心力F=mr ω2,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω,r 应取最大值.如图3—6所示,在圆环上取一小段△L ,对应的圆心角为△θ,其质量可表示为M m πθ2∆=∆,受圆环对它的 张力为T ,则同上例分析可得 22sin 2ωθmr T ∆=∆ 因为△θ很小,所以22sin θθ∆≈∆,即 2222ωπθθMr T ∆=∆⋅解得最大角速度 MrTπω2= 例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.设开始下落的时刻t=0,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t 时刻起取很小一段时间△t ,在△t 内又有△M=ρ△x 落到地面上静止.地面对△M 作用的冲量为I t Mg F ∆=∆∆-)( 因为 0≈∆⋅∆t Mg所以 x v v M t F ∆=-⋅∆=∆ρ0 解得冲力:t x vF ∆∆=ρ,其中tx ∆∆就是t 时刻链条的速度v , 故 2v F ρ= 链条在t 时刻的速度v 即为链条下落长为x 时的即时速度,即v 2=2g x ,代入F 的表达式中,得 gx F ρ2=此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力. 所以在t 时刻链条对地面的总压力为 .332LMgxgx gx gx N ==+=ρρρ 例8:一根均匀柔软的绳长为L ,质量为m ,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大?解析:钉子对绳子另一端的作用力随滑落绳的长短而变化, 由此可用微元法求解.如图3—8所示,当左边绳端离钉子 的距离为x 时,左边绳长为)(21x l -,速度 gx v 2=, 右边绳长为).(21x l + 又经过一段很短的时间△t 以后, 左边绳子又有长度t V ∆21的一小段转移到右边去了,我们就分析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉力T 和它本身的重力l m g t v /(21=∆λλ为绳子的线密度),根据动量定理,设向上方向为正 )21(0)21(v t v t g t v T ⋅∆--=∆∆-λλ 由于△t 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略, 所以有 λλgx v T ==221 因此钉子对右边绳端的作用力为 )31(21)(21lx mg T g x l F +=++=λ例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长 但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与绳间光滑 接触,试求盘对绳的法向支持力线密度.解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位 长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳, 其两端受的张力大小相等,又因为绳上各点受的支持力方向不同, 故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求 解.在与圆盘接触的半圆形中取一小段绳元△L ,△L 所对应的 圆心角为△θ,如图3—9—甲所示,绳元△L 两端的张力均为T , 绳元所受圆盘法向支持力为△N ,因细绳质量可忽略,法向合力为 零,则由平衡条件得:2sin 22sin 2sinθθθ∆=∆+∆=∆T T T N当△θ很小时,22sin θθ∆≈∆ ∴△N=T △θ 又因为 △L=R △θ则绳所受法向支持力线密度为 RTR T L N n =∆∆=∆∆=θθ ① 以M 、m 分别为研究对象,根据牛顿定律有 Mg -T=Ma ②T -mg=m a ③ 由②、③解得: mM MmgT +=2将④式代入①式得:Rm M Mm gn )(2+=例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切.若在切点放一质点m ,恰使两边圆环对m 的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?解析:若要直接求整个圆对质点m 的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m 的相互作用,然后推及整个圆环即可求解.如图3—10所示,过切点作直线交大小圆分别于P 、Q 两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元αα∆⋅=∆∆⋅=∆2221r L R L其对应的质量分别为 αρρ∆⋅=∆=∆21111R l mαρρ∆⋅=∆=∆22222r l m 由于△α很小,故△m 1、△m 2与m 的距离可以认为分别是 ααcos 2cos 221r r R r ==所以△m 1、△m 2与m 的万有引力分别为222222212111)cos 2(2,)cos 2(2ααρααρr mR G r m Gm F R m R G r m Gm F ∆⋅=∆=∆∆⋅=∆=∆ 由于α具有任意性,若△F 1与△F 2的合力为零, 则两圆环对m 的引力的合力也为零, 即2221)cos 2(2)cos 2(2ααρααρr mr G R m R G ∆⋅=∆⋅ 解得大小圆环的线密度之比为:rR=21ρρ 例11:一枚质量为M 的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v ,那么火箭发动机的功率是多少?解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.选取在△t 时间内喷出的气体为研究对象,设火箭推气体的力为F ,根据动量定理,有 F △t=△m ·v 因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg 即 Mg ·△t=△m ·v △t=△m ·v/Mg对同样这一部分气体用动能定理,火箭对它做的功为: 221mv W ∆=所以发动机的功率 MgV Mg mV mv t W P 21)/(212=∆∆=∆=例12:如图3—11所示,小环O 和O ′分别套在不动的竖 直杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的 两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运 动,求当∠AOO ′=α时,环O 的速度.解析:O 、O ′之间的速度关系与O 、O ′的位臵有关,即 与α角有关,因此要用微元法找它们之间的速度关系. 设经历一段极短时间△t ,O ′环移到C ′,O 环移到C ,自C ′ 与C 分别作为O ′O 的垂线C ′D ′和CD ,从图中看出.ααcos ,cos D O C O OD OC ''=''=因此OC+O ′C ′=αcos D O OD ''+ ①因△α极小,所以EC ′≈ED ′,EC ≈ED , 从而OD+O ′D ′≈OO ′-CC ′ ②由于绳子总长度不变,故 OO ′-CC ′=O ′C ′ ③由以上三式可得:OC+O ′C ′=αcos C O '' 即)1cos 1(-''=αC O OC 等式两边同除以△t 得环O 的速度为 )1cos 1(0-=αv v 例13: 在水平位臵的洁净的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的接触角可按180°计算.已知水银密度33/106.13m kg ⨯=ρ,水银的表面张力系数./49.0m N =σ当圆饼的半径很大时,试估算其厚度h 的数值大约为多少? (取1位有效数字即可)解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h 的简单函数,而且支持力N 和重力mg 都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解.在圆饼的侧面取一个宽度为△x ,高为h 的体积元,,如图 3—12—甲所示,该体积元受重力G 、液体内部作用在面 积△x ·h 上的压力F ,x gh xh hg S P F ∆⋅=∆⋅==22121ρρ,还有上表面分界线上的张力F 1=ς△x 和下表面分界线上的 张力F 2=ς△x .作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出.由力的平衡条件有:0cos 21=--F F F θ 即0cos 212=∆-∆-∆x x x gh σθσρ 解得:θρθσcos 1107.2)cos 1(23+⨯=+=-gh由于 ,2cos 11,20<+<<<θπθ所以 故2.7×10-3m<h<3.8×10-3m题目要求只取1位有效数字,所以水银层厚度h 的估算值为3×10-3m 或4×10-3m. 例16:如图3—15所示,一质量均匀分布的细圆环,其半径 为R ,质量为m.令此环均匀带正电,总电量为Q.现将此环平放在 绝缘的光滑水平桌面上,并处于磁感应强度为B 的均匀磁场中,磁 场方向竖直向下.当此环绕通过其中心的竖直轴以匀角速度ω沿图示 方向旋转时,环中的张力等于多少?(设圆环的带电量不减少,不 考虑环上电荷之间的作用)解析:当环静止时,因环上没有电流,在磁场中不受力,则 环中也就没有因磁场力引起的张力.当环匀速转动时,环上电 荷也随环一起转动,形成电流,电流在磁场中受力导致环中存 在张力,显然此张力一定与电流在磁场中受到的安培力有关. 由题意可知环上各点所受安培力方向均不同,张力方向也不同, 因而只能在环上取一小段作为研究对象,从而求出环中张力的 大小.在圆环上取△L=R △θ圆弧元,受力情况如图3—15—甲所示.因转动角速度ω而形成的电流 πω2Q I =,电流元I △L 所受的安培力θπω∆=∆=∆QB R LB I F 2 因圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,R m F T 22sin2ωθ∆=∆-∆ 当△θ很小时,R m QBR T 2222sin ωθπωθθθ∆=∆-∆∆≈∆ θπωθπωθθπ∆=∆-∆∴∆=∆2222Rm QB R T mm解得圆环中张力为 )(2ωπωm QB R T +=例17:如图3—16所示,一水平放臵的光滑平行导轨上放一质量 为m 的金属杆,导轨间距为L ,导轨的一端连接一阻值为R 的电阻,其 他电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面.现给金属杆一 个水平向右的初速度v 0,然后任其运动,导轨足够长,试求金属杆在导轨 上向右移动的最大距离是多少?解析:水平地从a 向b 看,杆在运动过程中的受力分析如图3—16—甲所示,这是一个典型的在变力作用下求位 移的题,用我们已学过的知识好像无法解决,其实只要 采用的方法得当仍然可以求解.设杆在减速中的某一时刻速度为v ,取一极短时间△t , 发生了一段极小的位移△x ,在△t 时间内,磁通量的变化为 △φ △φ=BL △x tRxBL tR RI ∆∆=∆∆Φ==ε金属杆受到安培力为tRxL B ILB F ∆∆==22安由于时间极短,可以认为F 安为恒力,选向右为正方向,在△t 时间内,安培力F 安的冲量为:RxL B t F I ∆-=∆⋅-=∆22安对所有的位移求和,可得安培力的总冲量为x RL B R x L B I 2222)(-=∆-=∑ ① 其中x 为杆运动的最大距离,对金属杆用动量定理可得 I=0-mV 0 ② 由①、②两式得:220L B Rm V x =例18:如图3—17所示,电源的电动热为E ,电容器 的电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同 一水平面上的平行光滑长导轨,它们的电阻可以忽略不计, 两导轨间距为L ,导轨处在磁感应强度为B 的均匀磁场中,磁场方向垂直于两导轨所在的平面并指向图中纸面向里的方 向.L 1和L 2是两根横放在导轨上的导体小棒,质量分别为m 1和 m 2,且21m m <.它们在导轨上滑动时与导轨保持垂直并接触良 好,不计摩擦,两小棒的电阻相同,开始时两根小棒均静止在 导轨上.现将开关S 先合向1,然后合向2.求: (1)两根小棒最终速度的大小;(2)在整个过程中的焦耳热损耗.(当回路中有电流时,该电流所产生的磁场可忽略不计)解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大.(1)设两小棒最终的速度的大小为v ,则分别为L 1、L 2为研究对象得:1111v m v m t F i i -'=∆ ∑=∆v m t F i i 111 ① 同理得:∑=∆v m t Fi i 222②由①、②得:v m m t Ft F i i i i )(212211+=∆+∆∑∑又因为 11Bli F i = 21i i t t ∆=∆ 22Bli F i = i i i =+21所以∑∑∑∑∆=∆+=∆+∆i i i i t i BL t i i BL tBLi t BLi )(212211v m m q Q BL )()(21+=-=而 Q CE =, q CU CBLv ='=,所以解得小棒的最终速度 2221)(LCB m m BLCEv ++=(2)因为总能量守恒,所以热Q v m m C q CE +++=22122)(212121 即产生的热量 22122)(212121v m m C q CE Q +--=热 )(2)()()]([2121)(21)(12121222122122212122222122C L B m m CE m m L CB m m BLCEm m L CB CE v m m CBLv C CE +++=+++--=+--=5.质量为M 的平板小车在光滑的水平面上以v 0向左匀速运动,一质量为m 的小球从高h 处自由下落,与小车碰撞后反弹上升的高度仍为h.设M>>m ,碰撞弹力N>>g ,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度可能是( )A .gh 2B .0C .gh 22μD .v 06.半径为R 的刚性球固定在水平桌面上.有一质量为M 的圆环状均匀弹性细绳圈,原长 2πa ,a =R/2,绳圈的弹性系数为k (绳伸长s 时,绳中弹性张力为ks ).将绳圈从球的正 上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个静力平衡位臵.考 虑重力,忽略摩擦.(1)设平衡时弹性绳圈长2πb ,b=a 2,求弹性系数k ;(用M 、R 、g 表示,g 为重力加速度) (2)设k=Mg/2π2R ,求绳圈的最后平衡位臵及长度.7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内, 在环内的环底A 处有一质量为m 、直径比管径略小的小球, 小球上连有一根穿过环顶B 处管口的轻绳,在外力F 作用 下小球以恒定速度v 沿管壁做半径为R 的匀速圆周运动, 如图3—23所示.已知小球与管内壁中位于大环外侧 部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑 的.忽略大环内、外侧半径的差别,认为均为R.试求小球从A 点运动到B 点过程中F 做的功W F .14.如图3—30所示,在光滑的水平面上,有一垂直向 下的匀强磁场分布在宽度为L 的区域内,现有一个边长 为a (a <L ),质量为m 的正方形闭合线框以初速v 0垂直 磁场边界滑过磁场后,速度变为v (v <v 0),求: (1)线框在这过程中产生的热量Q ; (2)线框完全进入磁场后的速度v ′.15.如图3—31所示,在离水平地面h 高的平台上有一相 距L 的光滑轨道,左端接有已充电的电容器,电容为C , 充电后两端电压为U 1.轨道平面处于垂直向上的磁感应 强度为B 的匀强磁场中.在轨道右端放一质量为m 的金 属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2, 求棒落在离平台多远的位臵.16.如图3—32所示,空间有一水平方向的匀强磁场,大小 为B ,一光滑导轨竖直放臵,导轨上接有一电容为C 的电 容器,并套一可自由滑动的金属棒,质量为m ,释放后,求 金属棒的加速度a .参考答案:1.321v S ρ 2.θ=60°)223(2hsg h + 3.)cos 1/(x v + 4.2cos /θv 5.CD 6.(1)RMg 22)12(π+ (2)绳圈掉地上,长度为原长 7.22v m mgR πμ+ 8.6.25×1015,2:1 9.2322)(x R Qqx K+ 10.32R l Q Kρ∆ 11.R k λ2 12.rk λ2 13.σπR 2 14.2),(210220v v v v v m +='- 15.gh m u u CBL 2)(21- 16.22L CB m mg a +=。