物理竞赛中的数学知识

合集下载

物理竞赛微积分知识点总结

物理竞赛微积分知识点总结

物理竞赛微积分知识点总结1.导数与微分导数是微积分的重要概念,它描述了函数在某一点处的变化率。

对于物理竞赛而言,导数在描述速度、加速度等动力学量时有着重要的应用。

另外,在曲线的切线方程、求解最值等问题中,导数也发挥着重要作用。

微分是导数的一种运算形式,它可以捕捉函数在某一点附近的局部线性变化。

在物理问题中,微分常用于描述微小的变化量,比如位移、速度、加速度等。

2.积分与定积分积分是导数的逆运算,它可以用来求解函数的原函数或不定积分。

在物理竞赛中,积分常用于计算曲线下的面积、求解物理问题中的总量、平均值等。

定积分是对指定区间上的函数值进行积分,它可以用于求解质点在一段时间内的位移、速度、加速度等物理量,还可以用于计算某些物理量的平均值、总量等问题。

3.微积分基本定理微积分基本定理是微积分的核心定理,它建立了积分与导数之间的联系。

第一积分基本定理将不定积分与定积分联系起来,可以将积分问题转化为求解原函数的问题。

第二积分基本定理则给出了定积分的计算方法,它将定积分与不定积分联系在一起,为求解定积分提供了便利。

在物理竞赛中,微积分基本定理在积分问题的求解中起着十分重要的作用。

4.微分方程微分方程是描述变化规律的数学工具,在物理竞赛中经常出现。

一阶微分方程描述了变量的变化率与变量本身之间的关系,它常用于描述弹簧振子、RC电路、衰减问题等。

对于线性微分方程,可以通过特征方程的求解来求解微分方程的通解。

在物理竞赛中,熟练掌握微分方程的解法对于解决物理问题是十分重要的。

5.级数与收敛性级数是无穷个数项的和,它在物理问题中也常常出现。

级数的收敛性是级数是否有意义的重要标志,熟练掌握级数的收敛性判别方法对于求解物理问题十分重要。

常见的级数有等比级数、调和级数、幂级数等,在物理竞赛中需要能够熟练应用级数的性质及收敛性的判别方法。

6.多元函数微积分多元函数微积分是微积分的拓展,它描述的是多元函数的变化规律。

对于物理竞赛而言,多元函数微积分在描述多变量物理量之间的关系、求解多元函数的极值等问题中有着重要的应用。

全国中学生物理竞赛内容提要.doc

全国中学生物理竞赛内容提要.doc

全国中学生物理竞赛内容提要一,理论基础力1,运动学参照系.质点运动的位移和路程,速度,加速度.相对速度. 矢量和标量.矢量的合成和分解. 匀速及匀速直线运动及其图象.运动的合成.抛体运动.圆周运动. 刚体的平动和绕定轴的转动. 2,牛顿运动定律力学中常见的几种力牛顿第一,二,三运动定律.惯性参照系的概念. 摩擦力. 弹性力.胡克定律. 万有引力定律.均匀球壳对壳内和壳外质点的引力公式(不要求导出) .开普勒定律.行星和人造卫星的运动. 3,物体的平衡共点力作用下物体的平衡.力矩.刚体的平衡.重心. 物体平衡的种类. 4,动量冲量.动量.动量定理. 动量守恒定律. 反冲运动及火箭. 5,机械能功和功率.动能和动能定理. 重力势能. 引力势能. 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出) . 弹簧的弹性势能. 功能原理.机械能守恒定律. 碰撞. 6,流体静力学静止流体中的压强. 浮力. 7,振动简揩振动.振幅.频率和周期.位相. 振动的图象. 参考圆.振动的速度和加速度. 由动力学方程确定简谐振动的频率. 阻尼振动.受迫振动和共振(定性了解) . 8,波和声横波和纵波.波长,频率和波速的关系.波的图象. 波的干涉和衍射(定性) . 声波.声音的响度,音调和音品.声音的共鸣.乐音和噪声.热1,分子动理论原子和分子的量级. 分子的热运动.布朗运动.温度的微观意义. 分子力. 分子的动能和分子间的势能.物体的内能. 2,热力学第一定律热力学第一定律. 3,气体的性质热力学温标. 理想气体状态方程.普适气体恒量. 理想气体状态方程的微观解释(定性) . 理想气体的内能. 理想气体的等容,等压,等温和绝热过程(不要求用微积分运算) . 4,液体的性质流体分子运动的特点. 表面张力系数. 浸润现象和毛细现象(定性) . 5,固体的性质晶体和非晶体.空间点阵. 固体分子运动的特点. 6,物态变化熔解和凝固.熔点.熔解热. 蒸发和凝结.饱和汽压.沸腾和沸点.汽化热.临界温度. 固体的升华. 空气的湿度和湿度计.露点. 7,热传递的方式传导,对流和辐射. 8,热膨胀热膨胀和膨胀系数.电1,静电场库仑定律.电荷守恒定律. 电场强度.电场线.点电荷的场强,场强叠加原理.均匀带电球壳壳内的场强和壳外的场强公式(不要求导出) .匀强电场. 电场中的导体.静电屏蔽. 电势和电势差.等势面.点电荷电场的电势公式(不要求导出) .电势叠加原理. 均匀带电球壳壳内和壳外的电势公式(不要求导出) . 电容.电容器的连接.平行板电容器的电容公式(不要求导出) . 电容器充电后的电能. 电介质的极化.介电常数. 2,恒定电流欧姆定律.电阻率和温度的关系. 电功和电功率.电阻的串,并联. 电动势.闭合电路的欧姆定律. 一段含源电路的欧姆定律. 电流表.电压表.欧姆表. 惠斯通电桥,补偿电路. 3,物质的导电性金属中的电流.欧姆定律的微观解释. 液体中的电流.法拉第电解定律. 气体中的电流.被激放电和自激放电(定性) . 真空中的电流.示波器. 半导体的导电特性.P型半导体和N 型半导体. 晶体二极管的单向导电性.三极管的放大作用(不要求机理) . 超导现象. 4,磁场电流的磁场.磁感应强度.磁感线.匀强磁场. 安培力.洛仑兹力.电子荷质比的测定.质谱仪.回旋加速器. 5,电磁感应法拉第电磁感应定律. 楞次定律. 自感系数. 互感和变压器. 6,交流电交流发电机原理.交流电的最大值和有效值. 纯电阻,纯电感,纯电容电路. 整流和滤波. 三相交流电及其连接法.感应电动机原理. 7,电磁振荡和电磁波电磁振荡.振荡电路及振荡频率. 电磁场和电磁波.电磁波的波速,赫兹实验. 电磁波的发射和调制.电磁波的接收,调谐,检波.光1,几何光学光的直进,反射,折射.全反射. 光的色散.折射率与光速的关系. 平面镜成像.球面镜成像公式及作图法.薄透镜成像公式及作图法. 眼睛.放大镜.显微镜.望远镜. 2,波动光学光的干涉和衍射(定性) 光谱和光谱分析.电磁波谱. 3,光的本性光的学说的历史发展. 光电效应.爱因斯坦方程. 波粒二象性.原子和原子核1,原子结构卢瑟福实验.原子的核式结构. 玻尔模型.用玻尔模型解释氢光谱.玻尔模型的局限性. 原子的受激辐射.激光. 2,原子核原子核的量级. 天然放射现象.放射线的探测. 质子的发现.中子的发现.原子核的组成. 核反应方程. 质能方程.裂变和聚变. 基本粒子.二、数学基础1,中学阶段全部初等数学(包括解析几何) . 2,矢量的合成和分解.极限,无限大和无限小的初步概念. 3,不要求用微积分进行推导或运算.二,实验基础1,要求掌握国家教委制订的《全日制中学物理教学大纲》中的全部学生实验. 2,要求能正确地使用(有的包括选用)下列仪器和用具:米尺.游标卡尺.螺旋测微器.天平.停表.温度计.量热器.电流表.电压表.欧姆表.万用电表. 电池.电阻箱.变阻器.电容器.变压器.电键.二极管.光具座(包括平面镜, 球面镜,棱镜,透镜等光学元件在内) . 3, 有些没有见过的仪器. 要求能按给定的使用说明书正确使用仪器. 例如: 电桥,电势差计,示波器,稳压电源,信号发生器等. 4,除了国家教委制订的《全日制中学物理教学大纲》中规定的学生实验外,还可安排其它的实验来考查学生的实验能力,但这些实验所涉及到的原理和方法不应超过本提要第一部分(理论基础) ,而所用仪器就在上述第2,3 指出的范围内. 5,对数据处理,除计算外,还要求会用作图法.关于误差只要求:直读示数时的有效数字和误差;计算结果的有效数字(不做严格的要求) ;主要系统误差来源的分析.三,其它方面物理竞赛的内容有一部分要扩及到课外获得的知识.主要包括以下三方面: 1, 物理知识在各方面的应用. 对自然界, 生产和日常生活中一些物理现象的解释. 2,近代物理的一些重大成果和现代的一些重大信息. 3,一些有重要贡献的物理学家的姓名和他们的主要贡献. 参考资料: 1, 全国中学生物理竞赛委员会办公室主编的历届《全国中学生物理竞赛参考资料》. 2,人民教育出版社主编的《高级中学课本(试用)物理(甲种本). 》专题一力【扩展知识】 1.重力物体的重心与质心重心:从效果上看,我们可以认为物体各部分受到的重力作用集中于一点,这一点叫做物体的重心. 质心:物体的质量中心. 设物体各部分的重力分别为G1,G2……Gn,且各部分重力的作用点在oxy 坐标系中的坐标分别是(x1,y1) x2,y2)……(xn,yn),物体的重心坐标xc,yc ( 可表示为物体的平衡xc = ∑G x ∑G i i i = G1 x1 + G2 x 2 + + Gn x n ∑Gi yi = G1 y1 + G2 y 2 + + Gn y n , yc = G1 + G2 + + Gn G1 + G2 + + Gn ∑Gi 2.弹力胡克定律:在弹性限度内,弹力 F 的大小与弹簧伸长(或缩短)的长度x 成正比, 即F=k x,k 为弹簧的劲度系数. 两根劲度系数分别为k1,k2 的弹簧串联后的劲度系数可由后劲度系数为k=k1+k2. 3.摩擦力最大静摩擦力:可用公式 F m=μ0FN 来计算.FN 为正压力,μ0 为静摩擦因素,对于相同的接触面,应有μ0>μ(μ为动摩擦因素) 摩擦角:若令μ0= 1 1 1 = + 求得,并联k k1 k 2 Fm =tanφ,则φ称为摩擦角.摩擦角是正压力FN 与最大静摩擦FN 力 F m 的合力与接触面法线间的夹角. 4.力的合成与分解余弦定理:计算共点力F1 与F2 的合力 F F= F1 2 + F2 2 + 2 F1 F2 cos θφ=arctan F2 sin θ(φ为合力 F 与分力F1 的夹角) F1 + F2 cos θ三角形法则与多边形法则:多个共点共面的力合成,可把一个力的始端依次画到另一个力的终端,则从第一个力的始端到最后一个力的终端的连线就表示这些力的合力. 拉密定理:三个共点力的合力为零时,任一个力与其它两个力夹角正弦的比值是相等的. 5.有固定转动轴物体的平衡力矩:力 F 与力臂L 的乘积叫做力对转动轴的力矩.即M=FL , 单位:Nm. 平衡条件:力矩的代数和为零.即M1+M2+M3+……=0. 6.刚体的平衡刚体:在任何情况下形状大小都不发生变化的力学研究对象. 力偶,力偶矩:二个大小相等,方向相反而不在一直线上的平行力称为力偶.力偶中的一个力与力偶臂(两力作用线之间的垂直距离)的乘积叫做力偶矩.在同一平面内各力偶的合力偶矩等于各力偶矩的代数和. 平衡条件:合力为零,即∑F=0;对任一转动轴合力矩为零,即∑M=0. 7.物体平衡的种类分为稳定平衡,不稳定平衡和随遇平衡三种类型. 稳度及改变稳度的方法:处于稳定平衡的物体,靠重力矩回复原来平衡位置的能力,叫稳度.降低重心高度,加大支持面的有效面积都能提高物体的稳度;反之, 则降低物体的稳度.【典型例题】例题1:求如图所示中重为G 的匀均质板(阴影部分)的重心O 的位置. 例题2:求如图所示中的由每米长质量为G 的7 根匀质杆件构成的平面衍架的重心. 例题3: 如图所示, 均匀矩形物体的质量为m, 两侧分别固定着轻质弹簧L1 和L2, 它们的劲度系数分别为k1 和k2, 先使L2 竖立在水平面上, 此时L1 自由向上伸着, L2 被压缩.待系统竖直静止后,再对L1 的上端 A 施一竖直向上和力F,使L2 承受的压力减为重的3/4 时,A 端比加 F 之前上升的高度是多少? 例题4: 图中的BO 是一根质量均匀的横梁, 重量G1=80N. 的一端安在 B 点, BO 可绕通过 B 点且垂直于纸面的轴转动,另一端用钢绳AO 拉着.横梁保持水平, 与钢绳的夹角θ=30°.在横梁的O 点挂一重物,重量G2=240N.求钢绳对横梁的拉力F1.专题二直线运动【扩展知识】一.质点运动的基本概念 1.位置,位移和路程位置指运动质点在某一时刻的处所,在直角坐标系中,可用质点在坐标轴上的投影坐标(x,y,z)来表示.在定量计算时,为了使位置的确定与位移的计算一致,人们还引入位置矢量(简称位矢)的概念,在直角坐标系中, 位矢r 定义为自坐标原点到质点位置P(x,y,z) 所引的有向线段, 故有r= x 2 + y 2 + z 2 ,r 的方向为自原点O 点指向质点P,如图所示. 位移指质点在运动过程中, 某一段时间t 内的位置变化, 即位矢的增量s = r(t + t ) _ rt , 它的方向为自始位置指向末位置,如图 2 所示,路程指质点在时间内通过的实际轨迹的长度. 2.平均速度和平均速率平均速度是质点在一段时间内通过的位移和所用时间之比v平= s ,平均速度是矢量,方向与位移s 的方向相同. t 平均速率是质点在一段时间内通过的路程与所用时间的比值,是标量. 3.瞬时速度和瞬时速率瞬时速度是质点在某一时刻或经过某一位置是的速度,它定义为在时的平均速度的极限,简称为速度,即v = lim s . t →0 t 瞬时速度是矢量,它的方向就是平均速度极限的方向.瞬时速度的大小叫瞬时速率,简称速率. 4.加速度加速度是描述物体运动速度变化快慢的物理量,等于速度对时间的变化率,即a= v ,这样求得的加速度实际上是物体运动的平均加速度,瞬时加速度应为t v a = lim .加速度是矢量. t →0 t 二,运动的合成和分解 1.标量和矢量物理量分为两大类:凡是只须数值就能决定的物理量叫做标量;凡是既有大小, 又需要方向才能决定的物理量叫做矢量.标量和矢量在进行运算是遵守不同的法则: 标量的运算遵守代数法则; 矢量的运算遵守平行四边形法则(或三角形法则) . 2.运动的合成和分解在研究物体运动时,将碰到一些较复杂的运动,我们常把它分解为两个或几个简单的分运动来研究.任何一个方向上的分运动,都按其本身的规律进行,不会因为其它方向的分运动的存在而受到影响,这叫做运动的独立性原理.运动的合成和分解包括位移,速度,加速度的合成和分解,他们都遵守平行四边形法则. 三,竖直上抛运动定义:物体以初速度v0 向上抛出,不考虑空气阻力作用,这样的运动叫做竖直上抛运动. 四,相对运动物体的运动是相对于参照系而言的,同一物体的运动相对于不同的参照系其运动情况不相同,这就是运动的相对性.我们通常把物体相对于基本参照系(如地面等)的运动称为"绝对运动" ,把相对于基本参照系运动着的参照系称为运动参照系,运动参照系相对于基本参照系的运动称为"牵连运动" ,而物体相对于运动参照系的运动称为"相对运动" .显然绝对速度和相对速度一般是不相等的,它们之间的关系是:绝对速度等于相对速度与牵连速度的矢量和.即v绝= v相+ v 或v甲对地= v甲对乙+ v乙对地【典型例题】例题1:A,B 两车沿同一直线同向行驶.A 车在前,以速度v1 做匀速直线运动; 当两车相距为 d 时(B 车在后) , B 车在后, 先以速度v 2 做匀速直线运动( v2 v1 ). 车开始做匀减速运动,加速度的大小为 a.试问为使两车不至于相撞,d 至少为多少? 例题2:河宽d=100m,水流速度v1 =4m/s,船在静水中的速度v 2 =3m/s,要使航程最短,船应怎样渡河? 例题3:有A, B 两球,A 从距地面高度为h 处自由下落,同时将 B 球从地面以初速度v0 竖直上抛,两球沿同一条竖直线运动.试分析: (1)B 球在上升过程中与A 球相遇; (2) 球在下落过程中与 A 球相遇.B 两种情况中 B 球初速度的取值范围. 专题三牛顿运动定律【扩展知识】非惯性参照系凡牛顿第一定律成立的参照系叫惯性参照系,简称惯性系.凡相对于惯性系静止或做匀速直线运动的参照系,都是惯性系.在不考虑地球自转,且在研究较短时间内物体运动的情况下,地球可看成是近似程度相当好的惯性系.凡牛顿第一定律不成立的参照系统称为非惯性系,一切相对于惯性参照系做加速运动的参照系都是非惯性参照系.在考虑地球自转时,地球就是非惯性系.在非惯性系中, 物体的运动也不遵从牛顿第二定律,但在引入惯性力的概念以后,就可以利用牛顿第二定律的形式来解决动力学问题. 一, 直线系统中的惯性力简称惯性力,例如在加速前进的车厢里,车里的乘客都觉得自己好象受到一个使其向后倒得力,这个力就是惯性力,其大小等于物体质量m 与非惯性系相对于惯性系的加速度大小 a 的乘积, 方向于 a 相反. 用公式表示, 这个惯性力 F 惯=-ma, 不过要注意:惯性力只是一种假想得力,实际上并不存在,故不可能找出它是由何物所施,因而也不可能找到它的反作用力.惯性力起源于物体惯性,是在非惯性系中物体惯性得体现. 二, 转动系统中的惯性力简称惯性离心力,这个惯性力的方向总是指向远离轴心的方向.它的大小等于物体的质量m 与非惯性系相对于惯性系的加速度大小 a 的乘积.如果在以角速度ω转动的参考系中,质点到转轴的距离为r,则: F 惯=mω2r. 假若物体相对于匀速转动参照系以一定速度运动,则物体除了受惯性离心力之外, 还要受到另一种惯性力的作用,这种力叫做科里奥利力,简称科氏力,这里不做进一步的讨论.【典型例题】例题1: 如图所示, 一轻弹簧和一根轻绳的一端共同连在一个质量为m 的小球上. 平横时,轻绳是水平的,弹簧与竖直方向的夹角是θ.若突然剪断轻绳,则在剪断的瞬间,弹簧的拉力大小是多少?小球加速度方向如何?若将弹簧改为另一轻绳, θ则在剪断水平轻绳的瞬间,结果又如何? 例题2: 如图所示,在以一定加速度 a 行驶的车厢内,有一长为l,质量为m 的棒AB 靠在光滑的后壁上,棒与箱底面之间的动摩擦因数μ,为了使棒不滑动,棒与竖直平面所成的夹角θ应在什么范围内? a θ例题 3 :如图所示,在一根没有重力的长度l 的棒的中点与端点上分别固定了两个质量分别为m 和M 的小球, 棒沿竖直轴用铰链连接, 速度ω匀速转动,试求棒与竖直轴线间的夹角θ. θω棒以角o m ωM 例题4: 长分别为l1 和l2 的不可伸长的轻绳悬挂质量都是m 的两个小球,如图所示,它们处于平衡状态.突然连接两绳的中间小球受水平向右的冲击(如另一球的碰撞) ,瞬间内获得水平向右的速度V0,求这瞬间连接m2 的绳的拉力为多少? 0 l1 m1 l2 m2 V0专题四曲线运动【拓展知识】一,斜抛运动(1)定义:具有斜向上的初速v0 且只受重力作用的物体的运动. (2)性质:斜抛运动是加速度a=g 的匀变速曲线运动. (3)处理方法:正交分解法:将斜抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动,然后用直角三角形求解.如图所示(4)斜抛运动的规律如下: 任一时刻的速度v x = v0 cosθ, v y = v 0 sin θ-gt. 任一时刻的位置x = v0 cosθt , y = v0 sin θt 1 2 gt . 2 竖直上抛运动,平抛运动可分别认为是斜抛运动在θ= 90 0 和θ= 0 0 时的特例. 斜抛运动在最高点时v y = 0, t 上= 2v sin θv0 sin θ, t 上= t 下,t总= t 上+ t 下= 0 g g 水平方向的射程斜抛物体具有最大的射程s = v 0 cos θt总= v sin 2 θ斜抛物体的最大高度H = 0 2g 2 v0 sin 2θg 2 斜抛运动具有对称性,在同一段竖直位移上,向上和向下运动的时间相等;在同一高度上的两点处速度大小相等,方向与水平方向的夹角相等;向上,向下的运动轨迹对称. (二) ,圆周运动 1.变速圆周运动在变速圆周运动中,物体受到的合外力一般不指向圆心,这时合外力可以分解在法线(半径方向)和切线两个方向上.在法线方向有Fn = mv 2 = mω 2 R 充当向心力R ,产生的法向加速度 a n 只改变速度的方向;切向分力Fτ= maτ产生(即Fn = F向) 的切向加速度aτ只改变速度的大小.也就是说, Fn 是F合的一个分力, Fn F合,且满足F合= F 2 n + F 2 τ 2.一般的曲线运动:在一般的曲线运动中仍有法向力Fn = m v2 式中R 为研究处曲R 线的曲率半径,即在该处附近取一段无限小的曲线,并视为圆弧,R 为该圆弧的曲率半径,即为研究处曲线的曲率半径.【典型例题】例题1:如图所示,以水平初速度v0 抛出的物体,飞行一段时间后,垂直地撞在倾角为30 0 的斜面上,求物体完成这段飞行的时间是多少? 例题2:如果把上题作这样的改动:若让小球从斜面顶端 A 以水平速度抛出,飞行一段时间后落在斜面上的 B 点,求它的飞行时间为多少(已知θ= 30 0 )? 例题3:斜向上抛出一球,抛射角α= 60 0 ,当t=1 秒钟时,球仍斜向上升,但方向(1)球的初速度v0 是多少?(2)球将在什么时候达到最已跟水平成β= 450 角. 高点? 例题4:以v0 = 10m / s 的初速度自楼顶平抛一小球,若不计空气阻力,当小球沿曲求小球下降的高度及所在处轨迹的曲率半径线运动的法向加速度大小为5m / s 2 时, R.专题五万有引力定律【扩展知识】1.均匀球壳的引力公式由万有引力定律可以推出,质量为M,半径为R 的质量均匀分布的球壳,对距离球心为r,质量为m 的质点的万有引力为F=0 F= GMm r2 (r<R) (r>R) 2.开普勒三定律【典型例题】例题1:若地球为均匀的球体,在地球内部距地心距离为r 的一物体m 受地球的万有引力为多大?(已知地球的质量为M,半径为R) 例题2:一星球可看成质量均匀分布的球体,其半径为R,质量为M.假定该星球完全靠万有引力维系, 要保证星球不散开, 它自转的角速度不能超过什么限度? 例题3: (全国物理竞赛预赛题)已知太阳光从太阳射到地球需要8min20s,地球公转轨道可以近似看作圆轨道,地球半径约为 6.4×106m,试估算太阳质量M 与地球质量m 之比M/m 为多大?(3×105) 例题4: (全国物理竞赛预赛题)木星的公转周期为12 年.设地球至太阳的距离为1AU(天文单位) ,则木星至太阳的距离约为多少天文单位?(5.2AU) 例题5: 世界上第一颗人造地球卫星的长轴比第二颗短8000km, 第一颗卫星开始绕地球运转时周期为96.2min,求: (1)第一颗人造卫星轨道的长轴. (1.39×107m) (2)第二颗人造卫星绕地球运转的周期.已知地球质量M=5.98×1024kg. (191min)专题六动量【扩展知识】 1.动量定理的分量表达式I 合x=mv2x-mv1x, I 合y=mv2y-mv1y, I 合z=mv2z-mv1z. 2.质心与质心运动 2.1 质点系的质量中心称为质心.若质点系内有n 个质点,它们的质量分别为m1,m2,……mn,相对于坐标原点的位置矢量分别为r1,r2,……rn,则质点系的质心位置矢量为mr m1 r1 + m2 r1 + + mn rn ∑i i i =1 rc= = m1 + m2 + + mn M 若将其投影到直角坐标系中,可得质心位置坐标为n xc = ∑m x i =1 i n i M , yc = ∑m y i =1 i n i M , zc= ∑m z i =1 n i i M . 2.2 质心速度与质心动量相对于选定的参考系,质点位置矢量对时间的变化率称为质心的速度. p r vc= c = 总= t M ∑m v i =1 n i i M , pc=Mvc= ∑mi vi . i =1 n 作用于质点系的合外力的冲量等于质心动量的增量I 合= ∑I i =pc-pc0=mvc-mvc0 . i =1 n 2.3 质心运动定律作用于质点系的合外力等于质点总质量与质心加速度的乘积.F合=Mac.. 则质点系的质心加速度对于由n 个质点组成的系统, 若第i 个质点的加速度为ai, 可表示为ac = ∑m a i =1 i n i M .【典型例题】1.将不可伸长的细绳的一端固定于天花板上的 C 点,另一端系一质量为m 的小球以以角速度ω绕竖直轴做匀速圆周运动,细绳与竖直轴之间的夹角为θ,如图所示.已知A,B 为某一直径上的两点,问小球从 A 点运动到 B 点的过程中细绳对小球的拉力T 的冲量为多少? C θ A m B O 2.一根均匀柔软绳长为l=3m,质量m=3kg,悬挂在天花板的钉子上,且下端刚好接触地板,现将软绳的最下端拾起与上端对齐,使之对折起来,然后让它无初速地自由下落,如图所示.求下落的绳离钉子的距离为x 时,钉子对绳另一端的作用力是多少? x 3.一长直光滑薄板AB 放在平台上,OB 伸出台面,在板左侧的 D 点放一质量为m1 的小铁块,铁块以速度v 向右运动.假设薄板相对于桌面不发生滑动,经过时间T0 后薄板将翻倒.现让薄板恢复原状,并在薄板上O 点放另一个质量为m2 的m1 v m2 A 小物体, 如图所示. 同样让m1 从 D 点开始以速度v 向右运动, 并与m2 发生正碰. D O B 那么从m1 开始经过多少时间后薄板将翻倒?专题七机械能【扩展知识】一,功 1. 恒力做功 2.变力做功 1 (1)平均值法如计算弹簧的弹力做功,可先求得 F = k ( x1 + x 2 ) ,再求出弹力 2 W=Fscosα当物体不可视为质点时,s 是力的作用点的位移. 做功为W= F (x2-x1)= 1 1 2 2 kx 2 kx1 2 2 (2)图像法当力的方向不变,其大小随在力的方向上的位移成函数关变化时, , "面作出力—位移图像(即F—s 图) 则图线与位移坐标轴围成的积"就表示力做的功.如功率—时间图像. (3)等效法功. (4)微元法通过因果关系,如动能定理,功能原理或Pt 等效代换可求变力做二,动能定理 1. 对于单一物体(可视为质点) ∑W = E k2 E k 1 只有在同一惯性参照系中计算功和动能, 动能定理才成立. 当物体不能视为质点时, 则不能应用动能定理. 2. 对于几个物体组成的质点系,因内力可以做功,则∑W 外+ ∑W内= ∑ E k 2 ∑ E k 1 同样只适用于同一惯性参照系. 3. 在非惯性系中, 质点动能定理除了考虑各力做的功外, 还要考虑惯性力做的功, 其总和对应于质点动能的改变.此时功和动能中的位移,速度均为相对于非惯性参照系的值.三,势能 1. 弹性势能 2. 引力势能(1) 质点之间Ep = G m1 m 2 r E p = G Mm r Ep = 1 2 kx 2 (2) 均匀球体(半径为R)与质点之间(r≥R) (3) 均匀球壳与质点之间 E p = G Mm (r≥R) r Mm E p = G (r<R) R四,功能原理物体系外力做的功与物体系内非保守力做的功之和,等于物体系机械能的增量.即∑W外+ ∑W非保守= ∑ E 2 ∑E1【典型例题】例题1:如图所示,在倾角θ=30°,长为L 的斜面顶部放一质量为m 的木块.当斜面水平向右匀速移动s = 3 L 3 时,木块沿斜面匀速地下滑到底部.试求此过程中木块所受各力所做的功及斜面对木块做的功. m 30°例题2:用锤击钉,设木板对钉子的阻力跟钉子进入木板的深度成正比,每次击钉时对钉子做的功相同,已知击第一次时,钉子进入板内1cm,则击第二次时,钉子进入木板的深度为多少?例题3:质量为M 的列车正沿平直轨道匀速行驶,忽然尾部有一节质量为m 的车厢脱钩,待司机发现并关闭油门时,前部车厢已驶过的距离为L.已知列车所受的,列车启动后牵引力不变.问前后两车都停阻力跟质量成正比(设比例系数为k) 下后相距多远.例题4:如图所示,沿地球表面与竖直方向成α角的方向,发射一质量为m 的导弹.其初速度v0 = GM ,M 为地球的质量,R 为地球半R αR v0 径,忽略空气阻力和地球自转的影响.求导弹上升的最大高度.例题5:长为l 的细线一端系住一质量为m 的小球,另一端固定在 A 点,AB 是过 A 的竖直线.E 为AB 上一点,且AE=l/2.过 E 作水平 A m 线EF,在EF 上钉一铁钉D,如图所示,线能承受的最大拉力是9mg. 现将系小球的悬线拉至水平, 然后由静止释放.若小球能绕钉子在竖直平面内做圆周运动,求 E D x F B 钉子的位置在水平线上的取值范围.不计线与钉子碰撞时的能量损失.专题八振动和波【扩展知识】1.参考圆可以证明,做匀速圆周运动的质点在其直径上的投影的运动,是以圆心为平衡位置的简谐运动.通常称这样的圆为参考圆. 2. 简谐运动的运动方程及速度,加速度的瞬时表达式振动方程:x=Acos(ωt +φ). 速度表达式: v =-ωAsin(ωt +φ). 加速度表达式:a =-ω2Acos(ωt +φ). 3. 简谐运动的周期和能量振动的周期:T =2π振动的能量:E = 4.多普勒效应设v 为声速,vs 为振源的速度,v0 是观察者速度,f0 为声音实。

2020年高中物理竞赛-热学A(联赛版)05热力学第二定律:卡诺定理(共15张PPT)

2020年高中物理竞赛-热学A(联赛版)05热力学第二定律:卡诺定理(共15张PPT)

C ,
1 Qj 1 Tj
Qi
Ti
Qj Tj Qi Ti
Qj Qi Tj Ti
因为 Q j ' Q j , 则上式可写为
Qi Qj 0 Ti Tj
对所有i 、j 求和,即得 n Qi 0.
T i 1 i
其中等号适用于可逆过程, 不等号适用于不可逆过程。
dQ
若 n ,则 Ti Ti1 Ti 0, Qi dQ, 于是有
于是有
dW
(1
T2 T1
)dQ1
热机工作过程中
工质在高温处吸热 dQ1 C pdT1' 在低温处放热 dQ2 C pdT2 '
能量守恒 dW dQ1 dQ2 C pdT1'C pdT2 '
积分得 W C p (T 'T1) C p (T 'T2 ) C p (T1 T2 2T ')
有一热机,其输出功驱动B与A之间的制 TA ' 100K ,TB ' TC ' 300K
冷机将热量再传输到B或A。设A物体最 后达到的温度最高,则B、C两物体应有
TA ' 900K ,TB ' TC ' 100K
T ’=T ’, 即有 TB ' TC ' TA 解得:
显然,只有第一组解合理。
S TA ' CdT TB ' CdT TC ' CdT 0
T TA
T TB
T TC
即有 ln TA ln TB ln TC 0 于是有 TA 'TB 'TC ' TATBTC
TA
TB
TC
依题意,工作方式可能是A或B与C之间 TA ' 400K ,TB ' TC ' 150K

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类物理竞赛需要哪些知识?物理竞赛力学部分需要哪些数学?首先,为了理解力学一开始的匀加速直线运动和变加速直线运动,对于一元函数的简单微积分是必不可少的,当然主要集中在多项式函数的求导和积分上,实际操作起来十分容易。

此后,当运动范围被拓展到二维,运动形式成为曲线时,矢量代数、解析几何、参数方程、斜率、曲率半径等数学概念被融入到物理模型中,用来理解抛体、圆周、一般曲线运动。

这时微积分的应用也被拓展到更为复杂的函数范围,例如三角函数。

随着运动和力的关系——牛顿第二定律的引入,我们逐渐意识到光理解运动是不够的,运动背后的机理——力的作用,以及力的效果,才是我们要研究的。

动量定理、动能定理的引入,实际上反映了力在时空的积累效果,而牛顿方程本身,也是物理学家特别喜欢的形式——微分方程。

对于矢量和微积分更综合的运用体现在一种伴随物理学发展史的特殊运动形式——简谐振动当中。

而振动在介质当中的扩散效应——波动,又引出了波动方程、波函数这一时空函数的概念。

总结下来,力学部分所需要的数学是一元函数的微积分、矢量代数、解析几何、常微分方程、对二元函数的运用。

物理竞赛热学部分需要哪些数学?虽然高中热学部分涉及气体定律和热力学第一定律的内容比较容易,一般不需要微积分,但如果深入学习,热力学过程、各种态函数(内能、熵)、热力学第二定律,那么由于热力学体系变量多,适当的偏微分基础知识是必要的。

热力学是宏观的理论,而其背后有着分子动理论作为基础,它们之间的联系是通过对大量粒子系统的统计来实现的,因此,概率统计的知识就显得十分必要了。

总结下来,热学部分所需要的数学是简单的偏微分和概率统计。

物理竞赛电磁学部分需要哪些数学?依照往年的经验,电磁学是最容易让高考学生放弃物理、竞赛学生放弃物理竞赛的困难内容。

原因是因为数学不到位,非但理解不了场的概念,而且容易产生记忆模型和公式,套例题做习题的固有思维模式,最终对于电磁学可谓是“一点没学会”!从静电场开始,如果仅仅按高中的要求来学习,对于场的理解是空洞的,仅仅是唯像的概念,对于电场线、电势、静电平衡、介质极化等概念无法做到深入掌握,那就更别提解答赛题了。

(完整版)高中物理竞赛中的高等数学

(完整版)高中物理竞赛中的高等数学

高中物理竞赛中的高等数学一、微积分初步物理学研究的是物质的运动规律,因此经常遇到的物理量大多数是变量,而要研究的正是一些变量彼此间的联系.这样,微积分这个数学工具就成为必要的了.考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的.所以在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要.至于更系统和更深入地掌握微积分的知识和方法,可在通过高等数学课程的学习去完成. §1.函数及其图形1.1 函数 自变量和因变量 绝对常量和任意常量在数学中函数的功能是这样定义的:有两个互相联系的变量x 和y ,如果每当变量x 取定了某个数值后,按照一定的规律就可以确定y 的对应值,那么称y 是x 的函数,并记作:y =f (x ),(A .1);其中x 叫做自变量,y 叫做因变量,f 是一个函数记号,它表示y 和x 数值的对应关系.有时把y =f (x )也记作y =y (x ).如果在同一个问题中遇到几个不同形式的函数,也可以用其它字母作为函数记号,如ϕ(x )、ψ(x )等等.①常见的函数可以用公式来表达,例如()32y f x x ==+,212ax bx +,c x,cos2x π,ln x ,x e 等等.在函数的表达式中,除变量外,还往往包含一些不变的量,如上面出现的13 2 2e π、、、、和a b c 、、等,它们叫做常量;常量有两类:一类如13 2 2e π、、、、等,它们在一切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a 、b 、c 等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量.在数学中经常用拉丁字母中最前面几个(如a 、b 、c )代表任意常量,最后面几个(x 、y 、z )代表变量.当y =f (x )的具体形式给定后,就可以确定与自变量的任一特定值x 0相对应的函数值f (x 0).例如: (1)若y =f (x )=3+2x ,则当x =-2时y =f (-2)=3+2×(-2)=-1.一般地说,当x =x 0时,y =f (x 0)=3+2x 0.(2)若()cy f x x==,则当0x x =时,00()c f x x =.1.2 函数的图形在解析几何学和物理学中经常用平面上的曲线来表示两个变量之间的函数关系,这种方法对于直观地了解一个函数的特征是很有帮助的.作图的办法是先在平面上取一直角坐标系,横轴代表自变量x ,纵轴代表因变量(函数值)y =f (x ).这样一来,把坐标为(x ,y )且满足函数关系y =f (x )的那些点连接起来的轨迹就构成一条曲线,它描绘出函数的面貌.图A -1便是上面举的第一个例子y =f (x )=3+2x 的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线.图A -2是第二个例子()cy f x x==的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:1(,4)4c 、1(,2)2c 、(1,)c 、(2,)2c 、(4,)4c ,各点连接成双曲线的一支.1.3 物理学中函数的实例反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的.下面举几个例子. (1)匀速直线运动公式:s =s 0+vt .(A .2)此式表达了物体作匀速直线运动时的位置s 随时间t 变化的规律,在这里t 相当于自变量x ,s 相当于因变量y ,s 是t 的函数.因此记作:s =s (t )=s 0+vt ,(A .3)式中初始位置s 0和速度v 是任意常量,s 0与坐标原点的选择有关,v 对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值.图A -3是这个函数的图形,它是一根倾斜的直线.易知它的斜率等于v .(2)匀变速直线运动公式:20012s s v t at =++,(A .4),v =v 0+at .(A .5)两式中s 和v 是因变量,它们都是自变量t 的函数,因此记作:2001()2s s t s v t at ==++,(A .6),v =v (t )=v 0+at ,(A .7)图A -4a 、4b 分别是两个函数的图形,其中一个是抛物线,一个是直线.(A .6)和(A .7)式是匀变速直线运动的普遍公式,式中初始位置s 0、初速v 0和加速度a 都是任意常量,它们的数值要根据讨论的问题来具体化.例如在讨论自由落体问题时,若把坐标原点选择在开始运动的地方,则s 0=0,v 0=0,a =g ≈9.8M /s 2,这时(A .6)和(A .7)式具有如下形式:21()2s s t gt ==,(A .8);v =v (t )=gt .(A .9);这里的g 可看作是绝对常量,式中不再有任意常量了.(3)玻意耳定律:PV =C .(A .10)上式表达了一定质量的气体,在温度不变的条件下,压强P 和体积V 之间的函数关系,式中的C 是任意常量.可以选择V 为自变量,P 为因变量,这样,(A .10)式就可写作:()CP P V V==,(A .11)它的图形和图A -2是一样的,只不过图中的x 、y 应换成V 、P .在(A .10)式中也可以选择P 为自变量,V 为因变量,这样它就应写成:()CV V P P==,(A .12) 由此可见,在一个公式中自变量和因变量往往是相对的. (4)欧姆定律:U IR =.(A .13)当讨论一段导线中的电流I 这样随着外加电压U 而改变的问题时,U 是自变量,I 是因变量,R 是常量.这时,(A .13)式应写作:()UI I U R==,(A .14);即I 与U 成正比. 应当指出,任意常量与变量之间的界限也不是绝对的.例如,当讨论串联电路中电压在各电阻元件上分配问题时,由于通过各元件的电流是一样的,(A .13)式中的电流I 成了常量,而R 是自变量,U 是因变量.于是U =U (R )=IR ,(A .15)即U 与R 成正比.但是当讨论并联电路中电流在各分支里的分配问题时,由于各分支两端具有共同的电压,(A .13)式中的U 就成了常量,而R 为自变量,I 是因变量,于是:()UI I R R==,(A .16)即I 与R 成反比.总之,每个物理公式都反映了一些物理量之间的函数关系,但是其中哪个是自变量,哪个是因变量,哪些是常量,有时公式本身反映不出来,需要根据所要讨论的问题来具体分析. §2.导数2.1 极限若当自变量x 无限趋近某一数值x 0(记作x →x 0)时,函数f (x )的数值无限趋近某一确定的数值a ,则a 叫做x →x 0时函数f (x )的极限值,并记作:0lim ()x x f x a →=,(A .17)(A .17)式中的“lim ”是英语“limit (极限)”一词的缩写,(A .17)式读作“当x 趋近x 0时,f (x )的极限值等于a ”.极限是微积分中的一个最基本的概念,它涉及的问题面很广.这里不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义.考虑下面这个函数:232()1x x y f x x --==-,(A .18),这里除x =1外,计算任何其它地方的函数值都是没有困难的.例如当0x =时,(0)2f =,当2x =,(2)8f =,等等.但是若问x =1时函数值f (1)=?,就会发现,这时(A .18)式的分子和分母都等于0,即0(1)0f =!用0去除以0,一般地说是没有意义的.所以表达式(A .18)没有直接给出f (1),但给出了x 无论如何接近1时的函数值来.下表列出了当x 的值从小于1和大于1两方面趋于1时f (x )值的变化情况:从上表看,x →1时f (x )的极限值. 其实计算f (x )值的极限无需这样麻烦,只要将(A .18)式的分子作因式分解:3x 2-x -2=(3x +2)(x -1),并在x ≠1的情况下从分子和分母中将因式(x -1)消去:(32)(1)()3 2 (1)1x x y f x x x x +-===+≠-;即可看出:x 趋于1时,函数f (x )的数值趋于:3×1+2=5.所以根据函数极限的定义,21132lim ()lim51x x x x f x x →→--==-. 2.2 几个物理学中的实例 (1)瞬时速度当一个物体作任意直线运动时,它的位置可用它到某个坐标原点O 的距离s 来描述.在运动过程中s 是随时间t 变化的,也就是说,s 是t 的函数:s =s (t ).函数s (t )表示的是这个物体什么时刻到达什么地方.形象一些说,假如物体是一列火车,则函数s (t )就是它的一张“旅行时刻表”.但是,在实际中往往不满足于一张“时刻表”,还需要知道物体运动快慢的程度,即速度或速率的概念.例如,当车辆驶过繁华的街道或桥梁时,为了安全,对它的速率就要有一定的限制;一个上抛体(如高射炮弹)能够达到怎样的高度,也与它的初始速率有关,等等.为了建立速率的概念,就要研究在一段时间间隔里物体位置的改变情况.假设考虑的是从t =t 0到t =t 1的一段时间间隔,则这间隔的大小为:△t =t 1-t 0.根据s 和t 的函数关系s (t )可知,在t 0和t 1=t 0+△t 两个时刻,s 的数值分别为s (t 0)和s (t 1)=s (t 0+△t ),即在t 0到t 1这段时间间隔里s 改变了:△s =s (t 1)-s (t 0)=s (t 0+△t )-s (t 0).在同样大小的时间间隔△t 里,若s 的改变量△s 小,就表明物体运动得慢, 所以就把s ∆与t ∆之比st∆∆叫做这段时间间隔里的平均速率,用v 来表示,则00()()s t t s t s v t t+∆-∆==∆∆,(A .19),举例说明如下. 对于匀变速直线运动,根据(A .4)式有2000001()2s t s v t at =++和2000001()()()2s t t s v t t a t t +∆=++∆++∆,22200000000000000111[()()]()()()()()12222s v t t a t t s v t at v at t a t s t t s t v v at a t t t t ++∆++∆-+++∆+∆+∆-====++∆∆∆∆;平均速率s v t ∆=∆反映了物体在一段时间间隔内运动的快慢,除了匀速直线运动的特殊情况外,st∆∆的数值或多或少与t ∆的大小有关;t ∆取得越短,s t ∆∆就越能反映出物体在0t t =时刻运动的快慢;通常就把0t ∆→时st∆∆的极限值叫做物体在t =t 0时刻的瞬时速率v ,即0000()()lim lim t t s t t s t sv t t ∆→∆→+∆-∆==∆∆,(A .20) 对于匀变速直线运动来说,0000001lim lim()2t t s v v at a t v at t ∆→∆→∆==++∆=+∆. 这就是熟悉的匀变速直线运动的速率公式(A .5).(2)瞬时加速度一般地说,瞬时速度或瞬时速率v 也是t 的函数:v =v (t ).但是在许多实际问题中,只有速度和速率的概念还不够,还需要知道速度随时间变化的快慢,即需要建立“加速度”的概念.平均加速度a 和瞬时加速度a 概念的建立与v 和v 的建立类似.在直线运动中,首先取一段时间间隔t 0到t 1,根据瞬时速率v 和时间t 的函数关系v (t )可知,在t =t 0和t =t 1两时刻的瞬时速率分别为v (t 0)和v (t 1)=v (t 0+△t ),因此在t 0到t 1这段时间间隔里v 改变了△v =v (t 0+△t )-v (t 0).通常把v t∆∆叫做这段时间间隔里的平均加速度,记作a ;00()()v t t v t v a t t +∆-∆==∆∆,(A .21) 举例来说,对于匀变速直线运动,根据(A .5)式有000()v t v at =+,000()()v t t v a t t +∆=++∆.所以平均加速度为000000()()[()]()v t t v t v a t t v at v a a t t t+∆-++∆-+∆====∆∆∆(常数). 对于一般的变速运动,a 也是与t ∆有关的,这时为了反映出某一时刻速度变化的快慢,就需要取vt∆∆在0t ∆→时的极限,这就是物体在t =t 0时刻的瞬时加速度a :0000()()lim lim t t v t t v t va t t∆→∆→+∆-∆==∆∆,(A .22)(3)应用举例水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动.为简单起见,假设水渠是直的,这时可以把x 坐标轴取为逆水渠走向的方向(见图A -5),于是各处渠底的高度h 便是x 的函数:h =h (x ).知道了这个函数,就可以计算任意两点之间的高度差.在修建水渠的时候,人们经常运用“坡度”的概念.譬如说,若逆水渠而上,渠底在100m 的距离内升高了20cm ,人们就说这水渠的坡度是0.221001000m m =,因此所谓坡度,就是指单位长度内的高度差,它的大小反映着高度随长度变化的快慢程度.如果用数学语言来表达,就要取一段水渠,设它的两端的坐标分别为x 0和x 1,于是这段水渠的长度为:△x =x 1-x 0.根据h 和x 的函数关系h (x )可知,在x 0和x 1=x 0+△x 两地h 的数值分别为h (x 0)和h (x 1)=h (x 0+△x ),所以在△x 这段长度内h 改变了:△h =h (x 0+△x )-h (x 0).根据上述坡度的定义,这段水渠的平均坡度为:00()()h x x h x h k x x+∆-∆==∆∆,(A .23) 前面所举例子,△x 采用了100米的数值.实际上在100米的范围内,水渠的坡度可能各处不同.为了更细致地把水渠在各处的坡度反映出来,应当取更小的长度间隔x ∆,x ∆取得越小,hx∆∆就越能精确反映出x =x 0处的坡度.所以在x =x 0处的坡度k 应是0x ∆→时的平均坡度k 的极限值,即0000()()lim lim x x h x x h x hk x x∆→∆→+∆-∆==∆∆,(A .24)2.3 函数的变化率——导数前面举了三个例子,在前两个例子中自变量都是t ,第三个例子中自变量是x .这三个例子都表明,在研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,即函数的“变化率”概念.当变量由一个数值变到另一个数值时,后者减去前者,叫做这个变量的增量.增量,通常用代表变量的字母前面加个“△”来表示.例如,当自变量x 的数值由x 0变到x 1时,其增量就是△x ≡x 1-x 0.(A .25)与此对应.因变量y 的数值将由y 0=f (x 0)变到y 1=f (x 1),它的增量为△y ≡y 1-y 0=f (x 1)-f (x 0)=f (x 0+△x )-f (x 0).(A .26)应当指出,增量是可正可负的,负增量代表变量减少.增量比00()()f x x f x y x x+∆-∆=∆∆,(A .27) 可以叫做函数在x =x 0到x =x 0+△x 这一区间内的平均变化率,它在△x →0时的极限值叫做函数y =f (x )对x 的导数或微商,记作y ′或f ′(x ),0000()()()lim lim x x f x x f x yy f x x x∆→∆→+∆-∆''===∆∆,(A .28)除y '或()f x '外,导数或微商还常常写作dy dx 、df dx 、d dx等其它形式.导数与增量不同,它代表函数在一点的性质,即在该点的变化率.应当指出,函数f (x )的导数f ′(x )本身也是x 的一个函数,因此可以再取它对x 的导数,这叫做函数y =f (x )的二阶导数,记作y ''、()f x ''、22d y dx等;22()()()d y d dy dy f x f x dx dx dx dx '''''====,(A .29) 据此类推,则不难定义出高阶的导数来.有了导数的概念,前面的几个实例中的物理量就可表示为:瞬时速率:ds v dt =,(A .30);瞬时加速度:22dv d sa dt dt==,(A .31);水渠坡度:dh k dx =,(A .32).2.4 导数的几何意义在几何中切线的概念也是建立在极限的基础上的.如图A -6所示,为了确定曲线在P 0点的切线,先在曲线上P 0附近选另一点P 1,并设想P 1点沿着曲线向P 0点靠拢.P 0P 1的联线是曲线的一条割线,它的方向可用这直线与横坐标轴的夹角α来描述.从图上不难看出,P 1点愈靠近P 0点,α角就愈接近一个确定的值α0,当P 1点完全和P 0点重合的时候,割线P 0P 1变成切线P 0T ,α的极限值α0就是切线与横轴的夹角.在解析几何中,把一条直线与横坐标轴夹角的正切tan α叫做这条直线的斜率.斜率为正时表示α是锐角,从左到右直线是上坡的(见图A -7a );斜率为负时表示α是钝角,从左到右直线是下坡的(见图A -7b ).现在来研究图A -6中割线P 0P 1和切线P 0T 的斜率.设P 0和P 1的坐标分别为(x 0,y 0)和(x 0+△x ,y 0+△y ),以割线P 0P 1为斜边作一直角三角形△P 0P 1M ,它的水平边P 0M 的长度为△x ,竖直边MP 1的长度为△y ,因此这条割线的斜率为:10tan MP y P M xα∆==∆. 如果图A -6中的曲线代表函数y =f (x ),则割线P 0P 1的斜率就等于函数在 0x x =附近的增量比yx∆∆,切线0PT 的低斜率0tan α是10P P →时,割线P 0P 1斜率的极限值,即10100tan lim tan lim ()P P P P yf x xαα→→∆'===∆;所以导数的几何意义是切线的斜率. §3.导数的运算在上节里只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来.3.1 基本函数的导数公式(1)y =f (x )=C (常量):00()()()lim lim 0x x f x x f x C C y f x x x ∆→∆→+∆--''====∆∆; (2)y =f (x )=x :000()()()()lim lim lim 1x x x f x x f x x x x x y f x x xx ∆→∆→∆→+∆-+∆-∆''=====∆∆∆; (3)y =f (x )=x 2:22000()()()()limlim lim(2)2x x x f x x f x x x x y f x x x x x x∆→∆→∆→+∆-+∆-''====+∆=∆∆; (4)y =f (x )=x 3:33222000()()()()limlim lim[33()]3x x x f x x f x x x x y f x x x x x x x x∆→∆→∆→+∆-+∆-''====+∆+∆=∆∆; (5)y =f (x )=1x :0()()()lim x f x x f x y f x x ∆→+∆-''===∆011lim x x x x x∆→-+∆=∆ 200()11lim lim ()()x x x x x x x x x x x x x∆→∆→-+∆-===-+∆⋅∆+∆;(6)y =f (x )000()()()limlim x x x f x x f x y f x x ∆→∆→∆→+∆-''====∆limlimx x ∆→∆→===上面推导的结果可以归纳成一个普遍公式:当ny x =时,1n n dx y nx dx-'==,(n 为任何数),(A .33). 例如:当1n =时,()y f x x ==,1dxy dx '==; 当2n =时,2()y f x x ==,22dx y x dx '==; 当3n =时,3()y f x x ==,323dx y x dx '==; 当1n =-时,11()y f x x x -===,2211()(1)d y x dx x x-'==-=-;当12n =时,12()y f x x ===1212y x -'===利用(A .33)式还可以计算其它幂函数的导数(见表A -2).除了幂函数n x 外,物理学中常见的基本函数还有三角函数、对数函数和指数函数.现在只给出这些函数的导数公式(见表A -2)而不推导,解题时可以直接引用.3.2 有关导数运算的几个定理定理一:[()()]d du dvu x v x dx dx dx ±=±,(A .34). 证明:00[()()]lim lim[]x x d u v u v du dvu x v x dx x x x dx dx∆→∆→∆±∆∆∆±==±=±∆∆∆. 定理二:[()()]()()d du dvu x v x v x u x dx dx dx ⋅=+,(A .35).证明:00[()][()]u(x)v(x)v()()[()()]lim lim x x d u x u v x v x u u x v u vu x v x dx x x∆→∆→+∆+∆-∆+∆+∆∆⋅==∆∆ 0lim[()()]()()x u v du dvv x u x v x u x x x dx dx∆→∆∆=+=+∆∆.定理三:2()()()[]()[()]du dv v x u x d u x dx dx dx v x v x -=,(A .36).证明:000()()()[()]()[()]()()()()()[]lim lim lim()[()]()[()]()x x x u x u u x d u x u x u v x v x v u x v x u u x v v x v v x dx v x x v x v v x xv x v v x x ∆→∆→∆→+∆-+∆-+∆∆-∆+∆===∆+∆∆+∆∆ 20()()()()lim [()]()[()]x u v du dv v x u x v x u x x x dx dx v x v v x v x ∆→∆∆--∆∆==+∆. 定理四:[()]d du dvu v x dx dv dx=⋅,(A .37). 证明:00[()][()]()()[()]lim lim[]x x d u v x x u v x u v v v v v u v x dx x v x ∆→∆→+∆-+∆-∆==⋅∆∆∆00()()lim[]lim[]x x u v v v v v du dvv x dv dx∆→∆→+∆-∆=⋅=⋅∆∆ 例1.求22y x a =±(a 为常量)的导数.解:22202dy dx da x x dx dx dx=±=±=. 例2.求ln x y a =(a 为常量)的导数. 解:ln ln 110dy d x d a dx dx dx x x=-=-=. 例3.求2y ax =(a 为常量)的导数. 解:222022dy da dx x a x a x ax dx dx dx=⋅+⋅=⋅+⋅=. 例4.求2x y x e =的导数. 解:22222(2)xx x x x dy dx de e x x e x e x x e dx dx dx=+=⋅+⋅=+. 例5.求23251x y x -=+的导数.解:2222222(32)(51)(51)(32)6(51)(32)515610(51)(51)(51)d x d x x x dy x x x x x dx dx dx x x x -++--⋅+--⋅++===+++. 例6.求tan y x =的导数.解:2222sin cos cos sin sin cos cos sin (sin )1(tan )()sec cos cos cos cos d x d x x xdy d d x x x x x dx dx x xdx dx dx x x x x -⋅-⋅-======. 例7.求cos()y ax b =+(a 、b 为常量)的导数.解:令v ax b =+,()cos y u v v ==,则(sin )sin()dy du dvv a a ax b dx dv dx=⋅=-⋅=-+.例8.求y =解:令21v x =-,()y u v ==2dy du dv x dx dv dx =⋅=例9.求22ax y x e -=(a 为常量)的导数.解:令v u e =,2v ax =-,则2222222(2)2(1)v ax dy dx du dvu x xu x e ax x ax e dx dx dv dx-=+⋅=+⋅⋅-=- §4.微分和函数的幂级数展开 4.1 微分自变量的微分,就是它的任意一个无限小的增量△x .用dx 代表x 的微分,则dx =△x .(A .38)一函数y =f (x )的导数f ′(x )乘以自变量的微分dx 即为该函数的微分,用dy 或df (x )表示,即dy =df (x )=f ′(x )dx ,(A .39) 所以()dyf x dx'=,(A .40)在之前曾把导数写成dydx的形式,是把它作为一个整体引入的.当时它虽然表面上具有分数的形式,但在运算时并不象普通分数那样可以拆成“分子”和“分母”两部分.在引入微分的概念之后,就可把导数看成微分dy 与dx 之商(所谓“微商”),即一个真正的分数了.把导数写成分数形式,常常是很方便的,例如,把上节定理四(A .37)式的左端[()]d u v x dx 简写成du dx,则该式化为du du dvdx dv dx =⋅;此公式从形式上看和分数运算法则一致,很便于记忆.下面看微分的几何意义.图A -8是任一函数y =f (x )的图形,P 0(x 0,y 0)和P 1(x 0+△x ,y0+△y )是曲线上两个邻近的点,P 0T 是通过P 0的切线.直角三角形△P 0MP 1的水平边0P M x =∆,竖直边1MP y =∆(见图8A -).设0PT 与1MP 的交点为N ,则0tan MNMNNP M xPM ∠==∆,但0tan NP M ∠为切线P 0T 的斜率,它等于x =x 0处的导数f ′(x 0),因此00()tan dy f x x NP M x MN '=∆=∠⋅∆=.所以微分dy 在几何图形上相当于线段MN 的长度,它和增量1y MP ∆=相差1NP 一段长;从上一节计算导数时取极限的过程可以看出,dy 是y ∆中正比于x ∆的那一部分,而1NP 则是正比于(△x )2以及△x 更高幂次的各项之和[例如对于函数y =f (x )=x 3,△y =3x 2△x +3x (△x )2+(△)3,而d y =f ′(x )△x =3x 2△x ].当△x 很小时,(△x )2、(△x )3、…比△x 小得多,1NP 也就比dy 小得多,所以可以把微分dy 叫做增量y ∆中的线性主部.也就是说,若函数在x =x 0的地方像线性函数那样增长,则它的增量就是dy .4.2幂函数的展开已知一个函数f (x )在x =x 0一点的数值f (x 0),如何求得其附近的点x =x 0+△x 处的函数值f (x )=f (x 0+△x )? 若f (x )为x 的幂函数n x ,可以利用牛顿的二项式定理:23000000000(1)(1)(2)()()[1()]()[1()]()[1()()()]2!3!n n nn n x x x n n x n n n x f x x x x x f x f x n x x x x x ∆∆∆-∆--∆==+∆=+=+=++++⋅⋅⋅000(1)(1)()()!nmm n n n m x f x m x =-⋅⋅⋅-+∆=∑,(A .41)此式适用于任何n (整数、非整数、正数、负数等等).若n 为正整数,则上式中的级数在M =n 的地方截断,余下的项自动为0,否则上式为无穷级数.不过当△x <<x 0时,后面的项越来越小,只需保留有限多项就足够精确了.不要以为数学表达式越精确越好.如图A -9中A 、B 两点间的水平距离为l ,若将B 点竖直向上提高一个很小的距离a (a <<l)到达B ′,问AB ′之间的距离比AB 增加了多少?利用勾股定理易得距离的增加量为22l l a l ∆=+-.这是个精确的公式,但没有给出一个鲜明的印象,究竟△l 是随a 怎样变化的?若用二项式定理将它展开,只保留到最低级的非0项,则有12222221[1()1]{[1()]1}[1()1]()222a a a l a a l l l l l l l l l∆=+=+-=++⋅⋅⋅-≈=,即△l 是正比于a平方增长的,属二级小量.这种用幂级数展开来分析主要变化趋势的办法,在物理学里是经常用到的.4.3泰勒展开非幂函数(譬如s in x 、e x )如何作幂级数展开?这要用泰勒(Taylor)展开. 下面用一种不太严格,但简单明了的办法将它导出.假设函数f (x )在x =x 0处的增量△f =f (x )-f (x 0)能够展成△x =x -x 0的幂级数:001()()()mm m f x f x a x x ∞=-=-∑,(A .42)则通过逐项求导可得101()()m m m f x ma x x ∞-='=-∑;当x →x 0时,m >1的项都趋于0,于是有f ′(x 0)=a 1;再次求导,得202()(1)()m m m f x m m a x x ∞-=''=--∑,当x →x 0时,m >2的项都趋于0,于是有f (x 0)=2a 2;如此类推,一般地说,对于M阶导数有()0()!M M fx M a =;于是(A .42)式可以写为:()000()()()()!m m m Mf x f x f x x x m ∞=-=-∑,(A .43).若定义第0阶导数f (0)(x )就是函数f (x )本身,则上式还可进一步简写为:()000()()()!m m m f x f x x x m ∞==-∑,(A .44). 上述(A .43)或(A .44)式称为泰勒展开式,它在物理学中是非常有用的公式. 下面在表A -3中给出几个常见函数在x 0=0或1处的泰勒展开式.函数 展开式收敛范围12(1)x ± 234111113113512242462468x x x x ⋅⋅⋅⋅⋅⋅±-±-±⋅⋅⋅⋅⋅⋅⋅⋅⋅1x ≤ 32(1)x ± 234331311311312242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤52(1)x ± 234553531531112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤ 12(1)x -± 234113135135712242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x <32(1)x -± 234335357357912242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 52(1)x -±2345575795791112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x <1(1)x -±2341x x x x ±+±+±⋅⋅⋅1x < 2(1)x -±23412345x x x x ±+±+±⋅⋅⋅1x < sin x3573!5!7!x x x x -+-+⋅⋅⋅ x <∞ cos x24612!4!6!x x x -+-+⋅⋅⋅ x <∞ tan x 35791217623153152835x x x x x +++++⋅⋅⋅ x <∞x e 23411!2!3!4!x x x x +++++⋅⋅⋅ x <∞ln(1)x + 234234x x x x -+-+⋅⋅⋅11x -<≤ ln(1)x -234()234x x x x -++++⋅⋅⋅11x -≤<§55.1几个物理中的实例 (1)变速直线运动的路程大家都熟悉匀速直线运动的路程公式.若物体的速率是v ,则它在t a 到t b 一段时间间隔内走过的路程是s =v (t b -t a ),(A .45).对于变速直线运动来说,物体的速率v 是时间的函数:v =v (t ),函数的图形是一条曲线(见图A -10a ),只有在匀速直线运动的特殊情况下,它才是一条直线(参见图A -4b ).对于变速直线运动,(A .45)式已不适用.但是,可以把t =t a 到t =t b 这段时间间隔分割成许多小段,当小段足够短时,在每小段时间内的速率都可以近似地看成是不变的.这样一来,物体在每小段时间里走过的路程都可以按照匀速直线运动的公式来计算,然后把各小段时间里走过的路程都加起来,就得到t a 到t b 这段时间里走过的总路程.设时间间隔(t b -t a )被t =t 1(=t a )、t 2、t 3、…、t n 、t b 分割成n 小段,每小段时间间隔都是△t ,则在t 1、t 2、t 3、…、t n 各时刻速率分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n ).若把各小段时间的速率v 看成是不变的,则按照匀速直线运动的公式,物体在这些小段时间走过的路程分等于v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t .于是,在整个(t b -t a )这段时间里的总路程是1231()()()()()nn i i s v t t v t t v t t v t t v t t ==∆+∆+∆+⋅⋅⋅+∆=∆∑,(A .46).现在再看看上式的几何意义.在函数v =v (t )的图形中,通过t =t 1、t 2、t 3、…、t n 各点垂线的高度分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n )(见图A -10b ),所以v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t 就分别是图中那些狭长矩形的面积,而1()ni i v t t=∆∑则是所有这些矩形面积的总和,即图中画了斜线的阶梯状图形的面积.在上面的计算中,把各小段时间△t 里的速率v 看做是不变的,实际上在每小段时间里v 多少还是有些变化的,所以上面的计算并不精确.要使计算精确,就需要把小段的数目n 加大,同时所有小段的△t 缩短(见图A -10c ).△t 越短,在各小段里v 就改变得越少,把各小段里的运动看成匀速运动也就越接近实际情况.所以要严格地计算变速运动的路程s ,就应对(A .46)式取n →∞、△t →0的极限,即01lim ()ni t i n s v t t ∆→=→∞=∆∑,(A .47). 当n 越来越大,△t 越来越小的时候,图A -10中的阶梯状图形的面积就越来越接近v (t )曲线下面的面积(图A -10d).所以(A .47)式中的极限值等于(t b -t a )区间内v (t )曲线下的面积.总之,在变速直线运动中,物体在任一段时间间隔(t b -t a )里走过的路程要用(A .47)式来计算,这个极限值的几何意义相当于这区间内v (t )曲线下的面积. (2)变力的功当力与物体移动的方向一致时,在物体由位置s =s a 移到s =s b 的过程中,恒力F 对它所作的功为:A =F (s b -s a )(A .48);若力F 是随位置变化的,即F 是s 的函数:F =F (s ),则不能运用(A .48)式来计算力F 的功.此时,也需要象计算变速运动的路程那样,把(s b -s a )这段距离分割成n 个长度为△s 的小段(见图A -11):并把各小段内力F 的数值近似看成是恒定的,用恒力作功的公式计算出每小段路程△s 上的功,然后加起来取n →∞、△s →0的极限值.具体地说,设力F 在各小段路程内的数值分别为F (s 1)、F (s 2)、F (s 3)、…、F (s n ),则在各小段路程上力F 所作的功分别为F (s 1)△s 、F (s 2)△s 、F (s 3)△s 、…、F (s n )△s ,在(s b -s a )整段路程上力F 的总功A 就近似地等于1()ni i F s s =∆∑;因为实际上在每一小段路程上加F 都是变化的,所以严格地计算,还应取n →∞、△s →0的极值,即01lim ()ni t i n A F s s ∆→=→∞=∆∑,(A .49).同上例,这极限值应是(s b -s a )区间内F (s )下面的面积(见图A -12).5.2定积分以上两个例子表明,许多物理问题中需要计算象(A .47)和(A .49)式中给出的那类极限值.概括起来说,就是要解决如下的数学问题:给定一个函数f (x ),用x =x 1(=a )、x 2、x 3、…、x n 、b 把自变量x 在(b -a )区间内的数值分成n 小段,设每小段的大小为△x ,求n →∞、△x →0时1()ni i f x x =∆∑的极限;通常把这类形式的极限用符号()ba f x dx ⎰来表示,即01()lim ()nbi ax i n f x dx f x x ∆→=→∞=∆∑⎰,(A .50);()baf x dx ⎰叫做x a =到x b =区间内()f x 对x 的定积分,()f x 叫做被积函数,b 和a 分别叫做定积分的上限和下限.用定积分的符号来表示,(A .47)和(A .49)式可分别写为()b at t s v t dt =⎰,(A .51)、()bas s A F s ds =⎰,(A .52).在变速直线运动的路程公式(A .51)里,自变量是t ,被积函数是v (t ),积分的上、下限分别是t b 和t a ;在变力作功的公式(A .52)里,自变量是s ,被积函数是F (s ),积分的上、下限分别是s b 和s a .求任意函数定积分的办法有赖于下面关于定积分的基本定理:若被积函数f (x )是某个函数Ф(x )的导数,即f (x )=Ф′(x ),则在x =a 到x =b 区间内f (x )对x 的定积分等于Ф(x )在这区间内的增量,即()()()ba f x dxb a =Φ-Φ⎰,(A .53).下面来证明上述定理.在a ≤x ≤b 区间内任选一点x i ,首先考虑Ф(x )在x =x i 到x =x i +△x =x i+1区间的增量△Ф(x i )=Ф(x i+1)-Ф(x i ):()()i i x x x x ∆Φ∆Φ=⋅∆∆,当0x ∆→时,可用Ф(x )的导数()d x dx Φ'Φ=代替x∆Φ∆;但按照定理的前提,Ф′(x )=f (x ),故△Ф(x i )≈Ф′(x i )△x =f (x i )△x 式中≈表示“近似等于”,若取△x →0的极限,上式就是严格的等式.把a ≤x ≤b 区间分成n -1小段,每段长△x ;上式适用于每小段.根据积分的定义和上式,有:12112100()lim[()()()]lim[()()()]bn n ax x n n f x dx f x x f x x f x x x x x --∆→∆→→∞→∞=∆+∆+⋅⋅⋅+∆=∆Φ+∆Φ+⋅⋅⋅+∆Φ⎰2132110lim{[()()][()()][()()]}()()n n n x n x x x x x x x x -∆→→∞=Φ-Φ+Φ-Φ+⋅⋅⋅+Φ-Φ=Φ-Φ因x 1=a ,xn =b ,于是得(A .53)式,至此定理证毕.下面看看函数Ф(x )在f -x 图(见图A -13)中所表现的几何意义.如前所述,△Ф(x i )=Ф(x i+1)-Ф(x i )=f (x i )△x ,正是宽为△x 、高为()i i i f x x P =的一个矩形(即图13A -中的1i i i x x NP +)的面积.它和曲线段P i P i+1下面的梯形x i x i+1P i+1P i 的面积只是相差一小三角形P i NP i +1的面积.当△x →0时,可认为△Ф(x i )就是梯形x i x i+1P i+1P i 的面积.既然当x 由x i 变到x i+1时,Ф(x )的增量的几何意义是相应区间f -x 曲线下的面积,则Ф(x )本身的几何意义就是从原点O 到x 区间f -x 曲线下面的面积加上一个常量C =Ф(0).例如Ф(x i )的几何意义是图形Ox i P i P 0的面积加C ,Ф(x i +1)的几何意义是图形Ox i+1P i+1P 0的面积加C ,等等.这样,△Ф(x i )=Ф(x i+1)-Ф(x i )就是:(Ox i+1P i+1P 0的面积+C )-(Ox i P i P 0的面积+C )=x i x i+1P i+1P i 的面积,而Ф(b )-Ф(a )的几何意义是:(ObP b P 0的面积+C )-(OaP a P 0的面积+C )=abP b P a 的面积.它相当于定积分()ba f x dx ⎰的值.5.3不定积分及其运算在证明了上述定积分的基本定理之后,就可以着手解决积分的运算问题了.根据上述定理,只要求得函数Ф(x )的表达式,利用(A .53)式立即可以算出定积分()ba f x dx ⎰来,那么,给出了被积函数()f x 的表达式之后,怎样去求Ф(x )的表达式呢?上述定理说明,Ф′(x )=f (x ),所以这就相当于问f (x )是什么函数的导数.由此可见,积分运算是求导的逆运算.如果f (x )是Ф(x )的导数,可以称Ф(x )是f (x )的逆导数或原函数.求f (x )的定积分就可以归结为求它的逆导数或原函数.在上节里讲了一些求导数的公式和定理,常见的函数都可以按照一定的法则把它们的导数求出来.然而求逆导数的问题却不像求导数那样容易,而需要靠判断和试探.例如,知道了Ф(x )=x 3的导数Ф′(x )=3x 2,也就知道了F (x )=3x 2的逆导数是Ф(x )=x 3;这时,如果要问函数f (x )=x 2的逆导数是什么,那么就不难想到,它的逆导数应该是x 3/3;这里要指出一点,即对于一个给定的函数f (x )来说,它的逆导数并不是唯一的.Ф1(x )=x 3/3是f (x )=x 2的逆导数,Ф2(x )=x 3/3+1和Ф3(x )=x 3/3-5也都是它的逆导数,因为Ф1′(x )、Ф2′(x )、Ф3′(x )都等于x 2.一般说来,在函数f (x )的某个逆导数Ф(x )上加一任意常量C ,仍旧是f (x )的逆导数.通常把一个函数f (x )的逆导数的通式Ф(x )+C 叫做它的不定积分,并记作()f x dx ⎰,于是()()f x dx x C =Φ+⎰,(A .54).因在不定积分中包含任意常量,它代表的不是个别函数,而是一组函数.。

初中的学科竞赛知识点归纳

初中的学科竞赛知识点归纳

初中的学科竞赛知识点归纳在初中阶段,学科竞赛对于学生的学习、思维能力和解决问题的能力有着积极的促进作用。

无论是学科奥赛、数学竞赛还是英语竞赛,都需要学生熟练掌握各学科的知识点。

以下是各学科常见的竞赛知识点的归纳。

一、数学竞赛知识点归纳1. 数与式- 自然数、整数、有理数与无理数的性质- 分数的计算与比较- 除数、倍数与公倍数、公约数与最大公约数、最小公倍数的计算- 代数式的基本性质和化简2. 等式与方程- 一次方程的解法和应用- 二次根式的计算- 一元一次方程组和二元一次方程组的解法3. 几何基础- 线段、角的概念和性质- 平行线与垂直线的性质- 三角形、四边形的性质- 相似三角形的判定与性质4. 几何关系- 镜面对称、轴对称的判定和性质- 直角三角形与勾股定理的应用- 圆的周长与面积的计算5. 统计与概率- 数据的收集与整理- 平均数、中位数、众数的计算- 事件概率的计算二、物理竞赛知识点归纳1. 力学基础- 物体运动的描述与分析- 力的作用、力的合成与分解- 牛顿三定律的运用- 弹力与斜面上的物体2. 电学基础- 电路的构成与电流的定义- 并联电路与串联电路- 电阻与电流的关系- 电压的定义与计算3. 光学基础- 光的传播与反射定律- 凸透镜与凹透镜的成像原理- 光的折射与光密介质、光疏介质之间的关系 - 球面镜与反射望远镜的成像原理4. 热学基础- 温度与热能的传递- 热平衡与热传导- 热膨胀与热收缩- 热量计算和热效率计算三、化学竞赛知识点归纳1. 物质与变化- 物质的性质与分类- 常见物质的溶解与凝固- 物质的化学变化与化学反应- 典型的酸碱中和反应2. 元素与化合物- 原子结构与元素周期表- 元素间的化学键和化合物的性质- 碳及其化合物的性质和应用- 金属与非金属元素的性质与反应3. 反应反应速率- 化学方程式与反应热- 反应速率与活化能- 酸碱滴定反应的应用- 电解质的电离和电解质溶液的电解4. 化学能与电化四、生物竞赛知识点归纳1. 细胞与生物- 细胞的基本结构和功能- 镜下观察- 细胞的分裂与遗传- 调节和保持动态平衡2. 植物的生殖与发育- 植物的多样性与分类- 植物的营养与代谢- 植物的生殖和发育- 环境与植物的适应3. 动物的生殖与发育- 动物的结构与生活方式- 动物体内外的调节- 动物的生殖与发育- 进化和生物技术的应用4. 生物与环境的关系- 生物与物质循环- 生物多样性和生物保护- 生物与人类的利益和协调- 生态系统的保护和管理以上是初中各学科竞赛中常见的知识点的归纳。

物理竞赛——小量近似方法应用两则

物理竞赛——小量近似方法应用两则

小量近似方法应用两则小量近似处理在高中物理学习中经常遇到,掌握一些重要的方法,在解决问题时是非常有用的。

这里以两则应用为例,介绍常用的小量近似方法——对一个小角量θ来说,有θθ=sin ,1cos =θ;在研究一个普通量时,可以忽略小量。

一、欧拉公式十八世纪著名数学家欧拉,曾经确定了摩擦力跟绳索绕在桩子上的圈数之间的关系:μθe F F 12=,其中F 1代表我们所用的力,F 2代表我们所要对抗的力,e 代表数2.718…(自然对数的底),μ代表绳和桩子之间的摩擦系数,θ代表绕转角,也就是绳索绕成的弧的长度跟弧的半径的比。

若取2.0=μ,πθ12=,则2000188112≈=F F 。

所以,就是一个小孩子,只要能把绳索在一个不动的辘轳上绕三四圈,然后抓住绳头,他的力量就能平衡一个极大的重物。

下面就欧拉公式作一证明:取一小段弧l ∆为研究对象,受力分析如图所示,F 和F F ∆+为小弧两端所受张力,N F 为柱体对绳的压力,f 为静摩擦力。

根据平衡方程,得:()2sin2sinθθ∆∆++∆=F F F F N (1) ()f F F F +∆=∆∆+2cos 2cos θθ (2)临界情况N F f μ= (3)θ∆很小,有22sin θθ∆=∆,12cos =∆θ所以 θ∆=F F Nf F =∆即 θμ∆=∆F F 或θμ∆=∆FF两边求和θμ∆∑=∆∑FFθμ∑∆=∑∆F lnμθ=-12ln ln F F或 μθ=12lnF F 故 μθeF F 12=即两张力之比按包角呈指数变化。

儒勒·凡尔纳在《马蒂斯·桑多尔夫》这部小说里,叙述竞技大力士马蒂夫用手拉住一条正在下水的船“特拉波科罗”号这件事,使读者印象最深:突然出现了一个人,他抓住了挂在“特拉波科罗”号前部的缆索,用力地拉,几乎把身子弯得接近了地面。

不到一分钟,他已经把缆索绕在钉在地里的铁桩上。

他冒着被摔死的危险,用超人的气力,用手拉住缆索大约有十秒钟。

物理竞赛数学知识——微积分

物理竞赛数学知识——微积分
则 ,令 ,得
利润为 ,比遵守协议多 ,可见违约金至少为
[变化]成本为c,生产能力足够,价格由商家决定,而顾客根据价格是否购买。顾客购买量商家1产品的量 , ,购买商家2产品的量 。商家的利润定义为 。两商家都足理性,追求利益最大化。格有一个心理极限,只要价格低于这个极限就会购买,如果有两个商品价格都小于心理极限,则会随机购买一个。再假设所有人的心理价格是从0到M均匀分布的
例题精讲
【例2】判定下列函数在其定义域内是否有极值,求出极值并说明是否极大值、极小值。
; ; ; ,
【答案】 1 极小:x=0,y=0
2 极小: ,
3极小: ,极大:
4极值: ,不是极大也不是极小
4极大:
【例3】求下列函数在各自区间上的最大值和最小值(自学)
; ;
【答案】 1 极值点:极小: ,不在区间内。边界点 ;由于函数连续,有下界无上界,所以有最小值点,就在是边界取到:
B

不招

(8,8)
(10,1)
不招
(10,1)
(2,2)
[解析]
/*段子纳什均衡年轻的男性数学、物理工作者要做点成就出来,动力往往跟女人有关。纳什这家伙也不例外。纳什很有才,二十多岁就当上了教授,但是还是单身。一天他和一群狐朋狗友一起去酒吧喝酒,看见了一位漂亮mm,于是大家都想搭讪。别人都在想怎样搭讪才能成功,此时纳什的天赋表现出来了:他想,如果大家一拥而上一起搭讪,mm必然愤怒,大家都失败;如果让一个人搭讪,其他人帮腔,成功概率就会大得多,然后每次去酒吧大家轮流来,每人都有好处。由此出发他提出了著名的纳什均衡理论,大体意思是说每人都以自己利益最大化为标准,最后团体必然会形成一个稳定的策略。然后呢…然后纳什就疯了…直到几十年后他被授予了诺贝尔经济学奖才好一点。具体的情况推荐大家看《美丽心灵》,不看人生不完整*/
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理竞赛中的数学知识一、重要函数 1. 指数函数2. 三角函数1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyx3. 反三角函数反正弦Arcsin x ,反余弦Arccos x ,反正切Arctan x ,反余切Arccot x 这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角。

二、数列、极限 1. 数列:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项。

数列的一般形式可以写成 a 1,a 2,a 3,…,a n ,a (n+1),… 简记为{an },通项公式:数列的第N 项a n 与项的序数n 之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。

2. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

通项公式a n =a 1+(n-1)d ,前n 项和11(1)22n n a a n n S n na d +-==+ 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

这个常数叫做等比数列的公比,公比通常用字母q 表示。

通项公式a n =a 1q (n-1),前n 项和11(1)(1)11nnn a a q a q S q q q--==≠--所有项和1(1)1n a S q q=<-3. 求和符号4. 数列的极限:设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作A a n n =∞→lim否则称数列{}n a 发散或n n a ∞→lim 不存在.三、函数的极限:在自变量x 的某变化过程中,对应的函数值f (x )无限接近于常数A ,则称常数A 是函数f (x )当自变量x 在该变化过程中的极限。

设f (x )在x>a (a >0)有定义,对任意ε>0,总存在X >0,当x>X 时,恒有| f (x )-A |<ε,则称常数A 是函数f (x )当x →+∞时的极限。

记为+∞→x lim f (x )=A ,或f (x ) → A (x →+∞)。

运算法则lim x x →[f (x )± g (x )]=0lim x x →f (x ) ±0lim x x →g (x )lim x x →[f (x ) ⋅ g (x )]=0lim x x →f (x ) ⋅0lim x x →g (x ))(lim )(lim )()(lim 00x g x f x g x f x x xx x x →→→=,其中0lim x x →g (x )≠ 0.四、无穷小量与无穷大量1.若0)(lim 0=→x f x x ,则称)(x f 是0x x →时的无穷小量。

(若,)(lim 0∞=→x g x x 则称)(x f 是0x x →时的无穷大量)。

或:若0lim x x →α(x )=0 ,则称α(x )当x → x 0时为无穷小。

在自变量某变化过程中,|f (x )|无限增大,则称f (x )在自变量该变化过程中为无穷大。

记为lim ().f x =∞2.无穷小量与无穷大量的关系无穷小量的倒数是无穷大量;无穷大量的倒数是无穷小量。

3.无穷小量的运算性质(i )有限个无穷小量的代数和仍为无穷小量。

(ii )无穷小量乘有界变量仍为无穷小量。

(iii )有限个无穷小量的乘积仍为无穷小量。

4.无穷小的比较定义:设0lim →x α (x )=0,0lim →x β (x )=0,1)若)()(lim0x x x αβ→=0,则称当x → x 0时β (x )是比α (x )高阶无穷小。

2)若)()(lim0x x x αβ→=∞,则称当x → x 0时β (x )是比α (x )低阶无穷小。

3)若)()(lim0x x x αβ→=C (C ≠0),则称当x → x 0时β (x )与α (x )是同阶无穷小,4)若)()(lim0x x x αβ→=1,则称当x → x 0时β (x )与α (x )是等价无穷小。

5.常用的等价无穷小为:当x →0时: sin x ~x ,tan x ~x ,arcsin x ~x ,arctan x ~x ,1-cos x ~221x , 11-+n x ~x n 1。

等价无穷小可代换五、二项式定理1. 阶乘: n!=1×2×3×……×n2. 组合数:从m 个不同元素中取出n (n≤m )个元素的所有组合的个数,叫做从m 个不同元素中取出n 个元素的组合数3. 二项式定理即六、常用三角函数公式sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα sin (π/2+α)=cosα cos (π/2+α)=—sinα tan (π/2+α)=-cotαsin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 22tan tan 21tan AA A=- 1cos sin22A A -= 1cos cos 22A A += 1cos sin tan 21cos 1cos A A A A A-==++ 和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦ ()()1sin cos sin sin 2a b a b a b =++-⎡⎤⎣⎦ ()()1cos sin sin sin 2a b a b a b =+--⎡⎤⎣⎦万能公式22tan2sin 1tan 2aa a=+ 221tan 2cos 1tan 2a a a -=+ 22tan2tan 1tan 2aa a=-典型物理问题数列极限等应用1. 蚂蚁离开巢穴沿直线爬行,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心距离L 1=1m 的A 点处时,速度是V 1=2cm/s 。

试问蚂蚁继续由A 点到距巢中心L 2=2m 的B 点需要多长时间? 2.m 1m 2m 3a 1a 2a 3常见近似处理1. 人在岸上以v 0速度匀速运动,如图位置时,船的速度是多少?2. 如图所示,顶杆AB 可在竖直滑槽K 内滑动,其下端由凹轮M 推动,凸轮绕O 轴以匀角速度ω转动.在图示的瞬时,OA=r ,凸轮轮缘与A 接触,法线n 与OA 之间的夹角为α,试求此瞬时顶杆AB 的速度.(第十一届全国中学生物理竞赛预赛试题)3.三个芭蕾舞演员同时从边长为L 的正三角形顶点A,B,C 出发,速率都是v ,运动方向始终保持着A 朝着B,B 朝着C,C 朝着A 。

经过多少时间三人相遇?每人经过多少路程?4. 如图所示,半径为R 2的匀质圆柱体置于水平放置的、半径为R 1的圆柱上,母线互相垂直,设两圆柱间动摩擦因数足够大,不会发生相对滑动,试问稳定平衡时,R 1与R 2应满足什么条件?5.一只狐狸以不变的速度1υ沿着直线AB 逃跑,一只猎犬以不变的速率2υ追击,其运动方向始终对准狐狸.某时刻狐狸在F 处,猎犬在D 处,FD ⊥AB ,且FD=L ,如图14—1所示,求猎犬的加速度的大小.解析:猎犬的运动方向始终对准狐狸且速度大小不变,故猎犬做匀速率曲线运动,根据向心加速度r ra ,22υ=为猎犬所在处的曲率半径,因为r 不断变化,故猎犬的加速度的大小、方向都在不断变化,题目要求猎犬在D 处的加速度大小,由于2υ大小不变,如果求出D 点的曲率半径,此时猎犬的加速度大小也就求得了. 猎犬做匀速率曲线运动,其加速度的大小和方向都在不断改变.在所求时刻开始的一段很短的时间t ∆内,猎犬运动的轨迹可近似看做是一段圆弧,设其半径为R ,则加速度 =a R22υ其方向与速度方向垂直,如图14—1—甲所示.在t ∆时间内,设狐狸与猎犬分别 到达D F ''与,猎犬的速度方向转过的角度为=α2υt ∆/R而狐狸跑过的距离是:1υt ∆≈L α 因而2υt ∆/R ≈1υt ∆/L ,R=L 2υ/1υ所以猎犬的加速度大小为=a R22υ=1υ2υ/L6.如图所示,半径为R ,质量为m 的圆形绳圈,以角速率ω绕中心轴O 在光滑水平面上匀速转动时,绳中的张力为多大?解析 取绳上一小段来研究,当此段弧长对应的圆心角θ∆很小时,有近似关系式.sin θθ∆≈∆ 若取绳圈上很短的一小段绳AB=L ∆为研究对象,设这段绳所对应的圆心角为θ∆,这段绳两端所受的张力分别为A T 和B T (方向见图14—3—甲),因为绳圈匀速转动,无切向加速度,所以A T 和B T 的大小相等,均等于T . A T 和B T 在半径方向上的合力提供这一段绳做匀速圆周运动的向心力,设这段绳子的质量为m ∆,根据牛顿第二定律有:R m T 22sin 2ωθ∆=∆;因为L ∆段很短,它所对应的圆心角θ∆很小所以22sin θθ∆=∆将此近似关系和πθπθ22∆=⋅∆⋅=∆m R m R m 代入上式得绳中的张力为πω22Rm T =7. 在某铅垂面上有一固定的光滑直角三角形细管轨道ABC ,光滑小球从顶点A 处沿斜边轨道自静止出发自由地滑到端点C 处所需时间,恰好等于小球从顶点A 处自静止出发自由地经两直角边轨道滑到端点C 处所需的时间.这里假设铅垂轨道AB 与水平轨道BC 的交接处B 有极小的圆弧,可确保小球无碰撞的拐弯,且拐弯时间可忽略不计. 在此直角三角形范围内可构建一系列如图14—4中虚线所示的光滑轨道,每一轨道是由若干铅垂线轨道与水平轨道交接而成,交接处都有极小圆弧(作用同上),轨道均从A 点出发到C 点终止,且不越出该直角三角形的边界,试求小球在各条轨道中,由静止出发自由地从A 点滑行到C 点所经时间的上限与下限之比值. 解析 直角三角形AB 、BC 、CA 三边的长分别记为 1l 、2l 、3l ,如图14—4—甲所示,小球从A 到B 的时间 记为1T ,再从B 到C 的时间为2T ,而从A 直接沿斜边到C所经历的时间记为3T ,由题意知321T T T =+,可得1l :2l :3l =3:4:5, 由此能得1T 与2T 的关系.因为21121121T gT l gT l ==所以21212T T l l = 因为1l :2l =3:4,所以 1232T T =小球在图14—4—乙中每一虚线所示的轨道中,经各垂直线段所需时间之和为11T t =,经各水平段所需时间之和记为2t ,则从A 到C 所经时间总和为21t T t +=,最短的2t 对应t 的下限min t ,最长的2t 对应t 的上限.m ax t小球在各水平段内的运动分别为匀速运动,同一水平段路程放在低处运动速度大,所需时间短,因此,所有水平段均处在最低位置(即与BC 重合)时2t 最短,其值即为2T ,故min t =.35121T T T =+2t 的上限显然对应各水平段处在各自可达到的最高位置,实现它的方案是垂直段每下降小量1l ∆,便接一段水平小量2l ∆,这两个小量之间恒有αcot 12l l ∆=∆,角α即为∠ACB ,水平段到达斜边边界后,再下降一小量并接一相应的水平量,如此继续下去,构成如图所示的微齿形轨道,由于1l ∆、2l ∆均为小量,小球在其中的运动可处理为匀速率运动,分别所经的时间小量)(1i t ∆与)(2i t ∆之间有如下关联:αcot )()(1212=∆∆=∆∆l l i t i t于是作为)(2i t ∆之和的2t 上限与作为)(1i t ∆之和的1T 之比也为.cot α故2t 的上限必为1T αcot ,即得:.37cot 111max T T T t =+=α这样:max t min t =7:5求导与微分一、导数的概念1.导数定义设y=f(x)在x 0的某邻域内有定义,在该邻域内给自变量一个改变量x ∆,函数值有一相应改变量)()(00x f x x f y -∆+=∆,若极限x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(limlim0000 存在,则称此极限值为函数y=f(x)在x 0点的导数,此时称y=f(x)在x 0点可导,用⎥⎦⎤⎢⎣⎡===''000)(,,)(x x dx x df x x dyx dyx x y x f 或或或表示.若)(x f y =在集合D 内处处可导(这时称f(x)在D 内可导),则对任意D x ∈0,相应的导数)(0x f '将随0x 的变化而变化,因此它是x 的函数,称其为y=f(x)的导函数,记作⎪⎭⎫⎝⎛''dx x df dxdy y x f )(,,)(或或或. 2.导数的几何意义若函数f(x)在点x 0处可导,则)(0x f '就是曲线y=f(x)在点(x 0,y 0)处切线的斜率,此时切线方程为))((000x x x f y y -'=-.当)(0x f '=0,曲线y=f(x)在点(x 0,y 0)处的切线平行于x 轴,切线方程为)(00x f y y ==. 若f(x)在点x 0处连续,又当0x x →时∞→')(x f ,此时曲线y=f(x)在点(x 0,y 0)处的切线垂直于x 轴,切线方程为x=x 0.1.几个基本初等函数的导数 ⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=-2.导数的四则运算 (1))(])([x u c x u c '⋅='⋅; (2))()(])()([x v x u x v x u '+'='±;(3))()()()()]()([x v x u x v x u x v x u '⋅+'⋅'=⋅;(4))()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡二、微分1.微分的概念设)(x f y =在0x 的某邻域内有定义,若在其中给0x 一改变量x ∆,相应的函数值的改变量y ∆可以表示为).0()(0)()(00→∆∆+∆=-∆+=∆x x x A x f x x f y其中A 与x ∆无关,则称)(x f 在0x 点可微,且称A x ∆为)(x f 在0x 点的微分,记为.0x A x x dfx x dy∆====x A ∆是函数改变量y ∆的线性主部.)(x f y =在0x 可微的充要条件是)(x f 在0x 可导,且)(00x x f x x dy ∆'==.当x x f =)(时,可得x dx ∆=,因此.)(,)(00dx x f dy dx x f x x dy'='==由此可以看出,微分的计算完全可以借助导数的计算来完成.(2)微分的几何意义 当x 由0x 变到x x ∆+0时,函数纵坐标的改变量为y ∆,此时过0x 点的切线的纵坐标的改变量为dy.如图2-1所示.当dy <y ∆时,切线在曲线下方,曲线为凹弧. 当dy >y ∆时,切线在曲线上方,曲线为凸弧.2.微分运算法则 设)(),(x v x u 可微,则)()()()()()()().()()()()]()([).()()]()([.0)(),())((2x v x dv x u x du x v x v x u dx du x v x dv x u x v x u d x du x du x v x u d c d x cdu x cu d -=+=⋅±=±==三、不定积分1.不定积分概念【定义】(原函数) 若对区间I 上的每一点x ,都有,)()()()(dx x f x dF x f x F =='或则称F (x )是函数f(x)在该区间上的一个原函数.原函数的特性 若函数f(x)有一个原函数F(x ),则它就有无穷多个原函数,且这无穷多个原函数可表示为F (x )+C 的形式,其中C 是任意常数.【定义】(不定积分) 函数f(x)的原函数的全体称为f(x)的不定积分,记作⎰dx x f )(.若F(x)是f(x)的一个原函数,则⎰+=)()()(是任意常数C Cx F dx x f2.不定积分的性质(1)积分运算与微分运算互为逆运算.()()⎰⎰⎰⎰+=+='==.)()()()(,)()()()(C x F x dF C x F dx x F dx x f dx x f d x f dx x f dxd或或(2)⎰⎰≠=)0()()(k dx x f k dx x kf 常数(3)⎰⎰⎰±=±.)()()]()([dx x g dx x f dx x g x f3.基本积分公式kdx kx c =+⎰ 11x x dx c μμμ+=++⎰cos sin xdx x c =+⎰ sin cos xdx x c =-+⎰四、定积分【定义】(定积分) 函数)(x f 在区间[a,b ]上的定积分定义为∑⎰=→∆∆==ni iix baxf dx x f I 1)(lim)(ξ,【定理】(牛顿-莱布尼茨公式) 若函数)(x f 在区间[a,b ]上连续,)(x F 是)(x f 在[a,b ]上的一个原函数,则)()()()(a F b F abx F dx x f ba-==⎰.上述公式也称为微积分基本定理,是计算定积分的基本公式.常见应用1. 一石砌堤,堤身在基石上,高为h ,宽为b ,如图所示。

相关文档
最新文档