《分式方程》教学案例
八年级数学上册《分式方程及其解法》优秀教学案例

1.培养学生积极、主动、合作、探究的学习态度,增强其对数学学科的兴趣和热情。
2.引导学生认识到数学在现实生活中的广泛应用,提高其数学学习的责任感。
3.培养学生面对困难和挑战时,保持坚持不懈、勇于克服的精神风貌。
4.通过分式方程的教学,引导学生体会数学的简洁美、逻辑美,培养其审美情趣。
3.通过示例演示,让学生跟随教师一起解答分式方程,并在解答过程中强调注意事项,如避免分母为零等。
4.分析解答过程中可能出现的错误,提醒学生注意避免。
(三)学生小组讨论
1.教师给出几道具有代表性的分式方程题目,要求学生以小组为单位进行讨论。
2.学生在讨论过程中,可以互相提问、解答,充分发挥团队协作精神。
二、教学目标
(一)知识与技能
1.让学生理解分式方程的概念,掌握分式方程的基本性质及其解法。
2.培养学生运用分式方程解决实际问题的能力,提高其数学应用意识。
3.使学生掌握分式方程与整式方程的联系与区别,增强知识体系的完整性。
4.培养学生运用数学符号进行逻辑推理和论证的能力,提高其数学表达水平。
(二)过程与方法
(三)小组合作
小组合作学习有助于培养学生的团队协作能力和交流沟通能力。在本章节的教学中,我将组织学生进行小组合作,共同探讨分式方程的解法。具体操作如下:
1.将学生分成若干小组,每个小组成员分工明确,共同完成任务。
2.设计具有梯度的问题,使学生在合作中相互学习、共同进步。
3.引导学生进行组内讨论,鼓励表达不同观点,提高学生的思辨能力。
2.通过提问方式引导学生回顾整式方程的相关知识,为新课的学习做好铺垫。
(二)讲授新知
1.教师介绍分式方程的概念,强调分母中含有未知数的方程为分式方程,并举例说明。
人教版八年级上册分式方程教案

精锐教育学科教师辅导教案学员编号: 年 级:八年级 课 时 数:3 学员姓名: 辅导科目:数学 学科教师: 邱惠芳 课程主题:分式方程授课时间:学习目标1 .理解分式方程的定义2.掌握分式方程的解法 3.学会解分式方程应用题教学内容1.方程32x 31-x 1+=的解是 . 2.解分式方程:3x 911x 3x 32-=-+.3.解分式方程:32x ++1x =242x x +.联系之前学的整式方程一元一次方程,如果未知数出现在分母,要怎么解方程呢?【知识梳理1】1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程. 【例题精讲】题型一:分式方程的定义例1.下列方程是关于x的分式方程的是()A.+x+1=0B.=x-2C.D.3(x-2)=x-1例2.下列各方程中是分式方程的是(其中a、b、c均为常数)()A.B.C.D.题型二:分式方程的解例3.若关于x的方程无解,则m的值为()A.B.-1C.或-1D.无法确定例4.已知关于x的方程+=1的解为x=4,那么字母a的值是.例5.若关于x的分式方程=a无解,则a的值为.【变式练习】1.下列方程中,是分式方程的个数是()①,②,③,④,⑤.A.1个B.2个C.3个D.4个2.阅读材料题对于题目“若方程的解是正数,求a的取值范围.”有同学作了如下解答:【解析】去分母,得 2x+a=-x+2化简,得3x=2-a所以欲使方程的解为正数,必须,得a<2所以当a<2时,方程的解是正数.上述解法是否有误?若有错误,请指出错误原因,并写出正确解法;若无错误,请说明每一步变形的依据.【知识梳理2】解分式方程1.解分式方程的一般步骤2.解分式方程的一般步骤【温馨提示】1.用分式方程中各项的最简公分母乘方程的两边,从而约去分母.但要注意用最简公分母乘方程两边各项时,切勿漏项.2.解分式方程可能产生使分式方程无解的情况,那么检验就是解分式方程的必要步骤.3.分式方程的解法:去分母法,换元法.【例题精讲】例1.解分式方程(1)(2)例2.用换元法解方程,可设y=,则原方程化为关于y的整式方程是.例3.用换元法解分式方程时,如果设,那么原方程可化为()A.y2+2y-3=0B.y2-2y-3=0C.D.例4.方程-3有增根,则增根x= .【变式练习】1.解分式方程(1)(2)111 32x x+--=-2.若方程,设,则原方程可化为整式方程为.3.如果方程产生增根,那么m的值为()A.3B.0C.-3D.±1【知识梳理3】解分式方程应用题一.熟记一些常用的数量关系:1.工程问题:工作量=工作效率×工作时间2.行程问题:路程=速度×时间3.销售问题:售价=进价+利润4.数字问题:二.列分式方程解应用题的一般步骤是:找等量关系-设-列-解-检验-答。
最新分式方程教案(优秀3篇)

最新分式方程教案(优秀3篇)分式方程教案篇一教师准备多媒体课件1.谈话导入。
我们学过了关于方程的哪些知识?(结合学生的回答板书)预设生1:方程的意义。
生2:方程与等式的关系。
生3:解方程的方法。
生4:用方程知识解决实际问题。
……2.揭示课题。
同学们说得很全面,这节课我们就来系统地复习有关方程的知识。
(板书课题:方程) 1.方程。
(1)什么是方程?它与算术式有什么不同?明确:①含有未知数的等式叫作方程。
②算术式是一个式子,由运算符号和已知数组成。
方程是一个等式,在方程里的未知数可以参与运算,并且只有当未知数为特定的数值时,方程才成立。
(2)什么是方程的解?使方程左右两边相等的未知数的值,叫作方程的解。
(3)什么是解方程?求方程的解的过程叫作解方程。
(4)解方程的依据是什么?①等式的性质。
②加减法和乘除法各部分之间的互逆关系。
(5)课件出示教材80页“回顾与交流”3题。
①组织学生分组讨论解方程的步骤和方法,以及哪些地方需要注意。
②指名到黑板前进行板演。
③全班交流并说一说自己是怎么解的。
2.列方程解决实际问题。
(1)列方程解应用题的步骤。
学生小组交流并集体汇报,然后教师明确:①弄清题意,确定未知数并用x表示;②找出题中数量间的相等关系;③列方程,解方程;④检验并写出答语。
(2)列方程解应用题的关键及找等量关系的方法。
①列方程解应用题的关键是什么?列方程解应用题的关键是找出题中的等量关系,根据等量关系列方程解答。
②你知道哪些找等量关系的方法?预设生1:根据关键性词语找等量关系。
生2:根据常见的四则混合运算的意义及各部分之间的关系找等量关系。
生3:根据常见的数量关系找等量关系。
生4:根据计算公式找等量关系。
(3)课件出示教材80页“回顾与交流”4题。
教师引导学生先找出各题的等量关系,再列方程自主解决问题。
分式方程教案篇二教科书第12~一三页,“回顾与整理”、“练习与应用”第1~4题。
1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。
北师大版八年级数学下册54.《分式方程》优秀教学案例

二、教学目标
(一)知识与技能
2.设计具有挑战性、开放性的数学问题,引导学生进行小组讨论,培养学生的探究精神和创新能力。
3.教师应关注小组合作的过程,及时给予指导和评价,激发学生的学习兴趣,提高学生的合作效果。
4.鼓励学生互相帮助、互相学习,培养学生的团队精神,提高学生的人际沟通能力。
(四)总结归纳
1.教师应引导学生进行自我反思,总结分式方程的学习过程和方法,提高学生的自我认知能力。
2.设计具有启发性的问题,引导学生自主发现分式方程的基本性质和解法,提高学生的数学思维能力。
3.教师应关注学生的个体差异,给予每个学生充分的关注和指导,使他们在原有基础上得到提高和发展。
4.鼓励学生提出问题,培养学生的质疑精神,引导学生学会独立思考和解决问题。
(三)小组合作
1.教师应组织学生进行小组合作学习,让学生在讨论、交流中共同解决问题,提高学生的合作能力。
2.设计具有启发性的问题,引导学生自主发现分式方程的基本性质和解法,提高学生的数学思维能力。
3.教师应关注学生的个体差异,给予每个学生充分的关注和指导,使他们在原有基础上得到提高和发展。
4.鼓励学生提出问题,培养学生的质疑精神,引导学生学会独立思考和解决问题。
(三)学生小组讨论
1.教师应组织学生进行小组合作学习,让学生在讨论、交流中共同解决问题,提高学生的合作能力。
2.设计具有挑战性的数学问题,让学生在解决问题的过程中自然地引入分式方程,感受分式方程的意义。
分式的教案(优秀5篇)

分式的教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!分式的教案(优秀5篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。
人教版八年级数学上册分式方程优秀教学案例

在教学过程中,教师应注重启发式教学,引导学生从具体的情境中发现问题、提出问题,通过自主探究、合作交流,总结出分式方程的解法,并能够灵活运用到实际问题中。同时,教师还需关注学生的个体差异,给予不同程度的学生有针对性的指导,使他们在课堂上都能得到有效的提升。
在情感态度与价值观方面,具体目标如下:
1.学生能够积极参与课堂活动,对分式方程的学习保持浓厚的兴趣。
2.学生在解决实际问题的过程中,能够体验到数学的乐趣,增强自信心。
3.学生能够认识到数学在生活中的应用,培养社会责任感和实践能课通过情境创设的方式,激发学生的学习兴趣,使他们能够主动参与到分式方程的学习中来。教师可以利用多媒体展示一些与分式方程相关的实际问题,如商业问题、环保问题等,让学生在具体的情境中感受到数学与生活的紧密联系。
在问题导向的过程中,教师应注重问题的设计,使其具有启发性和挑战性,能够激发学生的思考和探究欲望。同时,教师还应关注学生的个体差异,给予不同程度的学生有针对性的指导,使他们在课堂上都能得到有效的提升。
(三)小组合作
小组合作是一种重要的教学策略,能够培养学生的团队协作能力和沟通能力。在本节课中,教师可以将学生分成若干小组,让他们在小组内进行讨论和合作,共同解决问题。
在反思与评价的过程中,教师应注重引导学生进行自我评价和同伴评价,鼓励他们积极面对自己的不足,找出问题的原因,制定改进的措施。同时,教师还应关注学生的个体差异,给予不同程度的学生有针对性的指导和建议,帮助他们提高学习效果。
四、教学内容与过程
北师大版数学八年级下册5.4.1《分式方程的概念及分式方程》优秀教学案例
1. 教师引导学生对自己在解决问题过程中的表现进行反思,帮助他们发现自己的优点和不足。
2. 教师设计评价量表,让学生对自己的学习过程进行评价,培养他们的自我评价能力。
3. 教师组织学生进行互评,让他们学会倾听他人的意见,提高他们的沟通能力。
4. 教师对学生的学习成果进行总结性评价,注重激励和表扬,提高他们的学习积极性。
(二)过程与方法
1. 培养学生从实际情境中发现问题、提出问题、解决问题的能力,发展他们的问题意识。
2. 引导学生通过小组合作、讨论的方式,共同探究分式方程的解法,培养他们的团队协作能力。
3. 利用多媒体教学手段,形象地展示分式方程的解法,帮助学生理解和记忆,提高他们的信息素养。
4. 教师引导学生在解决分式方程的过程中,总结解题规律,提高他们解决类似问题的方法。
北师大版数学八年级下册5.4.1《分式方程的概念及分式方程》优秀教学案例
一、案例背景
北师大版数学八年级下册5.4.1《分式方程的概念及分式方程》这一节的内容,是学生在学习了分式和方程的基础上,进一步深化对数学知识的理解和应用。对于八年级的学生来说,他们已经掌握了分式的基本知识,但对分式方程的理解和应用还有一定的难度。因此,在这一节课中,我以“超市促销”为情境,让学生在解决实际问题的过程中,自然地接触到分式方程,并理解和掌握分式方程的概念和解决方法。
三、教学策略
(一)情景创设
1. 教师以“超市促销”为情境,让学生身临其境地感受分式方程的实际应用,激发他们的学习兴趣。
2. 通过多媒体展示超市促销的场景,让学生直观地了解促销活动的规则,为提出分式方程作铺垫。
3. 设计具有挑战性和启发性的问题,引导学生从情境中抽象出分式方程,自然地引入新课。
分式方程教学设计
分式方程教学设计第1篇:分式方程教学设计分式方程(1)一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:检验分式方程解的原因3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要讨论的分式方程.(二)新课板书课题:板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.先由同学讨论如何解这个方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.例2.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为时。
分式方程的教学设计一等奖3篇
1、分式方程的教学设计一等奖一、教学目标1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。
2.通过本节课的教学,向学生渗透“转化”的数学思想方法;3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点。
二、重点·难点·疑点及解决办法1.教学重点:的解法.2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0。
三、教学步骤(一)教学过程1.复习提问(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?(3)解方程,并由此方程说明解方程过程当中产生增根的原因。
通过(1)、(2)、(3)的准备,可直接点出本节的内容:的解法相同。
在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的`解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。
在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。
2.例题讲解例1 解方程。
分析对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程当中,发现问题并及时纠正。
解:两边都乘以,得去括号,得整理,得解这个方程,得检验:把代入,所以是原方程的根。
分式方程教案范文
分式方程教案范文教案:分式方程目标:1.理解分式方程的概念与性质;2.能够解决一元分式方程;3.能够应用分式方程解决实际问题。
知识点:1.分式的概念与性质2.一元分式方程的解法3.实际问题的分式方程表示与解决教学步骤:一、引入(5分钟)1.老师出示若干个分式,让学生讨论分式的概念和性质。
2.让学生回顾一元二次方程的概念和性质,并与分式进行对比。
二、整体概念讲解(10分钟)1.讲解分式方程的概念和性质:分式方程是一种含有分式的方程,其中出现了未知数,并且未知数出现在分母或者分子中。
2.引导学生思考分式方程的解法与解的形式。
三、解决一元分式方程(25分钟)1.老师出示一些简单的一元分式方程,让学生尝试解决。
2.讲解一元分式方程的一般解法:消去分母,整理方程,求解方程。
四、应用实例(25分钟)1.老师提供一些实际问题,让学生将其转化成分式方程进行求解。
2.鼓励学生尝试自己解决实际问题,并在课堂上进行讨论和分享。
五、巩固练习(15分钟)1.提供一些练习题,让学生巩固所学知识。
2.组织学生进行小组竞赛,以增加学习兴趣。
六、总结(10分钟)1.学生小结分式方程的解法和应用技巧。
2.学生讲解自己解决实际问题的思路和方法。
扩展拓展:1.引导学生思考其他类型的分式方程,如含有多个未知数的分式方程。
2.鼓励学生研究分式方程的性质和特点,进一步提升解决问题的能力。
教学反思:本节课主要讲解了分式方程的概念与性质,以及一元分式方程的解法和应用实例。
通过引入实际问题,激发了学生对分式方程的兴趣和思考。
同时,通过小组竞赛和练习题的形式,巩固了学生的知识。
然而,教学中过于注重理论讲解,与学生的实际水平和兴趣有所脱节,需要进一步改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-----《分式方程》教学案例
赵影
背景分析:
学校正在推行五环节教学模式,本节课的程序性较强,因此采用了五环节的教学模式设计了这节课。
本节课是冀教版八年级上册12.4《分式方程》的内容。
本节教材是在学生学习了分式的基本性质和分式约分、通分,以及分式的乘除运算基础上进行的。
分式方程是方程模型的一种,是刻画现实世界的有效模型,在数与代数中占有重要地位。
学生在已经学习了一元一次方程、二元一次方程组的基础上,明确了解整式方程的方法步骤后来学习分式方程。
八年级学生已经具有了一定的类比、分析、归纳能力,但是思维的严谨性仍相对薄弱,虽然他们喜爱学习活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,但仍需老师引导其由感性认识到理性认识。
同时学生已经学习了分式的意义,这对理解分式方程可能无解这一教学难点有很大帮助。
教学目标
1、理解分式方程的意义. 了解解分式方程的基本思路和解法. 理解解分式方程时可能无解的原因,并掌握解分式方程的验根的方法。
2、经历“实际问题---分式方程---整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识。
3、在小组学习中,培养学生乐于探究、合作学习的习惯,体会数学的应用价值。
教学重、难点
重点:分式方程的概念和解分式方程的基本步骤;
难点:理解解分式方程时可能无解的原因。
教学手段
多媒体。