煤矿采区通风系统设计
矿井通风设计(毕业设计用)

毕业设计(论文)题目:矿井通风设计专业班级:采矿工程设计人:杨进指导老师:王君利2016年11月10日毕业设计(论文)评阅人评语评阅人:(签字)评阅日期:年月日毕业设计(论文)答辩评语第号日期:年月日提交设计(论文)学生:杨进提交设计(论文)答辩材料:1)指导教师评语共页毕业设计(论文)答辩评语:答辩成绩:综合成绩:毕业设计(论文)答辩组长:(签字)组员:(签字)目录一、矿井通风的内容与要求--------------------------6 (一)矿井基建时期的通风--------------------------6 (二)矿井生产时期的通风--------------------------6 (三)矿井通风设计的内容--------------------------7 (四)矿井通风设计的要求--------------------------8 二、优选矿井通风系统----------------------------8 (一)矿井通风系统的要求--------------------------8(二)确定矿井通风系统---------------------------9 三、矿井风量计算------------------------------9 (一)矿井风量计算原则---------------------------9 (二)矿井需风量计算----------------------------91、采煤工作面需风量计算--------------------------92、掘进工作面需风量计算--------------------------123、硐室需风量计算-----------------------------144、其他用风巷道的需风量计算------------------------15四、矿井通风总阻力计算--------------------------16 (一)矿井通风总阻力计算原则-----------------------16 (二)矿井通风总阻力计算-------------------------16 五、矿井通风设备的选择--------------------------17 (一)主要通风机有选择--------------------------18六、概算矿井通风费用---------------------------22七、南留庄矿通风概述---------------------------24八、结束语--------------------------------25九、参考文献-------------------------------26前言矿井通风是关系到煤矿生产安全的重要环节。
第七章 采区通风

第七章采区通风一般来说,每个矿井都有几个采区同时生产,每个采区内布置有回采工作面、备用工作面、掘进工作面和硐室(采区变电所和绞车房)等用风地点,是矿井通风的主要对象。
做好采区通风是保证矿井安全生产的基础。
为此,本章将对采区通风系统、采区供风量、通风设施和减少漏风等基本内容的设计和日常管理工作进行讨论。
第一节采区通风系统一、对采区通风系统的基本要求采区通风系统是矿井通风系统的主要组成部分,它是由采区内风流通过的巷道系统、通风构筑物和通风设备等所组成。
采区通风系统主要取决于采煤系统(采煤方法),但又能在一定程度上影响着采区的巷道布置系统。
完备的采区通风系统应能有效地控制采区内的风流方向、风量和风质;保证实现漏风少、风流的稳定性高,通风系统不易遭受破坏;合理的通风系统有利于合理排放瓦斯,防止煤炭自然发火,创造良好的矿井气候条件和有利于控制和处理事故,并能使通风系统工作符合安全、经济和技术合理的原则。
采区通风系统基本要求《煤矿安全规程》2011年版规定如下:1.每一生产水平和每一采区都必须布置单独的回风道,实行分区通风。
生产水平和采区必须实行分区通风。
准备采区必须在采区构成通风系统后,方可开掘其它巷道。
采煤工作面必须在采区构成完整的通风、排水系统后,方可回采。
高瓦斯矿井、有煤(岩)与瓦斯(二氧化碳)突出危险的矿井的每个采区和开采容易自燃煤层的采区,必须设置至少1条专用回风巷;瓦斯矿井开采煤层群和分层开采采用联合布置的采区,必须设置1条专用回风巷。
采区进、回风巷必须贯穿整个采区,严禁一段为进风巷、一段为回风巷,即巷道分段使用。
2.回采工作面和掘进工作面都应采用独立通风。
《规程》第114条规定:同一采区内,同一煤层上下相连的2个同一风路中的采煤工作面、采煤工作面与其相连接的掘进工作面、相邻的2个掘进工作面,布置独立通风有困难时,在制定措施后,可采用串联通风,但串联通风的次数不得超过1次。
采区内为构成新区段通风系统的掘进巷道或采煤工作面遇地质构造而重新掘进的巷道,布置独立通风确有困难时,其回风可以串入采煤工作面,但必须制定安全措施,且串联通风的次数不得超过1次;构成独立通风系统后,必须立即改为独立通风。
《矿井通风系统》课件

提供井下氧气,稀释并排出瓦斯 、一氧化碳等有毒有害气体,降 低粉尘浓度,保持井下适宜的气 温、湿度等。
矿井通风系统的重要性
保障井下作业人员的生命安全
01
良好的通风系统可以降低瓦斯爆炸、煤尘爆炸等事故的风险,
保障作业人员的生命安全。
提高生产效率
02
良好的通风条件可以降低设备磨损和故障率,提高生产效率。
实践
通过对实际矿井通风系统的监测和分析,找出存在的问题和瓶颈,采取针对性的改进措施。
效果
改进后的矿井通风系统在通风效果、能耗和安全性等方面均得到显著提升,为矿山的可持续发展提供有力保障。
05
矿井通风系统的安全与管 理
矿井通风系统安全管理的意义与任务
意义
矿井通风系统是保障矿井安全生产的重要设施之一,其安全运行对于预防矿井事故、保障人员生命安 全具有重要意义。
任务
确保矿井通风系统正常运行,及时发现和处理通风系统中的隐患,提高通风系统的可靠性和稳定性, 为矿井安全生产提供有力保障。
矿井通风系统安全管理的措施与要求
措施
建立完善的通风管理制度,加强通风设备的维护保养,定期进行通风系统检测和评估, 确保通风设施的完好和正常运行。
要求
严格执行通风安全规程,加强通风安全管理人员的培训和教育,提高通风安全管理水平 和技术水平。
明确矿井通风系统的功能需求。
2. 收集资料
收集地质、气象、矿井布局等相 关资料。
3. 通风计算
进行风量、风压等参数的计算。 Nhomakorabea方法
采用数值模拟、经验公式等方法 进行通风计算和设计。
5. 评估与优化
对设计进行评估,根据实际情况 进行优化。
4. 设计通风网络
常村煤矿+470水平采区通风系统设计

提前预测分析 , 不仅要满 足现有 的通风 系统 的要求 , 并 且还要结合 用风量为 3 5 0 0 m 3 / m i n 时, 方案 2比方案 1 矿井总阻力小 7 8 0 P a ; ( 4 ) 常村煤矿 5 年生产衔接计划及长远规划 。 因此 , 根据通风测试数据 , 方案 1 布置相对集 中 , 符合高产高效矿井集 约化生产方式 的现代化 以矿井通风仿 真系统为工具 ,对未来对 + 4 7 0水平采区通风系统提 矿井模式 , 巷道掘进少 , 压煤量少 , 回采率高 , 方案 1 优于方案 2 。 前进行预测分析 , 对最终选出来的两种设计方案进行分析比较 。 4 结论 3 . 1方案 1 a . 通过对两套方案 的仿真 系统 模拟结果 的综 合 比较 , 方案 2优 3 . 1 . 1生产 布置 。 结合常村煤矿 5 年生产衔接计划及长远规划 , 于方案 1 , 因此选择方案 2 。b . 另根据风速要求 , 工作 面风量 配置为
统提前进行预测分析的最佳设计方案 。 关键词 : 仿 真 系统 ; 通 风 系统 ; 模拟仿真; 设 计 方 案
1矿井现状 2 8 0 0 m , 整个工作面阻力消耗 1 9 9 1 , 占矿井总阻力近 4 0 %, 是造成矿 山西潞 安矿业( 集团) 有 限责任公 司常 村煤矿位 于山西省屯 留 井总阻力偏 大的主要原因。 县境 内, 常村煤矿 近年 的持续高产 , 矿井 + 5 2 0水平 的开采 已接近尾 3 . 2方案 2 声, 逐步过渡到 + 4 7 0 水平开采 。根据常村煤矿采掘衔接计划 , 结合 3 . 2 . 1生产布置 。+ 4 7 0水平北翼 中部 风井 、 下 山两个采 区 2 3 采 常村煤矿 5 年生产衔接计划及长远规划, 利用常村煤矿 的矿井通 风 区、 2 2 采区 , 外加东侧 2 5 采区 、 + 4 7 0 水平南翼 风井 中部 风井条带 布 仿真系统对 + 4 7 0 水平通风 系统提前进行 预测 分析 , 对+ 4 7 0水平通 置生产布置 。 同比方案 1比较 , 增加一个采 区, 用风地点增加一备用 风 系统进 行全面 、 系统分析 , 为通风系统设计 、 生产顺 利衔接 、 通风 面 , 增加另一个采 区的主要硐室风量配置 , 其 它与方案 1 相同。 系统调整提供技术支持 ,使常村煤 矿矿井通 风系统稳 定可靠 运行 , 3 . 2 . 2方案模拟结果 。 ( 1 ) 采煤工作面按 4 0 0 0 m / m i n 配风 。 阻力较 确保矿井安全高效生产 。 大 ,主要 原 因是 2 2 1 1工作 面 采用 一进 一 回通 风方 式 ,顺 槽 长 2 通风现状测试 与仿真 系统模拟 2 6 5 0 m, 工作 面风量 大 , 整个 工作 面阻力 消耗 2 5 6 2 , 占矿井 总阻力 2 . 1通风现状测试 5 3 %,是造成矿井总阻力偏大 的主要原因。( 2 )采煤工作 面按 3 5 0 0 要利用矿井通风仿真系统进行通风系统预测分析 , 必须首先掌 m 3 / m i n 配风。 根据以上布置 , 北翼 回风 由北翼 回风井 、 王村 回风井共 握 当前矿 井通风阻力分布状 况以及通风 网络各分 支巷道 的风阻参 同负担 ; 南翼 回风 由南翼 回风井负担 。阻力较大 , 主要原 因是 2 2 1 1 数[ 1 - 3 1 。采用倾斜压差计法 、 精密气压计 的同步法混合测试对矿井进 工作面采用一进一 回通 风方式 , 顺槽长 近 2 6 5 0 m, 整个工作 面阻力 行 了全面 的通风阻力测定 , 为常村煤矿 的仿真 系统 的建立提供真实 消耗 1 9 3 2 ,占矿井总阻力 4 4 %,是造成矿井总阻力偏 大的主要 原
矿井通风设计精选全文

可编辑修改精选全文完整版前言井田概述一井田境界:煤层走向长约1200m,倾斜长约800m,地表平坦,标高+35m。
井田内有二个煤层,3号煤层厚度为2.3m,5号煤层厚度为2.5m,煤层露头为-100m。
煤层倾角12º。
各煤层厚度、间距及顶、底板情况见下表:地质构造简单,无断层,m,m2顶板岩性为细砂岩,顶板中等稳定,各煤层的容重γ=1.5t/m3。
,煤层无自燃倾向,表土内有流砂。
二矿井采区储量:井田采用一对立井开拓,井筒位置布置在井田走向中央和倾斜中部。
井田划分为三个阶段,每个阶段垂高200m,由于倾角较大均采用上山开采,一水平运输大巷布置在-200m 水平,大巷沿m3煤层底板开拓,位置距m3煤层垂直距离25m,回风大巷布置在+0m标高,距m3煤层的距离与运输大巷相同,矿井设计能力为年产60万t。
主井采用箕斗提升,副井采用罐笼提升。
井底车场选用立井刀式环形车场,大巷运输采用600mm轨距架线式电机车运输,矿车选用1t固定式U型矿车。
采区工作制度规定如下:年工作日数:330天。
每日工作班数:3班。
每班工作时数:8h。
第一章选择矿井通风系统通风系统选择的原则:要求要符合安全可靠、技术先进合理、经济、投产快等。
矿井通风系统是向矿井各作业地点供给新鲜空气、排出污浊空气的进、回风井的布置方式,主要通风机的工作方法,通风网络和风流控制设施的总称。
按进、回风在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。
由于煤层倾角较小,埋藏较浅,井田走向长度不大等条件,故确定为中央边界式通风系统。
采区通风系统:采区共设3条上山,1条轨道上山和2条回风上山。
根据《煤矿开采安全规程》规定,再结合矿井的实际情况,本矿井采用抽出式通风方式。
第二章计算和分配矿井总风量矿井需风量,按下列要求分别计算,并采取其中最大值。
(一) 按井下同时工作的最多人数计算,每人每分钟供风量不小于4m3。
(二) 按采煤、掘进、硐室及其他实际需要风量的总合进行计算。
矿井通风设计精选全文

可编辑修改精选全文完整版矿井通风设计第一章井田概况及地质特征一、井田概况1、交通位置王封煤矿位于西山煤田杜儿坪一西铭勘探区北部,其地理座标为:东经112°19′15″一112°21′20″,北纬37°52′50″—37°53′40″。
井田位于太原市万柏林区王封村西侧,东距太原市区约25km,距太古公路4km,距太原西站风声河发煤站仅13km,交通十分方便,2、地形地势本井田位于吕梁山脉的东翼、汾河南岸,属中低山区,区内地形复杂,沟谷纵横,“V”字形冲沟发育,梁峁坡地分布有黄土,基岩大部分裸露。
其地势南高北低,最高点位于井田南部边界附近的山梁,标高为1416.46m,最低点位于井田东部沟内,标高1149.0m,最大相对高差267.46m。
3、气象及地震井田属温带大陆性气候,四季分明,气候干燥,冬春季多风,日夜温差较大,雨量多集中在7、8、9三个月,据太原市和古交市气象站历年资料记载,年平均气温9.5℃。
最低1月份平均-6.4℃,日最低达-18.5℃;最高7月份平均23.5℃,日最高达36.4℃。
年降水量327.4-558.8mm,平均500mm,且大部分集中在7、8、9三个月;年蒸发量平均2093.8mm,年蒸发量远大于年降水量,为期3-4倍,气候较为干燥。
霜冻期为每年10月上旬至次年3月份,全年无霜期140-190d,最大冻土深度0.86m。
全年盛行偏北风,年平均风速为2.4m/s,冬季较大,夏季较小,最大风速25 m/s,瞬间极大风速40.5m/s。
根据中华人民共和国标准GB50011-2001《建设抗震设计规范》,本地区抗震设防烈度为8度,设计基本地震加速度值0.20g。
二、地质特征1、区域构造本区位于太原西山煤田东北部边缘地带。
西山煤田位于吕梁山背斜东侧、汾河断陷地西侧,总体呈轴向北西的向斜,在此基础上发育有一系列的平缓褶曲、高角度正断层,主要褶曲有正门沟背斜、冶峪背斜及小卧龙向斜,主要断层有随老母正断层,落差100m,王封断层落差50—110m,杜儿坪正断层,落差80-220m。
煤矿采区通风系统设计

82采区通风系统设计袁店一井井田范围:西以袁店断层为界,与袁店二井毗邻;东至32煤层-1000m的水平投影线和39467500经线;南从杨柳~五沟断层(与五沟煤矿相邻)及10煤层露头线;北到32煤层—1000m的水平投影线和区块登记边界。
东西长约6。
9~13。
6km,南北宽1.2~3。
4km,井田面积约37.22km2。
本矿井目前有主井、副井、中央风井、西风井和北风井5个井筒,矿井主采煤层为32、72、8、10煤层。
矿井采用走向长壁后退式采煤法,一次采全高综采或综采放顶煤回采工艺,全部垮落法管理顶板。
袁店一井煤矿采用两翼对角式通风方式,各采区实行分区通风,有主井、副井、新主井(原中央风井,目前仅做进风井用)、南风井、东风井5个井筒。
其中主井、副井、新主井进风,南风井、东风井回风。
82采区的通风由南风井担负通风任务.南风井装备两台GAF25-13.1-1型轴流式风机,电机型号YR500-6,额定功率900kw,转速950rpm。
一、采区需风量计算原则矿井用风地点风流中的瓦斯、二氧化碳、一氧化碳、氢气及其他有害气体浓度符合《煤矿安全规程》、《煤矿井工开采通风技术条件》(AQ1028-2006)及安徽省有关规定;用风地点的风量、风速、温度、粉尘浓度等符合规定要求。
采区需风量应按照“由里往外”的计算原则,由采、掘工作面、硐室和其它用风地点的实际最大需风量总和,再考虑一定的备用风量系数后,计算出采区所需总风量。
按井下同时工作的最多人数计算,每人供风量不少于4m3/min;井下作业地点实际供风量不小于所需风量;矿井通风系统阻力合理.确保无违反《煤矿安全规程》规定的扩散通风、采空区通风;无不合理的串联通风,局部通风机无循环风.82采区置2个岩巷掘进工作面、2个煤巷掘进工作面、1个采煤工作面。
二、采区需风量的计算方法采区所需风量按以下方法计算,并取其中最大值。
㈠按采区同时工作最多人数计算采区所需风量:Q总=4NK式中:Q总——矿井需要的总风量,m3/minK——矿井通风系数,取1.2。
青山煤矿+550水平通风系统改造设计方案

目录总说明 (1)第一章矿井概况 (3)一、矿井位置和交通 (3)二、采区位置和范围 (4)三、采区开采现状 (5)第二章采区地质特征 (6)一、矿井地层 (6)二、地质构造 (7)三、煤层特征 (7)四、矿山开采技术条件 (10)第三章采区通风系统改造设计方案 (14)一、回风路线的选择 (14)二、回风巷道层位的选择 (14)三、通风系统巷道布置 (14)四、巷道断面和支护 (15)五、组织施工 (15)第四章采区通风系统 (16)一、矿井通风系统 (16)二、采区通风系统 (16)三、矿井风量计算 (16)第五章主要安全技术措施 (17)一、防止瓦斯积聚的措施 (17)二、杜绝引爆火源的措施 (18)三、防止瓦斯爆炸灾害扩大的措施 (19)四、防尘措施 (20)五、隔爆措施 (21)六、防治水、防排水措施 (25)七、顶板管理措施 (26)八、防止机电运输事故措施 (27)资兴市青山煤矿+550水平通风系统改造设计方案总说明青山煤矿+550水平南部是本矿原有煤炭资源的主采区,在开采三煤过程中,揭露此区域煤层厚度局部达4至5米,并在2010年至2011年期间开采了部分上分层煤,下分层还有1-2米煤层可开采利用。
如果布置壁式工作面进行正规化开采又比较困难。
为了加大原有巷道的利用率,充分开采本矿范围内的煤炭资源,本矿决定利用原有系统1500多米巷道(位于本矿矿井边界范围之内),在矿井南部布置巷采工作面进行复采残采。
由于矿井改造验收时,+550水平巷道并未形成完整的通风系统而未被利用。
为此对+550水平原有巷道加以改造,使整个南部巷道形成完整的通风系统,提出+550水平通风系统改造设计方案:1、从11轨道下山+580开门施工+580水平石门并与11回风下山贯通后,再施工+580水平三煤底板回风大巷;2、从+550水平南大巷开门施工三煤底板南回风上山与+580水平回风大巷贯通,形成+550水平南部完整的通风系统回路;3、将+550水平三煤回风巷一个大弯拉直,减少巷道运输环节和通风阻力;4、+510水平三煤南巷继续向南施工与+550水平风巷南翼下山贯通,形成+510与+550水平通风系统回路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
82采区通风系统设计袁店一井井田范围:西以袁店断层为界,与袁店二井毗邻;东至32煤层-1000m的水平投影线和39467500经线;南从杨柳~五沟断层(与五沟煤矿相邻)及10煤层露头线;北到32煤层-1000m的水平投影线和区块登记边界。
东西长约6.9~13.6km,南北宽1.2~3.4km,井田面积约37.22km2。
本矿井目前有主井、副井、中央风井、西风井和北风井5个井筒,矿井主采煤层为32、72、8、10煤层。
矿井采用走向长壁后退式采煤法,一次采全高综采或综采放顶煤回采工艺,全部垮落法管理顶板。
袁店一井煤矿采用两翼对角式通风方式,各采区实行分区通风,有主井、副井、新主井(原中央风井,目前仅做进风井用)、南风井、东风井5个井筒。
其中主井、副井、新主井进风,南风井、东风井回风。
82采区的通风由南风井担负通风任务。
南风井装备两台GAF25-13.1-1型轴流式风机,电机型号YR500-6,额定功率900kw,转速950rpm。
一、采区需风量计算原则矿井用风地点风流中的瓦斯、二氧化碳、一氧化碳、氢气及其他有害气体浓度符合《煤矿安全规程》、《煤矿井工开采通风技术条件》(AQ1028-2006)及安徽省有关规定;用风地点的风量、风速、温度、粉尘浓度等符合规定要求。
采区需风量应按照“由里往外”的计算原则,由采、掘工作面、硐室和其它用风地点的实际最大需风量总和,再考虑一定的备用风量系数后,计算出采区所需总风量。
按井下同时工作的最多人数计算,每人供风量不少于4m3/min;井下作业地点实际供风量不小于所需风量;矿井通风系统阻力合理。
确保无违反《煤矿安全规程》规定的扩散通风、采空区通风;无不合理的串联通风,局部通风机无循环风。
82采区置2个岩巷掘进工作面、2个煤巷掘进工作面、1个采煤工作面。
二、采区需风量的计算方法采区所需风量按以下方法计算,并取其中最大值。
㈠按采区同时工作最多人数计算采区所需风量:Q总=4NK式中:Q总——矿井需要的总风量,m3/minK——矿井通风系数,取1.2。
N——采区同时工作最多人数,取150人。
则:Q=4×150×1.2=720m3/min㈡按采煤、掘进、独立通风硐室及其它用风地点实际需风量总和的计算采区所需总风量:Q总=(∑Q采+∑Q备+∑Q掘+∑Q硐+∑Q其他)×K矿通m3/min式中:Q总——矿井需要的总风量,m3/min∑Q采——采煤工作面需风量总和,m3/min;∑Q备——备用(收作)工作面需风量总和,m3/min;∑Q掘——掘进工作面需风量总和,m3/min;∑Q硐——硐室需风量总和,m3/min;∑Q其他——其他巷道需风量总和,m3/min;K矿通——矿井通风系数,包括矿井内部漏风和配风不均衡等因素,取1.20。
1、采煤工作面需风量工作面风量计算(1)、按气象条件计算Q=60×70%×V ef×S cf×K ch×K ri=60×70%×1.4×15.72×1.2×1.2=1331m3/min式中:Q采——采煤工作面需要风量,m3/min;60——为单位换算产生的系数;70%——有效通风断面系数;V ef——第i个采煤工作面风速,m/s,按采煤工作面进风流的气温选取,m/s;见表1S cf——第i采煤工作面的平均有效断面积,可按最大和最小控顶断面积的平均值计算,m2;K ch——第i采煤工作面采高调整系数,见表2;K ri——第i采煤工作面长度调整系数,见表3;K温——采煤工作面进风流气温与对应工作面风速调整系数,见表1。
表1 K温采煤工作面进风流气温与对应工作面风速及调整系数采煤工作面气温(℃)采煤工作面风速(m/s)调整系数K温<20 1.0 1.0020~23 1.0~1.5 1.00~1.1023~26 1.5~1.8 1.10~1.2526~28 1.8~2.5 1.25~1.4028~30 2.5~3.0 1.40~1.60表2 K ch采煤工作面采高调整系数采高(m)<2 2~2.5 2.5以上及放顶煤工作面系数K1.0 1.1 1.2ch表3 K ri采煤工作面长度调整系数)采煤工作面长度(m)长度风量调整系数(Kri <120 1.0120~150 1.1150~180 1.2180以上 1.3~1.4(2)、按瓦斯涌出量计算Q采i=125q瓦采i×K采通i=125×4.5×1.6=900 m3/min式中:Q采i——第i个采煤工作面需要风量,m3/min;125——按采煤工作面回风流中的瓦斯浓度不应超过0.8%的换算系数;q瓦采i——第i个采煤工作面风巷风流中的瓦斯涌出量(不包括瓦斯抽放量);工作面涌出量分别为4.5m3/min;K采通i——第i个采煤工作面瓦斯涌出不均衡的备用风量系数,须在正常生产条件下连续观测一个月,日最大和月平均日绝对瓦斯涌出量的比值;综采工作面取1.2~1.6,炮采工作面取1.4~2.0,放顶煤工作面取1.5~2.2。
(3)、按二氧化碳涌出量计算Q采i=67q cgi×K cgi=67×0.4×1.1=33 m3/minQ采i——第i个采煤工作面需要风量,m3/min;67—按采煤工作面回风流中的二氧化碳浓度不应超过 1.5%的换算系数;q cgi——第i个采煤工作面风巷风流中的平均绝对二氧化碳涌出量,m3/min;K cgi——第i个采煤工作面二氧化碳涌出不均衡的备用风量系数,须在正常生产条件下连续观测一个月,日最大和月平均日绝对二氧化碳涌出量的比值。
(4)、按一次爆破使用的最大炸药量计算三级煤矿许用炸药计算公式:Q采i≥10A iQ采i=10×25=250 m3/min式中:Q采i——第i个采煤工作面需要风量,m3/min;10——每公斤三级煤矿许用炸药需风量,m3/min;A i——第i个采煤工作面一次爆破所用的最大炸药量,kg。
(5)、按同时工作的最多人数计算Q采i≥4N iQ采i=4×60=240 m3/min式中:Q采i——第i个采煤工作面需要风量,m3/min;N i——第i个采煤工作面同时工作的最多人数,人。
(6)按最多同时运行矿用防爆柴油机车功率计算Q 柴油车=4.0×P柴油车=4×130=520m3/min式中:Q 柴油车——使用矿用防爆柴油机车地点的需风量,m3/min;4.0——每千瓦每分钟供给的最低风量,m3/min ;P 柴油车——最多同时运行矿用防爆柴油机车的功率,kw。
则采煤工作面需风量为1860m3/min;∑Q采=1860m3/min。
2、掘进工作面需要风量计算掘进工作面需要风量计算每个掘进工作面需要风量,应按瓦斯涌出量、二氧化碳涌出量、一次爆破使用的最大炸药量、同时工作的最多人数等分别进行计算,取其中最大值。
1、机巷掘进工作面需要风量计算每个掘进工作面需要风量,应按瓦斯涌出量、二氧化碳涌出量、一次爆破使用的最大炸药量、同时工作的最多人数等分别进行计算,取其中最大值。
(1)、按瓦斯涌出量计算Q掘i=100q hgi×K hgi.=125×0.74×1.5=138.75m³/min。
式中:Q掘i——第i个掘进工作面需风量,m3/min;125——按掘进工作面回风流中的瓦斯浓度不应超过0.8%的换算系数;q hgi——第i个掘进工作面风排瓦斯绝对涌出量,m3/min。
K hgi——掘进工作面瓦斯涌出不均衡的备用风量系数,须在正常生产条件下连续观测一个月,日最大和月平均日绝对瓦斯涌出量的比值;一般取1.5~2.0。
(2)、按照二氧化碳涌出量计算Q掘i=67q hci×K hci=67×0.25×2=33.5 m3/min=33.5m3/min。
Q掘i——第i个掘进工作面需风量,m3/min;67——按掘进工作面回风流中的二氧化碳浓度不应超过1.5%的换算系数;q hci——第i个掘进工作面风流中的二氧化碳涌出量,m3/min;K hci——第i个掘进工作面二氧化碳涌出不均衡的备用风量系数,须在正常进尺条件下连续观测一个月,日最大和月平均日绝对二氧化碳涌出量的比值。
(3)、按一次爆破使用的最大炸药量计算三级煤矿许用炸药计算公式:Q掘i≥10A iQ掘=10A=10×30=300m3/min式中:Q掘i——第i个掘进工作面需风量,m3/min;10——每公斤三级煤矿许用炸药需风量,m3/min ;A i——第i个掘进工作面一次爆破所用的最大炸药量,kg。
(4)、按人数计算Q掘=4×N i=4×50=200 m3/min式中:Q掘i——第i个掘进工作面需风量,m3/min;N i—第i个掘进工作面同时工作最多人数,人。
(5)按局部通风机型号核定按上述5种方法分别计算后,取Q h=300m3/min作为该工作面的实际需风量;然后根据实际需风量、百米漏风率、通风距离、风筒出口断面等计算出局部通风机的风量和风压。
具体计算方法如下: (1) 局部通风机风量计算公式:Q a =Q h /(1-L/100×Le 100) =100e h 1001L L Q -= %6.110010001300⨯-=357.1m 3/min ; 实际需风量取Qa=360m 3/min 式中:Q a ——局部通风机的风量,m 3/min ; Q h ——掘进工作面的需风量,m 3/min ; L ——掘进工作面的最远通风距离,m ;Le 100——柔性风筒的百米漏风率,可实测确定,如无实测数据,按表4选取。
表4 柔性风筒的百米漏风率通风距离(m) 200 200~500 500~1000 1000~2000 >2000 Le 100(%)15<10<3<2<1.5通风阻力计算 R =100x 100R L =100.56x 1000=65N.S 2/m 8 (2)局部通风机风压计算公式:H t =RQ a Q h /3600+hv =RQ a Q h /3600+ρ×[Q h ÷(S 0×60)]2/2 =65×360×300/3600+1.2×[300÷(0.5×60)]2/2 =1950+60=2010Pa式中:H t ——局部通风机风压,Pa ; R ——风筒通风阻力,N ·S 2/m 8; Q a ——局部通风机的风量,m 3/min ; Q h ——掘进工作面的需风量,m 3/min ; ρ——空气密度,取值1.2kg/m 3; S 0——风筒出口断面积,m 2。