矿井通风系统设计
矿井通风系统的设计与优化

矿井通风系统的设计与优化矿井是人类开采矿藏的重要场所,其中矿井通风系统的设计与优化对确保安全生产至关重要。
本文将探讨矿井通风系统设计的关键要素以及如何进行优化,以提高矿工和设备的安全性和效率。
一、矿井通风系统的设计要素1. 矿井特征分析在进行通风系统设计之前,需要对矿井的地质条件、开采规模、矿井深度等进行全面的特征分析。
这些特征将决定通风系统的基本参数,如通风量、风速等。
2. 通风需求计算通过计算待设计矿井的通风需求,确定所需的通风量和风速。
通风需求计算需要考虑矿井的开采活动、作业区域的工作状况等因素,以确保室内的空气质量和温度。
3. 通风网络设计通风网络是通风系统的骨架,它由主风井、支风井、回风井等组成。
通过合理设计通风网络,可以实现矿井内空气的流动,将排放的有害气体及时排除。
4. 风机和风门选择风机是矿井通风系统的核心设备,其功率和性能直接影响通风系统的效果。
根据通风需求计算的结果选择合适的风机,并设置适当的风门控制通风量和风速。
二、矿井通风系统的优化方法1. 通风网络调整通过对通风网络进行调整来优化通风系统,可以改善矿井内的空气流动,提高通风效果。
例如,在主要开采区域增设支风井、回风井,以增加气流通道,优化气流分布。
2. 空气流动模拟利用计算流体力学(CFD)等模拟方法,对矿井内的空气流动进行模拟和分析。
通过模拟分析,可以发现通风系统中的瓶颈和不足之处,并提出相应的改进方案。
3. 智能控制系统应用利用智能控制系统对矿井通风系统进行自动化控制,可以实现对通风量、风速等参数的实时监测和调整。
智能控制系统可以根据矿井内的工况变化,自动调整通风系统以提高整体效率。
4. 设备的改进与优化通过对通风设备的改进和优化,如改进风机叶片设计,降低噪音和能耗;优化风门结构,提高调节精度和可靠性等,可以进一步提高通风系统的性能和效率。
三、矿井通风系统优化的效益矿井通风系统的设计与优化不仅可以提高矿工和设备的安全性,还能带来一系列经济和环境效益。
矿井通风设计

矿井通风设计随着现代采矿技术的不断进步,矿井通风也越来越成为煤矿等矿井生产过程中不可或缺的环节。
矿井通风设计是整个矿井通风系统的核心和关键,它不仅仅关系到矿工的健康和安全,还直接影响到矿井生产的高效性和经济效益,因此非常重要。
本文将从矿井通风设计的基本原理、设计方法和主要实施措施等方面进行阐述。
一、矿井通风设计的基本原理1、三大力学基本原理:矿井通风设计应遵循3 大力学基本原理:连通流动、动态压力平衡、静态压力平衡及其相互关系。
其中连通流动是基础,两个连通空间产生压差是产生气流的主要条件;动态压力平衡是气流分配的主要原则,气流在有能量损失的情况下依然保持流量;静态压力平衡是多个连通空间之间气流分布的基础。
2、掌握矿区主要地质结构特征、瓦斯、粉尘等危害因素的强弱分布特征。
矿井通风设计应合理掌握当前矿区的煤层地质结构,熟悉煤层水文地质资料和区域地质构造情况,全面掌握煤层构造、岩石结构、岩性及煤层内气体分布情况等;同时,还需深入掌握瓦斯和粉尘等危害因素的通风强弱分布情况,协调合理安排进风口和排风口位置,以确保矿井内部空气流动正常、通风稳定、氧气浓度和有害气体浓度控制在安全范围内。
3、根据井的深度、底板岩性、煤层厚度以及生产条件等因素选择合适的通风方式。
矿井通风设计的第三个基本原理是:根据矿井的特点,选择合适的通风方式:平面式通风和竖向通风,同时在实际生产过程中还需根据井深、煤层厚度、围岩条件和瓦斯涌出量等因素选择合适的风量大小和通风工况。
二、矿井通风设计的方法1、矿井通风的定量设计:根据煤层的地质条件、施工工艺、方案、煤层涌出量等因素,对矿井通风进行定量设计。
定量设计主要的目的是确定矿井所需要的通风量大小以及通风系统所要满足的各种要求,以便于确定矿井风道的尺寸、长度和总的通风风量等。
2、矿井通风系统的综合设计:矿井的通风系统是由多个组件组成,包括主通风机、进排风引风机、风道系统等。
矿井通风系统的综合设计应该涉及每个组件的设计,并应考虑通风系统中各组件所起的作用以及整体系统的相互协调性,在保证矿井安全的前提下,高效地达到整个生产过程。
煤矿通风系统设计

煤矿通风系统设计一、引言煤矿通风系统是煤矿安全生产和环境保护的重要组成部分,对煤矿的通风系统设计提出了更高的要求。
本文旨在介绍煤矿通风系统设计的原则、规范及标准,以确保煤矿安全稳定运行。
二、通风系统的功能和关键要素1. 功能通风系统的主要功能是维持矿井内部空气的新鲜度,调节温度和湿度,排除有害气体,有效控制瓦斯和粉尘等有害物质的积聚。
2. 关键要素通风系统设计需要考虑以下关键要素:(1)通风方案的选择和优化,包括主气流、副气流和局部通风的合理配置。
(2)通风送风和回风的合理布置,以保证新鲜空气的充足供应和污浊空气的及时排出。
(3)通风风量的合理计算和调整,以满足不同作业区域的通风需求。
(4)通风风速和风压的控制,以确保矿井内部空气的均匀分布和压力平衡。
三、煤矿通风系统设计的原则和规范1. 原则(1)安全原则:煤矿通风系统设计必须符合煤矿安全生产的要求,保障矿工的生命安全。
(2)高效原则:通风系统设计应合理配置通风设备,提高通风效果,最大限度地减少瓦斯和粉尘积聚,提高矿井工作环境质量。
(3)经济原则:通风系统设计应充分考虑投资和运行成本,合理利用资源,提高通风系统的经济效益。
2. 规范(1)国家标准:国家标准《矿井通风系统技术规范》(GB/T 12349-2008)规定了煤矿通风系统设计的基本要求,包括通风系统的结构和安装、风机的选择和配置、防火和防爆措施等内容。
(2)行业标准:煤矿通风系统设计还应根据具体的行业标准进行,例如煤矿瓦斯防治行业标准、煤尘防爆行业标准等,以确保通风系统设计符合行业规范。
四、煤矿通风系统设计的步骤和方法1. 步骤(1)确定通风需求:根据煤矿的工作条件和作业区域的特点,明确通风系统的需求和目标。
(2)计算通风风量:根据矿井的开拓面积、煤层的产气量和工作面所需通风量,计算出通风系统的总风量。
(3)确定风机布置:根据矿井的地形布置、工作面的位置和通风需求,确定通风系统的主通风机和副通风机的布置和参数。
第14次课 通风系统与通风设计

第14次课 通风系统与通风设计
刘永立
一、矿井通风系统
• (一)矿井通风系统的类型 • 1、中央式:中央并列式、中央边界式(中央分列
式)
• (1)中央并列式:进回风井大致并列在井田走向 的中央,二井底可开掘至一个水平,回风井也可 开掘至回风水平。
• (2)中央分列式:进风井大致位于井田走向的中 央,回风井也在井田走向中央,在井田的浅
部边界。
• 2、对角式:两翼对角式、分区对角式
• (1)两翼对角式:进风井位于井田走向中 央,二个回风井位于井田边界的二翼。
• (2)单翼对角式:矿井只有一对井口,进 回风井分别位于井田的二翼。
(2)分区对角式:进风井位于井田走向中央, 各采区分别设回风井,无总回风巷
(3)区域式:在井田的每一个生产区域开凿进、 回风井,分别构成独立的通风系统
(4)混合式:上述各种方式混合组成。
• (三)主要通风机的工作方式 • 1、压入式 • 2、抽出式 • 3、压抽混合式
• 二、采区通风系统 • (一)采区通风系统的基本要求 • 1、每一采区都必须布置回风巷,实行分区通风。
严禁一条巷道一分二段,一次进风一段回风。
• 2、采煤工作面和掘进工作面都必须采用独立通 风,特别困难需串联通风时,应符合有关规定
• 3、上行风与下行风对比 • (1)瓦斯涌出方向与风流方向比较 • (2)火风压影响
• 三、工作面通风系统 • U型通风系统 • Z型通风系统 • Y型通风系统、 • W型通风系统 • 双Z型通风系统 • H型通风系统
经过采空区或冒落区。
• (二)采区进风上山与回风上山的选择 • 1、轨道上风进风,运输上山回风
• 2、运输上山进风的,轨道上山回风
矿井通风设计精选全文

可编辑修改精选全文完整版前言井田概述一井田境界:煤层走向长约1200m,倾斜长约800m,地表平坦,标高+35m。
井田内有二个煤层,3号煤层厚度为2.3m,5号煤层厚度为2.5m,煤层露头为-100m。
煤层倾角12º。
各煤层厚度、间距及顶、底板情况见下表:地质构造简单,无断层,m,m2顶板岩性为细砂岩,顶板中等稳定,各煤层的容重γ=1.5t/m3。
,煤层无自燃倾向,表土内有流砂。
二矿井采区储量:井田采用一对立井开拓,井筒位置布置在井田走向中央和倾斜中部。
井田划分为三个阶段,每个阶段垂高200m,由于倾角较大均采用上山开采,一水平运输大巷布置在-200m 水平,大巷沿m3煤层底板开拓,位置距m3煤层垂直距离25m,回风大巷布置在+0m标高,距m3煤层的距离与运输大巷相同,矿井设计能力为年产60万t。
主井采用箕斗提升,副井采用罐笼提升。
井底车场选用立井刀式环形车场,大巷运输采用600mm轨距架线式电机车运输,矿车选用1t固定式U型矿车。
采区工作制度规定如下:年工作日数:330天。
每日工作班数:3班。
每班工作时数:8h。
第一章选择矿井通风系统通风系统选择的原则:要求要符合安全可靠、技术先进合理、经济、投产快等。
矿井通风系统是向矿井各作业地点供给新鲜空气、排出污浊空气的进、回风井的布置方式,主要通风机的工作方法,通风网络和风流控制设施的总称。
按进、回风在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。
由于煤层倾角较小,埋藏较浅,井田走向长度不大等条件,故确定为中央边界式通风系统。
采区通风系统:采区共设3条上山,1条轨道上山和2条回风上山。
根据《煤矿开采安全规程》规定,再结合矿井的实际情况,本矿井采用抽出式通风方式。
第二章计算和分配矿井总风量矿井需风量,按下列要求分别计算,并采取其中最大值。
(一) 按井下同时工作的最多人数计算,每人每分钟供风量不小于4m3。
(二) 按采煤、掘进、硐室及其他实际需要风量的总合进行计算。
矿井通风系统设计

矿井通风系统设计引言矿井通风系统是矿井安全和生产的重要组成部分。
通过良好的通风系统设计,可以有效地控制矿井内的气体浓度和温度,减少事故发生的可能性,保障矿工的安全和健康,并提高矿井的生产效率。
本文将介绍矿井通风系统设计的基本原则和步骤,并结合实际案例,详细阐述了通风系统设计的具体要求和注意事项。
1. 矿井通风系统设计的基本原则•安全性原则:矿井通风系统设计的首要原则是确保矿工的安全。
通风系统应能及时有效地排除矿井内的有毒有害气体,保持矿井空气的新鲜和清洁,并能够应对突发事故,确保矿工的生命安全。
•可靠性原则:通风系统应具有高度的可靠性和稳定性,能够长时间稳定运行,避免因系统故障或设备损坏而导致通风不畅或停工。
•经济性原则:通风系统的设计应尽量节约能源和降低成本。
通过优化设计,合理选择设备和管道,减少能耗,降低运行成本,并确保达到预期的通风效果。
•适应性原则:通风系统应具有一定的适应性,能根据矿井的不同情况和要求进行调整和变化。
在矿井开采过程中,通风系统需要能够适应不同工作面的通风需求,保持稳定的通风效果。
2. 矿井通风系统设计的步骤2.1. 矿井通风需求分析首先,需要进行矿井通风需求的分析和评估。
这包括以下几个方面的内容:•矿井开采方式:矿井的开采方式将直接影响通风系统的设计。
不同的开采方式(如采煤工作面、采矿工作面等)对通风需求会有不同的要求。
•矿井周围环境条件:矿井所处的地质环境、气候条件等对通风系统设计也有一定的影响。
如地质条件不稳定、大气状况恶劣等因素都需要考虑进去。
•矿井规模和产能:矿井的规模和产能将决定通风系统的工作量和效果。
大型矿井通常需要更大容量的通风系统来满足通风需求。
2.2. 矿井通风系统设计参数计算在了解矿井通风需求后,接下来需要进行通风系统设计参数的计算,包括以下几个方面:•通风量计算:通风量是通风系统设计的重要参数之一,它决定了矿井内空气的流动速率和质量。
通风量的计算方法有多种,其中最常用的是根据矿井的规模和产能进行计算。
矿井通风系统的优化设计与应用

矿井通风系统的优化设计与应用1. 引言矿井通风系统是煤矿安全管理中至关重要的一部分,它对矿井内的空气质量、瓦斯抽放、矿井火灾事故防治等具有重要的影响。
传统的矿井通风系统在设计和应用上存在一些问题,如通风阻力大、通风效果不理想等。
因此,对矿井通风系统进行优化设计和应用,可以提高矿井的通风效果和安全性。
2. 优化设计方法2.1. 矿井通风系统参数优化矿井通风系统参数的优化是改善矿井通风效果的关键。
在优化设计中,需要考虑以下几个方面:2.1.1. 大气压力和温度矿井通风系统的设计需要根据矿井所处的海拔高度和气象条件来确定大气压力和温度。
合理确定大气压力和温度可以保证矿井通风系统的设计满足实际条件。
2.1.2. 通风风量和风速通风风量和风速是矿井通风系统的重要参数。
合理确定通风风量和风速可以确保矿井内的空气质量和瓦斯抽放效果。
通风风量和风速的计算可以通过使用数值模拟方法或经验公式来进行。
2.1.3. 矿井通风系统的布置矿井通风系统的布置需要考虑到矿井的地质条件和矿井巷道的结构。
合理布置通风系统可以减小通风阻力,提高通风效果。
2.2. 通风系统设备优化通风系统设备的优化也是提高矿井通风效果的重要途径。
在设备的选型、安装和维护上,可以采取以下措施:2.2.1. 选用高效设备选择高效的通风设备可以减小通风阻力,提高通风效果。
在设备选型中,需要考虑设备的风量和风压参数,以及设备的能耗和使用寿命等方面。
2.2.2. 设备的合理安装设备的合理安装可以确保通风系统的正常运行。
在安装过程中,需要考虑设备的位置选择、管道连接和密封等方面。
合理安装设备可以降低系统的阻力损失,提高通风效果。
2.2.3. 定期维护和检修定期维护和检修通风系统设备可以延长设备的使用寿命,保证通风系统的正常运行。
维护和检修工作包括设备的清洁、润滑、紧固和更换等。
定期维护和检修可以及时发现和排除设备故障,保证通风系统的可靠性和安全性。
3. 优化设计的应用案例3.1. 某煤矿矿井通风系统优化设计某煤矿矿井通风系统优化设计案例,对矿井通风系统进行了全面的优化和改造。
矿山井下通风系统设计与优化

矿山井下通风系统设计与优化摘要矿山井下通风系统是保障矿山井下工作环境安全和提高作业效率的重要设施之一。
本文基于对矿山井下通风系统设计与优化的研究,探讨了通风系统设计的原理和方法,并对现有的通风系统进行了优化提升。
通过优化设计与改进,提高了井下通风系统的效率和安全性。
1. 引言矿山井下通风系统是矿业生产中必不可少的一个环节,它对保护矿工的生命安全、提高矿山生产效率具有重要作用。
井下通风系统能够有效地排除废气、降低井下工作环境温度、调节湿度,保证矿工的健康和生产的顺利进行。
2. 井下通风系统设计原理井下通风系统设计的基本原理是根据矿区井下空气流动特点和需求,通过合理设置通风设施和通风路线,使井下空气保持适宜温度、湿度和含氧量,降低有害气体浓度,确保矿工的健康和生产的平稳进行。
井下通风系统设计需要考虑以下几个方面的因素:2.1 矿井地质条件不同矿区的地质条件存在差异,如矿层结构、岩石性质、厚度等,这些因素会影响通风系统设计的选择和布置。
2.2 矿区单元细分矿区根据井下工作面的划分,需要将矿区划分为不同的单元,通过通风系统为每个单元提供独立的空气供应。
2.3 井下工作面布置井下工作面的布置涉及到通风系统的路径和风流分配问题,需要优化工作面布置以最大化通风效果。
3. 井下通风系统设计方法井下通风系统的设计方法包括计算法、经验法和仿真模拟等几种不同的途径。
3.1 计算法计算法是通过分析井下各个通风终点的通风需求,结合空气流动的物理规律,计算得出通风系统的风量和风压。
计算法需要准确的输入数据,如矿井地质条件、工作面布置、岩石气体含量等。
3.2 经验法经验法是基于以往的通风系统设计经验和实践,根据矿井特点和数据,通过经验公式和统计方法估算通风系统的风量和风压。
经验法建立在大量实验和实际应用的基础上,能够快速给出初步的设计结果。
3.3 仿真模拟仿真模拟是通过计算机软件模拟井下通风系统的流动和分布情况,通过调整参数和变量,达到最佳的通风效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计说明书设计题目: 矿井通风系统设计助学院校: 理工大学自考助学专业: 采矿工程姓名:自考助学学号:成绩: 指导教师签名:理工大学成人高等教育2O 年月日前言矿井通风指借助于机械或自然风压,向井下各用风点连续输送适量的新鲜空气,供给人员呼吸,降低井下工作面的温度,稀释并排出各种粉尘及有毒有害气体,创造良好的气候条件,为井下作业人员提供安全舒适的工作环境。
随着浅部矿产资源的日渐枯竭,矿产资源开采向纵深发展是必然的趋势。
随着开采深度的增加,矿井必将出现岩温增高、风路延长、阻力增大、风流压缩放热、风量调节困难、漏风突出、有毒有害物质和热湿排除受阻等问题。
因此,矿井通风与安全的意义将更加重大。
80年代以来,随着煤矿机械化水平的提高,采煤方法和巷道布置及支护的改革,电子和计算机技术的发展,我国矿井通风技术有了长足的进步。
通风管理日益规化、系列化、制度化,通风新技术和新装备越来越多地投入应用,以低耗、高效、安全为准则的通风系统优化改造在许多煤矿得以实施,使矿井通风更好地为高产、高效、安全的集约化生产提高安全保障。
近年来,为适应综合机械化采煤的要求,原煤炭工业部在总结建设经验、借鉴国外先进技术的基础上于1984颁发了《关于改革矿井开拓部署的若干技术规定》,作为新井建设、生产矿井技术改造和开拓延深的依据。
为适应生产集中化,开采深度增加、瓦斯涌出量大的情况,以“针对现实、着眼长远、因地制宜、对症下药、综合治理、节能增风”为指导思想,对数百座国有煤矿进行通风系统优化改造,配合一批有条件的生产矿井通过合并井田、扩大开采围、增加储量进行改扩建的任务。
目录摘要 (4)第1章矿井基本概况 (5)1.1 井田境界及资源/储量 (5)1.1.1井田境界 (5)1.1.2资源/储量 (6)1.2 矿井设计生产能力及服务年限 (8)1.2.1矿井工作制度 (8)1.2.2矿井设计生产能力及服务年限 (8)1.2.3同时生产的水平数目的确定 (9)1.2.4矿井及水平服务年限的计算 (9)第2章矿井通风与安全 (10)2.1 矿井通风条件概况 (10)2.1.1瓦斯 (10)2.2 矿井通风概况 (10)2.2.1通风方式及通风系统 (10)2.2.2掘进通风和硐室通风 (11)2.2.3矿井风排瓦斯量预测 (11)2.2.4矿井通风 (12)2.2.5 风量分配 (19)2.2.6矿井通风负压及等积孔计算 (19)第3章通风管理及安全措施 (21)3.1 矿井通风管理 (21)3.1.1回采工作面通风方式及合理性分析 (21)3.1.2回采工作面的瓦斯涌出量 (21)3.2 风机设备选型及管理 (22)3.2.1通风设备 (22)3.3 矿井通风安全措施 (25)3.3.1减少工作面漏风措施 (25)3.3.2工作面通风设施及保证风流稳定可靠的措施 (25)3.3.3通风设施、防止漏风和降低风阻的措施 (26)4 课程设计的收获 (27)参考文献 (28)摘要随着煤矿工业的发展,安全生产已经成为其中重要的部分。
为确保煤矿的安全生产,对煤矿的安全设计十分重要。
根据北岭煤矿的实际情况,结合目前安全生产技术,对北岭煤矿进行了安全设计。
设计针对煤矿常见的安全问题,如水、火、煤尘、瓦斯、顶板等灾害,分析灾害发生的原因,设计具体的灾害预防措施及安全保障措施,以达到防止事故发生或减少事故发生概率,降低事故造成伤害的目的。
根据北岭煤矿开拓方式和地质构造,选择了合理的通风系统,对采掘工作面及硐室通风,井下通风设施和构筑物等进行设计。
针对北岭煤矿的粉尘灾害,从防尘措施、防爆措施和隔爆措施三个方面进行了安全设计。
对于瓦斯灾害防治,设计采取了以瓦斯抽放为主及一些防爆、隔爆安全措施。
在火灾防治方面,分别设计了煤自然火灾防治措施及外因火灾防治措施。
通过对北岭煤矿水文地质资料的分析,设计了相应的水灾防治安全措施。
同时建立一套完善的安全监测与监控体系,对各种灾害形式进行严密的监控,在灾害发生前将事故处理,确保生产能够安全高效的进行,同时达到无安全事故、无人员伤亡的理想状态。
同时还设计了顶板灾害、电气事故灾害等的安全措施。
第1章矿井基本概况1.1 井田境界及资源/储量1.1.1井田境界中煤平朔北岭煤业井田位于平鲁区(井坪镇)N85°E,直距约13km,即乡北岭村西1km 处。
地理坐标为东经112°23′45″—112°25′09″;北纬39°31′45″—39°32′27″。
全井田面积为2.0168km2,采矿许可证证号为C66630,批准开采4号煤层,井田围由以8个拐点坐标连线圈定见表1-1-1。
表1-1拐点坐标表井田井田为一“梯形”形状,位于宁武煤田西北部东露天煤矿井田围,东西长2km,南北宽1.26km,井田面积为2.0168km2。
1.1.2资源/储量1.1.2.1资源/储量估算围本次资源/储量估算围,以省国土资源厅批准的矿区围拐点坐标连线圈定,总面积为2.0168km2。
4 号煤层为批采煤层,估算围为剔除采空区围的面积。
另外井田围西北角断层下降盘为弧立块段,对于设计和生产实际意义不大,而且勘查程度较低,本次也作了估算。
1.1.2.2资源/储量估算结果经估算,井田批准的4 号煤层,保有资源/储量总计为24.59Mt,其中探明的经济基础储量(111b)为23.83Mt,推断的蕴经济资源量(333)为0.76Mt,111b 和111b+122b 分别占总资源/储量的96.91%和96.91%,1.1.2.3设计可采储量(1)矿井工业资源/储量=111b+122b+333k式中:K——可信度系数,根据本矿井地质构造简单、煤层赋有稳定的特征,K值取0.9。
(2)矿井设计资源/储量计算矿井设计资源/储量=矿井工业资源/储量-永久煤柱损失永久煤柱损失包括井田境界,已有的地面建(构)筑物、村庄、断层煤柱、采空区煤柱、河流煤柱、铁路煤柱等永久性煤柱损失。
(3)矿井设计可采储量矿井设计可采储量按下式计算:Zk=(Zs-P)• C式中:Zk——矿井设计可采储量,kt;Zs——矿井设计资源/储量,kt;P——开采时需留设煤柱损失量的总和。
开采时需留设的煤柱有:工业场地、采区边界、开拓大巷等主要巷道需留设的保护煤柱。
其中:一采区设计资源/储量:13.598Mt,设计可采储量9.171 Mt,服务年限7.28a;二采区设计资源/储量:6.939Mt,设计可采储量2.534Mt,服务年限2.01a。
1.2 矿井设计生产能力及服务年限1.2.1矿井工作制度矿井设计年工作日330d,每天四班作业(其中三班生产,一班准备)每天净提升时间16h。
1.2.2矿井设计生产能力及服务年限根据设计委托要求,结合煤层赋存条件,可采储量、装备水平、资金来源等因素,确定矿井设计生产能力为0.9Mt/a,其理由如下:(1)根据省煤矿企业兼并重组整合工作领导组办公室文件,晋煤重组办发[2009]132号“关于朔州平鲁区兰花永胜煤业等三处煤矿企业兼并重组整合方案的批复”,中煤平朔北岭煤业为单独保留矿井,批准开采煤层4号煤层,生产能力为0.9Mt/a,因此确定本矿整合后能力为900kt/a,是有政策依据的。
(2)井田煤层储量较丰富,全井田设计可采储量11.705Mt,矿井服务年限9.29a,单从资源量来讲,生产能力不宜过大。
(3)从工作面装备水平来看,井型为0.9Mt/a时,只需装备一个综合机械化放顶煤工作面,管理方便。
(4)井田地质构造简单,水文地质条件中等,煤层倾角平缓,开采技术条件较好,适合机械化开采。
(5)从市场需求因素看,本矿井4号煤为低灰-高灰、特低硫、低热值-高热值的长焰煤(42)、弱粘煤(32),为动力用煤和气化用煤。
完全可以满足各大电厂的需求,向平铁二站、木瓜界煤站及神头一、二电厂供煤,具有得天独厚的区域优势和资源优势,市场条件是非常有利的,因此,适当加大开发力度不仅能产生显著的经济效益,而且能产生较好的社会效益。
(6)从运输条件来看,矿井原煤外运依托汽车运输,可以满足矿井0.9Mt/a生产能力,井型不宜过大,因此,目前井型确定为0.9Mt/a较为合理。
综上所述,矿井设计生产能力确定为0.9Mt/a。
1.2.3同时生产的水平数目的确定尽管本井田主要可采为4、6、8、9、11号共5层煤层,但兼并重组批复文件和新换发的采矿许可证均只批准开采4号煤层,因此设计考虑采用单水平开拓开采,即设+1165m一个水平开采全井田4号煤层。
水平服务年限为9.29a。
1.2.4矿井及水平服务年限的计算矿井及水平服务年限均按下式计算:T=Z/(A•K)式中:T—服务年限,a;Z—设计可采储量,Mt;A—设计生产能力,Mt/a;K—储量备用系数,取1.4。
则:矿井服务年限T=11.705/(0.9×1.4)≈9.29a第2章矿井通风与安全2.1 矿井通风条件概况2.1.1瓦斯根据省朔州市煤炭工业局朔煤发[2010]176 号文“关于朔州市2009年度30万吨/年以下煤矿矿井瓦斯等级和二氧化碳涌出量鉴定结果的批复”,对朔州新都煤业(即北岭煤矿)矿井4 号煤层鉴定结果为:2009 年度矿井绝对瓦斯涌出量为0.45m3/min,相对瓦斯涌出量为1.50m3/t,二氧化碳绝对涌出量0.54 m3/min,相对涌出量1.80m3/t;2008年度矿井绝对瓦斯涌出量为0.55m3/min,相对瓦斯涌出量为1.84m3/t,二氧化碳绝对涌出量0.75m3/min,相对涌出量2.51m3/t;该矿瓦斯等级鉴定为低瓦斯矿井,不存在瓦斯突出现象。
由于矿方提供的瓦斯资料有限,建议矿方尽快做进一步的瓦斯鉴定工作。
2.2 矿井通风概况2.2.1通风方式及通风系统依据井田开拓部署及煤层赋存条件,确定矿井采用中央并列式通风系统,机械抽出式通风方式。
在已有的工业场地新布置副斜井,将原副斜井刷扩改造为回风斜井担负全矿井回风任务并兼做安全出口。
其中主斜井、副斜井进风,回风斜井(原副斜井刷扩)回风。
刷扩改造后的回风斜井服务围为全井田。
2.2.2掘进通风和硐室通风矿井达到设计生产能力时,共配备2个综掘工作面,均采用独立通风,掘进工作面所需风量由局部通风机对其压入式供给。
井下主变电所、主排水泵房、等候硐室及医务室、采区变电所等硐室采用独立通风。
消防材料库等硐室利用主通风机负压通风。
2.2.3矿井风排瓦斯量预测根据瓦斯鉴定资料,2009年、2008年矿井瓦斯涌出量如下:2009 年度矿井绝对瓦斯涌出量为0.45m3/min,相对瓦斯涌出量为1.50m3/t,二氧化碳绝对涌出量0.54m3/min,相对涌出量 1.80m3/t;2008年度矿井绝对瓦斯涌出量为0.55 m3/min,相对瓦斯涌出量为1.84m3/t,二氧化碳绝对涌出量0.75m3/min,相对涌出量2.51m3/t;该矿瓦斯等级鉴定为低瓦斯矿井,不存在瓦斯突出现象。