等差数列前n项求和公式PPT课件
合集下载
4221等差数列的前n项和公式课件共45张PPT

知识点二 等差数列的前 n 项和公式 1.等差数列{an}的前 n 项和公式
已知量 首项 a1、末项 an 与项数 n
求和公式
na1+an Sn=___与项数 n
Sn=__n_a_1+__n__n_2-__1__d___
2.两个公式的关系:把 an=a1+(n-1)d 代入 Sn=na12+an中,就可以得到 Sn =____n_a_1_+__n__n_2-__1_d_______
1.已知 Sn 求 an 利用 an=SS1n, -nS= n-11,,n≥2, 可由数列的前 n 项和 Sn 求得数列的通项公式 an. 解题过程通常分为四步:第一步,令 n=1 得 a1;第二步,令 n≥2 得 an;第三步, 在第二步求得的 an 的表达式中取 n=1,判断其值是否等于 a1;第四步,写出数列 的通项公式(若第三步中 n=1 时,an 的表达式的值不等于 a1,则数列的通项公式一 定要分段表示).
解:(1)因为 Sn=2n2-30n,所以当 n=1 时, a1=S1=2×12-30×1=-28, 当 n≥2 时,an=Sn-Sn-1=2n2-30n-[2(n-1)2-30(n-1)]=4n-32. 验证当 n=1 时上式成立, 所以 an=4n-32. (2)由 an=4n-32,得 an-1=4(n-1)-32(n≥2), 所以 an-an-1=4n-32-[4(n-1)-32]=4(常数), 所以数列{an}是等差数列.
(3)方法一:设等差数列的首项为 a1,公差为 d, 则 S5=5a1+5×25-1d=24, 得 5a1+10d=24,a1+2d=254. ∴a2+a4=a1+d+a1+3d=2(a1+2d)=2×254=458. 方法二:由 S5=5a12+a5=24,得 a1+a5=458. ∴a2+a4=a1+a5=458.
《等差数列的前n项和》人教版高二数学下册PPT课件

合作探究
COOPERATIVE INQUIRY
[跟踪训练] 2.植树节某班 20 名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距 10 米, 开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的 路程总和最小,此最小值为_ _ _ _ _ _ _ _ 米.
解得 a 1=-5 ,d =3. ∴a 8=a 6+2 d =1 0 +2×3 =1 6 ,
1 0 ×9 S 10=1 0 a 1+ 2 d =1 0 ×(-5 )+5 ×9 ×3 =8 5 .
1 7 × a 1+a 17
1 7 × a 3+a 15
1 7 ×4 0
(2 )S 17=
2
=
2
=
=3 4 0 .
S 1,n =1 ,
项公式,那么数列{a n
}的通项公式要分段表示为
a
n
=
S
n -S
n -1,n
≥2 .
合作探究
COOPERATIVE INQUIRY
等差数列前 n 项和公式的实际应用
例 3、某抗洪指挥部接到预报,24 小时后有一洪峰到达,为确保安全,指挥部决定在洪峰到来 之前临时筑一道堤坝作为第二道防线.经计算,除现有的参战军民连续奋战外,还需调用 20 台同 型号翻斗车,平均每辆车工作 24 小时.从各地紧急抽调的同型号翻斗车目前只有一辆投入使用, 每隔 20 分钟能有一辆翻斗车到达,一共可调集 25 辆,那么在 24 小时内能否构筑成第二道防线?
3,n =1,
∴a
n
= 2
n
,n
≥2
.
合作探究
COOPERATIVE INQUIRY
2 .(变条件变结论)将本例中的条件“S n =2 n 2-3 0 n ”变为“正数数列{b n }的前 n 项和 S n
等差数列前n项和的公式 PPT

(2)当m+n=p+q时, am+an=ap+aq
1+2+3+…+98+99+100=?
高斯10岁时曾很快算出 这一结果,如何算的呢?
高斯, (1777— 1855) 德国 著名数学家。
我们先看下面的问题。
怎样才能快速 计算出一堆钢管有 多少根呢?
一 二
4+10=14 5+9=14
三 四
6+8=14 7+7=14
1( 2
?首项 + ?尾项 )
?项数
Sn
n(a1 an) 2
以下证明 {an}是等差数列,Sn是前n项和,则
Sn
n(a1 an) 2
证:
Sn= 即Sn=
aa1+n+aa2n-+1+a3an+-2+…+a+a1…ana+-n21+a++na-32++aan-21++aan11
把+得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)
n(n-1)
2
×4 =54
整理得: n 2-6n-27=0
解得: n1=9, n2=-3(舍去)
答: 等差数列-10,-6,-2,2,···前9项的和 是54。
.
例3 一个堆放铅笔的V形架的最下面一层放1支铅笔,往上 每一层都比它下面一层多放一支,最上面一层放120支. 这个V 形架上共放着多少支铅笔?
多媒体教学课件
等差数列的前n项和ppt课件

工教作学回 背景顾 教法分析 学法分析 教学程序 板书设计 教学效果
一、知识层面
二、能力层面
1、学生已经学习了 1、已经具备一定的观 等差数列的通项公式 察猜想,归纳类比能 及性质,具备了研究 力; 本节内容的知识基础; 2、已经具备了一定的 2、第一次正式接触 逻辑推理能力; 数列求和,缺乏学习 经验;
三、情感层面
1、学习兴趣较高, 但主动探索的难度 较大,需要教师合 适的启发和引导;
1.3 教学目标
工教作学回 背景顾 教法分析 学法分析 教学程序 板书设计 教学效果
知识目标 能力目标 情感目标
掌握等差数列的前n项和公式; 会根据简单的等差数列条件求其前n项和; 能用公式解决简单的实际问题;
感受从特殊到一般再到特殊以及数形结合的研究及学习方法; 培养学生观察猜想归纳类比的数学思维能力; 提升学生在逻辑推理、数学建模等方面的核心素养;
(1+100)+(2+99)+(3+98)+……+(50+51)=101×50=5050.
4.3 新课探索
工教作学回 背景顾 教法分析 学法分析 教学程序 板书设计 教学效果
那你能用他的方法求一下1+2+3+……+n等于多少吗? 分类讨论
n为偶数,1 2 n (1 n) n ; 2
n为奇数,1 2 n (1 n 1) n 1 n n(n 1) ;
an )
na1
n(n 1) 2
d
例2
↓
堂 练 习 题
教学程序
知三求二(方
程思想)
例3
板书设计
教学效果
教学效果
6.1 教学反思及教学效果
等差数列前n项求和ppt

公式理解
01
公式意义
等差数列的前n项和公式表示等 差数列前n项的和,其中首项为 a1,公差为d,项数为n。
公式结构
02
03
公式参数
公式由首项、公差、项数和求和 符号组成,反映了等差数列的特 性。
首项a1表示等差数列的第一项, 公差d表示相邻两项的差,项数n 表示等差数列的项数。
公式应用
应用场景一
等差数列前n项求和
目录
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列求和的常见方法 • 等差数列求和的实际应用 • 等差数列求和的注意事项
01
等差数列的定义与性质
定义
总结词
等差数列是一种常见的数列,其特点是任意两个相邻项的差是一个常数。
详细描述
等差数列是一种有序的整数集合,其中任意两个相邻项的差都等于一个常数,这个常数被称为公差。等差数列的 一般形式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是第一项,d 是公差。
02
等差数列的前n项和公式
公式推导
公式推导方法一
利用等差数列的性质,将前n项和表示为n/2乘以首项与末项的平均值,再利用等差数列的通项公式, 推导出前n项和公式。
公式推导方法二
利用等差数列的求和公式,将前n项和表示为首项与末项的和乘以项数再除以2,同样利用等差数列的通 项公式,推导出前n项和公式。
日常生活中的应用
购物清单
在购物时,等差数列求和公式可用于计算购 物清单中商品的总价,以便快速计算出总花 费。
工资计算
在工资计算中,等差数列求和公式可用于计算工资 总额,以便计算税款和扣除项。
日常理财
在理财中,等差数列求和公式可用于计算定 期存款、基金定投等理财产品的收益。
【课件】等差数列的前n项和公式+课件高二下学期数学人教A版(2019)选择性必修第二册

解:由于 有正也有负,当 ≥ 0时,| | = ;
当 < 0时,| | = − .当 = 10 − 3 ≥ 0时, ≤
10
.
3
1 + 2 + ⋯ + ( ≤ 3),
设数列{| |}的前项和为 ,则有 =
1 + 2 + 3 − 4 − 5 − ⋯ − ( ≥ 4)
所以 = 12.
(−1)
,得
2
例析
例7.已知一个等差数列{ }前10项的和是310,前20项的和是1220.由这些条件能确
l
定这个等差数列的首项和公差吗?
解:由题意,知0 = 310,20 = 1220.
把它们代入公式 = 1 +
(−1)
,得
2
101 + 45 = 310,
解法一:由9 = 17 ,∴91 +
9×8
2
= 171 +
17×16
,
2
又1 = 25,∴ = −2.
∴ =
(−1)
1 +
2
= 25 − ( − 1) = −2 + 26 = −( − 13)2 +169,
故当 = 13时, 取得最大值,最大值为169.
∴+2 + =
(+1)
1 +
2
∴数列{ }是等差数列.
= 1 +
(−1)
,
2
(+1)
,
2
(−1)
+ 1 +
2
= 21 + = 2+1 .
等差数列前n项和(公开课)PPT课件

数学建模
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
4.2.2 第1课时 等差数列的前n项和课件ppt

(2)设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9=
(3)在等差数列{an}中,若a1=1,an=-512,Sn=-1 022,则公差d=
.
.
.
分析利用等差数列的通项公式和前n项和公式列方程进行计算求解.
答案 (1)81 (2)15
(3)-171
解析 (1)设等差数列{an}的公差为d,
= 3,
则
3(-1)
Sn=20n+ 2
=
3 2 37
n
+
n.
2
2
令 Sn≤438,即 3n2+37n-876≤0 且 n∈N*,解得 n≤12.
所以最般思路
变式训练 3甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟
438万元.则该研究所最多可以建设的实验室个数是(
A.10
B.11 C.12 D.13
)
答案 C
解析 设第 n 实验室的建设费用为 an 万元,其中 n∈N*,
设等差数列{an}的公差为 d,由题意可得
7 -2 = 5 = 15,
解得
3 + 6 = 21 + 7 = 61,
1 = 20,
+5n=70,
2
素养形成
利用Sn与an的关系式求通项公式
典例 已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn= 2+n-4.
(1)求证:{an}为等差数列;
(2)求出{an}的通项公式.
分析在等式2Sn= 2 +n-4中,令n取n-1,可得2Sn-1= 2 −1 +n-5.两式相减,利
和公式中“知三求二”的问题,一般是通过通项公式和前n项和公式联立方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
8
解:根据题意,从2001 ~ 2010年,该市每年 投入“校校通”工程的经费都比上一年增加 50万元,所以可以建立一个等差数列{an},表 示从2001年起各年投入的资金,其中
a1=500, d=50.
那么,到2010年(n=10),投入的资金总额为
s10=10×500+10×(10-1)×50/2=7250(万元)
a1=11,an=23
.
12
小结:Sn实质是一个关于a1 ,n, d或a1 , an , d的方程。因此对 于等差数列的相关量a1 ,n,d , an, Sn,已知其中任意三个量, 根据通项公式与求和公式便可确
定其他量。
.
13
例3:已知数列{an}前n项的和 为 sn=n2+(1/2)n求这个数列的通 项公式。这个数列是等差数列吗
4
3
4
3
1 n2 1 (n 1)2 2
4
4
3
n 5
又n2=1时12a1
1 2
5 12
所以 an
.
47 n 1 12
n 5 n 1 2 12
17
思考:已知前n项和Sn如何求通项an?
⑴当n=1时a1=S1 ⑵当n>1时,an=Sn-Sn-1 ⑶如果当n=1时an=Sn-Sn-1与a1的值相 等,那么得到数列an 的通项公式为 an=Sn-Sn-1,
当n=1时an=Sn-Sn-1与a1的值不相等,
那么数列an 的通项公式要分段表示为
an=
S1 n=1 Sn-Sn-1 n>1
.
18
探究
解:由上题思路可得:
P+q+r (n=1) an= 2pn-p+q (n>1)
只有r=0时,数列{an}才是等差数列 首项为:a1=p+q,公差为:d=2p
如果数列{an}的前n项和是常数项为0, 且是关于n的一元二次关系式,那么数 列{an}是等差数列。
答:从2001~2010年,该市在“校校通”工程 的总投入是7250万元。
审题—抽象出数学模型—解答
.
9
例2: 已知一个等差数列{an}前 10项的和是310,前二十项的和是
1220。由这些条件能确定这个等差
数列的前n项和的公式吗?
.
10
解:由题意知:
s10=310, s20=1220 将它们代入公式Sn=na1+n(n-1)d/2,得到:
10a1+45d=310 20a1+190d=1220 解这个关于a1与d的方程组,得到: a1=4, d=6 所以Sn=4n+n(n-1)×6/2=3n2+n.
.
11
针对训练
1、等差数列{an}中 ⑴a1=20,an=54,sn=999求d及n
d=17/13,n=27
⑵d=1/3,n=37,sn=629 求a1及an
1 2 n1 n n n1 2 1 (n1)(n1) (n1)(n1)
.
4
公式的推导
Sna1a2 an1an Snanan1 a2a1
即 sn = a1 + (a1+d)+…… + [a1+(n-2)d]+[a1+(n-1)d] sn = an + (an-d)+…… + [an-(n-2)d]+[an-(n-1)d]
?如果是,它的首项与公差分别
是什么?
.
14
解:根据sn=a1+a2+…+an-1+an
与 sn-1=a1+a2+…+an-1(n>1) 可知,当n>1时,
an=sn-sn-1 =n2+1/2n-〔(n-1)2+1/2(n-1)〕
=2n-1/2 当n=1时,
……①
a1=s1=12+1/2×1=3/2,
也满足①式。
所以数列{an}的通项公式为an=2n-1/2.
由此可知,数列{an}是一个首项为3/2,公差 为2的等差数列。
.
15
针对练习
已知数列an的前n项和
为 通Sn
1n2 4
2n3 3
,求这个数列的
项公式。
.
16
解:当n=1时,
S1
a1
47 12
当n>1时
an Sn Sn1
1 n2 2 n 3 [1 (n 1)2 2 (n 1) 3]
sn=604.5
.
7
典型例题
例1: 2、2000年11月14日教育部下发了《关于在中 小学实施“校校通”工程的通知》.某市据此提出了实 施“校校通”工程的总目标:从2001年起用10年的时 间,在全市中小学建成不同标准的校园网.据测算 2001年该市用于“校校通”工程的经费为500万元.为 了保证工程的顺利实施,计划每年投入的资金都比上 一年增加50万元。那么从2001年起的未来10年内, 该市在“校校通”工程中的总投入是多少?
教学目标
探索并掌握等差数列 的前n项和公式,学会 用公式解决一些实际问 题.
.
1
重点、难点
等差数列前n项公式推导 思路的获得,及对公式的熟 练应用。
.
2
导入
1+2+3+……+100=?
(1+100)+(2+99)+(3+98)+……+(50+51) =101×50=5050
.
3
用下面方法计算1,2,3……n的前n项和
.
19
课堂小结
1、学习了等差数列前n项和的求 和方法及公式 2、知道了由Sn如何求an
an= S1
n=1
Sn-Sn-1 n>1
.
20
作业
课本习题2.3A、B组题
.
21
所以 2Snn(a1an)
.
5
公式
公式一:
Sn
n(a1 an) 2
把 ana1(n1)d代入上式可得
n(n1)d 公式二: Sn n1 a 2
.
6
练习:根据下列各题中的条件,求相应的等 差数列{an}的前n项和Sn。
⑴a1=-4,a8=-18,n=8
sn= -88
⑵a1=14.5,d=0.7,an=32