高中数学必修二圆的标准方程课件
合集下载
高中数学必修二课件:圆的一般方程(42张PPT)

此方程表示以(1,-2)为圆心,2为半径长的圆.
问题2:方程x2+y2+2x-2y+2=0表示什么图形?
提示:对方程x2+y2+2x-2y+2=0配方得
(x+1)2+(y-1)2=0,即x=-1且y=1. 此方程表示一个点(-1,1). 问题3:方程x2+y2-2x-4y+6=0表示什么图形? 提示:对方程x2+y2-2x-4y+6=0配方得 (x-1)2+(y-2)2=-1. 由于不存在点的坐标(x,y)满足这个方程,所以这 个方程不表示任何图形.
3.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求 (1)实数m的取值范围; (2)圆心坐标和半径.
解:(1)根据题意知D2+E2-4F=(2m)2+(-2)2- 1 4(m +5m)>0,即4m +4-4m -20m>0,解得m<5,
2 2 2
1 故m的取值范围为(-∞,5).
(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准 方程为(x+m)2+(y-1)2=1-5m, 故圆心坐标为(-m,1),半径r= 1-5m.
第 二 章 解 析 几 何 初 步
§2 圆 与 圆 的 方 程
2.2
圆 的 一 般 方 程
理解教材新知
把 握 热 点 考 向
考点一 考点二 考点三
应用创新演练
把圆的标准方程(x-a)2+(y-b)2=r2展开得,x2+y2 -2ax-2by+a2+b2-r2=0,这是一个二元二次方程的形 式,那么,是否一个二元二次方程都表示一个圆呢? 问题1:方程x2+y2-2x+4y+1=0表示什么图形? 提示:对x2+y2-2x+4y+1=0配方得 (x-1)2+(y+2)2=4.
1.若x2+y2-x+y-m=0表示一个圆的方程,则m的取值 范围是 1 A.m>-2 1 C.m<-2 1 B.m≥-2 D.m>-2 ( )
人教版高中数学必修2(A版) 4.1.1圆的标准方程 PPT课件

圆外. 解:所求圆的标准方程为: (x-2)2+(y+3)2=25 把M1的坐标代入方程左边得: ∴点M1在圆上. (5-2)2+(-7+3)2=25
把M2的坐标代入方程左边得: (1-2)2+(1+3)2=17<25
∴点M2不在圆上,而是在圆内.
把M3的坐标代入方程左边得: (6-2)2+(1+3)2=32>25 ∴点M3不在圆上,而是在圆外.
回到目录
点M0(x0,y0)在圆(x-a)2+(y-b)2=r2上、内、 外的条件是什么? (x0-a)2+(y0-b)2=r2 点M0在圆上
(x0-a)2+(y0-b)2<r2
(x0-a)2+(y0-b)2>r2
点M0在圆内
点M0在圆外
回到目录
例1:写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点 M1(5,-7),M2(1,1),M3(6,1)是否在这个圆上.如果不在,判断它在 圆内还是在圆外.
回到目录
例2:△ABC的三个顶点的坐标分别是A(5,1),B(7,3),C(2,-8),求它的外接圆方程,并求其半径和圆心坐标.
分析:△ABC的外接圆方程
未知量 是什么?
x a y b
2
2
r
2
B
C A
(知道模样,用待定系数法)
a
b
r
方案1: 解三方程 构成方程 组 已知量 是什么?
P0 ( x0 , y0 )
o
x
x 直线l方程y-y0=k(x-x0) (直线上任意一点坐标关系,以点 斜式为基础推导了斜截式、两点式、 截距式方程,最后统一成一般式)
把M2的坐标代入方程左边得: (1-2)2+(1+3)2=17<25
∴点M2不在圆上,而是在圆内.
把M3的坐标代入方程左边得: (6-2)2+(1+3)2=32>25 ∴点M3不在圆上,而是在圆外.
回到目录
点M0(x0,y0)在圆(x-a)2+(y-b)2=r2上、内、 外的条件是什么? (x0-a)2+(y0-b)2=r2 点M0在圆上
(x0-a)2+(y0-b)2<r2
(x0-a)2+(y0-b)2>r2
点M0在圆内
点M0在圆外
回到目录
例1:写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点 M1(5,-7),M2(1,1),M3(6,1)是否在这个圆上.如果不在,判断它在 圆内还是在圆外.
回到目录
例2:△ABC的三个顶点的坐标分别是A(5,1),B(7,3),C(2,-8),求它的外接圆方程,并求其半径和圆心坐标.
分析:△ABC的外接圆方程
未知量 是什么?
x a y b
2
2
r
2
B
C A
(知道模样,用待定系数法)
a
b
r
方案1: 解三方程 构成方程 组 已知量 是什么?
P0 ( x0 , y0 )
o
x
x 直线l方程y-y0=k(x-x0) (直线上任意一点坐标关系,以点 斜式为基础推导了斜截式、两点式、 截距式方程,最后统一成一般式)
高中数学第四章圆与方程4.1.2圆的一般方程课件新人教A版必修2

4.1.2 圆的一般方程
目标导航 课标要求 素养达成
1.了解圆的一般方程的特点,会由一般方程求圆心和 半径. 2.会根据给定的条件求圆的一般方程,并能用圆的一 般方程解决简单问题. 3.初步掌握求动点的轨迹方程的方法.
通过对圆的一般方程的学习,促进学生数形结合思想 方法的养成,帮助直观想象,数学运算、数学抽象等 核心素养的达成.
D 8,
解得
E
2,
……………………………………………10
分
F 12.
所以△ABC 外接圆的方程为 x2+y2-8x-2y+12=0.………12 分
法二 设所求的圆的方程为(x-a)2+(y-b)2=r2,…………2 分
(2 a)2 (2 b)2 r2,
由题意得
(5
a)2
(3
b)2
r2,
解:方程 x2+y2+Dx+Ey+F=0 是否表示圆,关键看将该方程配方转化为圆的标准方程
的形式(x+ D )2+(y+ E )2= D2 E2 4F 后,D2+E2-4F 是否大于 0,若大于 0 则表示
2
2
4
圆,否则不表示圆.
法一 (1)将原方程转化为(x- 1 )2+y2=0,表示一个点,坐标为( 1 ,0).
(4)由于 D2+E2-4F=1+4-4=1>0,所以该二元二次方程表示的是圆.
又 x2+y2+x+2y+1=(x+ 1 )2+(y+1)2= 1 ,所以它表示以(- 1 ,-1)为圆心,以 1 为半径的圆.
2
4
目标导航 课标要求 素养达成
1.了解圆的一般方程的特点,会由一般方程求圆心和 半径. 2.会根据给定的条件求圆的一般方程,并能用圆的一 般方程解决简单问题. 3.初步掌握求动点的轨迹方程的方法.
通过对圆的一般方程的学习,促进学生数形结合思想 方法的养成,帮助直观想象,数学运算、数学抽象等 核心素养的达成.
D 8,
解得
E
2,
……………………………………………10
分
F 12.
所以△ABC 外接圆的方程为 x2+y2-8x-2y+12=0.………12 分
法二 设所求的圆的方程为(x-a)2+(y-b)2=r2,…………2 分
(2 a)2 (2 b)2 r2,
由题意得
(5
a)2
(3
b)2
r2,
解:方程 x2+y2+Dx+Ey+F=0 是否表示圆,关键看将该方程配方转化为圆的标准方程
的形式(x+ D )2+(y+ E )2= D2 E2 4F 后,D2+E2-4F 是否大于 0,若大于 0 则表示
2
2
4
圆,否则不表示圆.
法一 (1)将原方程转化为(x- 1 )2+y2=0,表示一个点,坐标为( 1 ,0).
(4)由于 D2+E2-4F=1+4-4=1>0,所以该二元二次方程表示的是圆.
又 x2+y2+x+2y+1=(x+ 1 )2+(y+1)2= 1 ,所以它表示以(- 1 ,-1)为圆心,以 1 为半径的圆.
2
4
新教材高中数学第2章圆的方程:圆的标准方程pptx课件新人教A版选择性必修第一册

的方程组,进而求得圆的方程,它是求圆的方程的常用方法.
[跟进训练]
1.求满足下列条件的圆的标准方程.
(1)圆心在y轴上,半径长为5,且过点(3,-4);
[解]
设圆心C(0,b),则(3-0)2+(-4-b)2=52,
整理得(b+4)2=16,解得b=0或b=-8.
∴圆的标准方程为x2+y2=25或x2+(y+8)2=25.
故所求圆的方程为(x-2)2+(y-1)2=5.
[母题探究]
如何求经过A(1,3),B(4,2)两点,周长最小的圆的标准方程?
[解]
当线段AB为圆的直径时,过点A、B的圆的半径最小,从而周
长最小,
即所求圆以线段AB的中点
1
1
|AB|=
2
2
5
5
,
2
2
为圆心,
10为半径,故所求圆的标准方程为 −
5 2
知识点2 点与圆的位置关系
圆C:(x-a)2 +(y-b)2 =r2(r>0),其圆心为C(a,b),半径为r,点
P(x0,y0),设d=|PC|=
0 −
2
+ 0 − 2 .
位置关系
d与r的大小
点P的坐标的特点
点在圆外
d>r
(x0-a)2+(y0-b)2>r2
______________________
= 5,
(3 − )2 +(4 − )2 = 2
所以外接圆的方程为(x-2)2+(y-2)2=5.
法二:(几何法)
易知△ABC是直角三角形,∠B=90°,所以圆心是斜边AC的中点
(2,2),半径是斜边长的一半,即r= 5,所以外接圆的方程为(x-
[跟进训练]
1.求满足下列条件的圆的标准方程.
(1)圆心在y轴上,半径长为5,且过点(3,-4);
[解]
设圆心C(0,b),则(3-0)2+(-4-b)2=52,
整理得(b+4)2=16,解得b=0或b=-8.
∴圆的标准方程为x2+y2=25或x2+(y+8)2=25.
故所求圆的方程为(x-2)2+(y-1)2=5.
[母题探究]
如何求经过A(1,3),B(4,2)两点,周长最小的圆的标准方程?
[解]
当线段AB为圆的直径时,过点A、B的圆的半径最小,从而周
长最小,
即所求圆以线段AB的中点
1
1
|AB|=
2
2
5
5
,
2
2
为圆心,
10为半径,故所求圆的标准方程为 −
5 2
知识点2 点与圆的位置关系
圆C:(x-a)2 +(y-b)2 =r2(r>0),其圆心为C(a,b),半径为r,点
P(x0,y0),设d=|PC|=
0 −
2
+ 0 − 2 .
位置关系
d与r的大小
点P的坐标的特点
点在圆外
d>r
(x0-a)2+(y0-b)2>r2
______________________
= 5,
(3 − )2 +(4 − )2 = 2
所以外接圆的方程为(x-2)2+(y-2)2=5.
法二:(几何法)
易知△ABC是直角三角形,∠B=90°,所以圆心是斜边AC的中点
(2,2),半径是斜边长的一半,即r= 5,所以外接圆的方程为(x-
2-2-1圆的标准方程课件(北师大版必修二)

(3)当圆心是坐标原点时,有 a=b=0,那么圆的方程 为
x2+y2=r2
.
想一想:圆(x-1)2+(y-2)2=a2 的半径为 a 吗? 提示 由于 a 的正负性不知,故该圆的半径为|a|.
名师点睛 1.点与圆的位置关系 点与圆的位置关系有点在圆内、圆上、圆外三种.其判断方法 是:由两点间的距离公式求出该点到圆心的距离,再与圆的半 径比较大小或利用点与圆的方程来判定. 设点 M(x0,y0)到圆 C:(x-a)2+(y-b)2=r2 的圆心 C 的距离为 d,则 d=|MC|= x0-a2+y0-b2,
解 设圆心 C(a,b),半径长为 r,则由 C 为 P1P2 的中点,得 a 3+5 8+4 = 2 =4,b= 2 =6,即圆心坐标为 C(4,6), ∴r=|CP1|= 4-32+6-82= 5. 故所求圆的方程为(x-4)2+(y-6பைடு நூலகம்2=5. 分别计算点 M、N、P 到圆心 C 的距离: |CM|= 4-52+6-32= 10> 5, |CN|= 4-32+6-42= 5, |CP|= 3-42+5-62= 2< 5, 所以点 M 在此圆外,点 N 在此圆上,点 P 在此圆内.
5 的取值范围是-∞,-2,.
题型三 圆的标准方程的应用 【例 3】 (12 分)已知圆心在 x 轴上的圆 C 与 x 轴交于两点 A(1,0), B(5,0), (1)求此圆的标准方程; (2)设 P(x,y)为圆 C 上任意一点,求 P(x,y)到直线 x-y+1=0 的距 离的最大值和最小值. 审题指导 针对这个类型的题目一般考虑所求式子的几何意义,然后 利用数形结合的方法求出其最值. 根据题意 求出圆心 画直线 【解题流程】 → → 画出图形 和半径 x-y+1=0 得到P点到直线 → 的距离的最值
人教B版高中数学必修二2.3.1《圆的标准方程》ppt课件

•直径的圆的方已程知,两并点判P断1(M4(,69,)9和)、P2(Q6(,53,)3,)是求在以圆P1上P2?为
圆外?圆内?
• [分析] (1)根据所给已知条件可得圆心坐标和半 径.
• (2)判断点在圆上、圆外、圆内的方法是:根据已 知点[到解析圆]心由的已距知离条与件半可径得圆的心大坐小标关为系M来(5,判6),断半.径为 r=12
• 3.以点A(-5,4)为圆心,且与y轴相切的圆的方程
是( )
• A.(x-5)2+(y+4)2=25 B.(x+5)2+(y-4)2=
25
• C.(x-5)2+(y+4)2=16 D.(x+5)2+(y-4)2=
16
• [答案] B
• [解析] ∵与y轴相切,∴r=5,方程为(x+5)2+(y
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知 识逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等 等,这些用语往往体现了老师的思路。来自:学习方法网
此求圆的方程必须具备三个独立条件.
• 3.圆心为(a,b)半径为r(r>0)的圆的方程为: (x_圆-_心_a_)2在_+_(原_y_-点_b_)、_2=_半_r_2 径__为__r_的,圆称方作程圆为的x标2+准y方2=程r.2. 特别地,
• 4.点P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关
r2=5
故△ABC 的外接圆的标准方程为(x-4)2+(y-1)2=5.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
圆外?圆内?
• [分析] (1)根据所给已知条件可得圆心坐标和半 径.
• (2)判断点在圆上、圆外、圆内的方法是:根据已 知点[到解析圆]心由的已距知离条与件半可径得圆的心大坐小标关为系M来(5,判6),断半.径为 r=12
• 3.以点A(-5,4)为圆心,且与y轴相切的圆的方程
是( )
• A.(x-5)2+(y+4)2=25 B.(x+5)2+(y-4)2=
25
• C.(x-5)2+(y+4)2=16 D.(x+5)2+(y-4)2=
16
• [答案] B
• [解析] ∵与y轴相切,∴r=5,方程为(x+5)2+(y
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知 识逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等 等,这些用语往往体现了老师的思路。来自:学习方法网
此求圆的方程必须具备三个独立条件.
• 3.圆心为(a,b)半径为r(r>0)的圆的方程为: (x_圆-_心_a_)2在_+_(原_y_-点_b_)、_2=_半_r_2 径__为__r_的,圆称方作程圆为的x标2+准y方2=程r.2. 特别地,
• 4.点P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关
r2=5
故△ABC 的外接圆的标准方程为(x-4)2+(y-1)2=5.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
2.2.1 圆的标准方程 课件(北师大必修2)

(1)圆心在原点,半径为8; (2)圆心在(2,3),半径为2; (3)圆心在(2,-1)且过原点. [自主解答] 设圆的标准方程为 (x-a)2+(y-b)2=r2. (1)∵圆心在原点,半径为8,即a=0,b=0,r=8,
∴圆的方程为x2+y2=64.
(2)∵圆心为(2,3),半径为2, 即a=2,b=3,r=2, ∴圆的方程为(x-2)2+(y-3)2=4. (3)∵圆心在(2,-1)且过原点, ∴a=2,b=-1,r= 2-02+-1-02= 5. ∴圆的方程为(x-2)2+(y+1)2=5.
[研一题] [例3] 求圆心在直线l:2x-y-3=0上,且过点A(5,
2)和点B(3,-2)的圆的方程.
[自主解答] 法一:设圆的方程为
(x-a)2+(y-b)2=r2,则 2a-b-3=0, 2 2 2 5-a +2-b =r , 3-a2+-2-b2=r2, a=2, 解得b=1, r= 10.
a-b=0, 解方程组 5a-3b=8, a=4, 得 b=4, a=1, 或 b=-1.
a+b=0, 或 5a-3b=8,
∴圆心坐标为(4,4)或(1,-1). ∴可得半径 r=|a|=4 或 r=|a|=1. ∴所求圆方程为(x-4)2+(y-4)2=16 或(x-1)2+ (y+1)2=1.
2
x2+y2=r2
.
[小问题·大思维] 1.若圆的标准方程为(x+a)2+(y+b)2=t2(t≠0),那么圆 心坐标是什么?半径呢?
提示:圆心坐标为(-a,-b),半径为|t|.
2.由圆的标准方程可以得到圆的哪些几何特征? 提示:由圆的标准方程可以直接得到圆的圆心坐标和 半径.
[研一题] [例1] 写出下列各圆的标准方程.
人教A版高中数学必修二4.1.1 圆的标准方程 课件(共16张PPT)

设圆的标准方程为(x-a)2+(y-b)2=r2。
六.小结
1.圆心是 A(a,b),半径为r的圆A的标准方程是(x–a)2+(y–b )2=r2 2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系
几何法 先求出点M与圆心A的距离d
(1)若点M在圆A上,则d=r; (2)若点M在圆A内,则 d<r; (3)若点M在圆A外,则 d>r.
数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离
—— 华罗庚
O
平面直角坐标系
数
直线方程 1.点斜式方程 ������ − ������������ = ������(������ − ������������)
r2
③
展开平方后,
(x–2)2+(y+3)2=y25.
① ②得:a 2b 8 0
A(5,1)
③-②得:a b 1 0
几
解得a=2,b=-3,r=5.
代
何
O M
(6,-1) x B(7,-3)
∴ △ABC的外接圆方程为
数
(x–2)2+(y+3)2=25.
法
C(2,-8)
kAB 2
(1 a)2 (1 b)2 r 2
(2 a)2 (2 b)2 r 2
ab1 0
a 3 解得 b 2
r 5
∴圆C方程是(x-3)2+(y-2)2=25.
代
何
O
x
数
法
C
六.小结
1.圆心是 A(a,b),半径为r的圆A的标准方程是(x–a)2+(y–b )2=r2 2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系
几何法 先求出点M与圆心A的距离d
(1)若点M在圆A上,则d=r; (2)若点M在圆A内,则 d<r; (3)若点M在圆A外,则 d>r.
数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离
—— 华罗庚
O
平面直角坐标系
数
直线方程 1.点斜式方程 ������ − ������������ = ������(������ − ������������)
r2
③
展开平方后,
(x–2)2+(y+3)2=y25.
① ②得:a 2b 8 0
A(5,1)
③-②得:a b 1 0
几
解得a=2,b=-3,r=5.
代
何
O M
(6,-1) x B(7,-3)
∴ △ABC的外接圆方程为
数
(x–2)2+(y+3)2=25.
法
C(2,-8)
kAB 2
(1 a)2 (1 b)2 r 2
(2 a)2 (2 b)2 r 2
ab1 0
a 3 解得 b 2
r 5
∴圆C方程是(x-3)2+(y-2)2=25.
代
何
O
x
数
法
C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标都满足方程①,于是
(5 a)2 (1b)2 r2,
(7
a)2
(3b)2
r2,
(2 a)2 (8b)2 r2.
谢谢观看! 2020
圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3), 求圆C的方程.
解:依题可设圆心C(a,0),由|CA|=|CB|,得
(a 1 )2 (0 1 )2(a 1 )2 (0 3 )2
解得,a=2 所以圆心C(2,0)
半径长 r(21)2(01)210
所以,所求方程为 (x2)2y210.
例2
已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C
在直线 l:xy10 上,求圆心为C的圆的标准方程。
解法1分析:如图,确定一个圆只需确定圆心位置与半径大小。
圆心
半径
C到B的距离
圆心在直线 l上
圆心在弦AB的 垂直平分线上
圆心到A、B 的距离相等
yl
A(1,1) l '
OD
x
C
B(2,-2)
它们到圆心距离等于定长|MC|=r,
确定了圆的因素是圆心和半径。
C
问题2:
图中哪个点是定点?哪个点是动点?动 点具有什么性质?确定圆的因素有哪些?
圆心C是定点, 圆周上的点M是动点, M
它们到圆心距离等于定长|MC|=r,
确定了圆的因素是圆心和半径。
C
思考:圆心和半径能确定一个圆,能否用一个方程来表示圆呢?
二、探索研究:
探讨圆心在C(a,b),半径长为r的圆的方程。
y
解:设M( c, y )是圆上任意一点,
根据圆的定义|MC|=r
M
.r C
由两点间距离公式,得
O
x
xa2yb2 r ①
把①式两边平方,得
(x-a)2(y-b)2r2 ②
(xa)2(yb)2r2(r0) ②
我们把方程②称为圆心是C (a, b), 半径是 r
(1)牢记: 圆的标准方程:
(xa)2(yb)2r2
(2)明确:点与圆的位置关系。
(3)方法:①根据题设条件列出关于a , b , r 的方程组,解方程组得圆的标准方程。 ②根据题设条件直接求出圆心坐 标和半径长,然后再写出圆的标准方程。
P124 A组 2, 3
解:设所求圆的方程是 (xa)2(yb)2r2 ① 因为 A(5,1) ,B(7,3),C(2,8)都在圆上,所以它们的
M
在这个圆上;
1
把点 M2( 5,1) 的坐标代入上方程,
y
左右两边不相等,点 M 2 的坐标 不适合圆的方程, 所以点 M 2 不在这个圆上.
OxBiblioteka M2A那么 M 2 到底在圆内还是圆外呢?
AM2 r
M1
点 M0(x0,y0)在圆 (xa)2(yb)2r2外的条件是什么?
在圆上呢?在圆内呢?
设点 M0(x0, y0)到圆心 C ( a , b ) 的距离为d,
d>r 点M0在圆外 (x0a)2(y0b)2r2
d=r 点M0在圆上 (x0a)2(y0b)2r2
d<r 点M0在圆内
(x0a)2(y0b)2r2
. . y
M0
M0
O ..Cr x
M0
请判断A(2,3)、B(3,1)、C(1,0)与圆(x-1)2+(y-1)2=4 的位置关系。
答案:A在圆外 B在圆上 C在圆内
解法3:因为圆心C在直线l上,所以可设C(a,a+1),则 由|CA|=|CB| 得
( a 1 ) 2 ( a 1 1 ) 2( a 2 ) 2 ( a 1 2 ) 2
解得 a=-3,所以C(-3,-2) 所以 r=|CB|=5
所以,圆心为C的圆的标准方程是(x3)2(y2)225
圆C的圆心在x轴上,并且过点A(-1,1)和 B(1,3),求圆C的方程.
解法2:设所求圆的方程是 (xa)2(yb)2r2,则
由A、B在圆上和圆心C在直线l上,得
(1a)2(1b)2r2
a 3
(2a)2(2b)2r2 解得 b 2
ab10
r5
所以,圆心为C的圆的标准方程是(x3)2(y2)225
例2
已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C
在直线 l:xy10上,求圆心为C的圆的标准方程。
A
M1
例 1(2) 写出圆心为 A(2,3) ,半径长等于5的圆的方程,并判断点 M1(5,7) M2( 5,1) 是否在这个圆上。
解:圆心是 A(2,3),半径长等于5的圆的标准方程是
(x2)2(y3)22.5
把点 M1(5,7),的坐标代入上方程 ,左右两边相等,
点
M
1
的坐标适合圆的方程,所以点
的圆的方程,把它叫做圆的标准方程。
(xa)2(yb)2r2(r0) ②
我们把方程②称为圆心是C (a, b), 半径是 r
的圆的方程,把它叫做圆的标准方程。
圆的方程 (xa)2(yb)2r2具有什么特点? 当圆心在坐标原点、半径长为r时,圆的方程是什么? 结论:左边是两个式子的平方和,右边是半径的平方,
三、知识应用与解题研究
例1:(1)写出圆心在坐标原点,半径长为 3的圆的方程。 (2)写出圆心为 A(2,3),半径长等于5的圆的方程, 并判断点 M1(5,7),M2( 5,1) 是否在这个圆上。
y
例1 (1) x2 y2 3
O
3x
例 1(2) 写出圆心为 A(2,3) ,半径长等于5的圆的方程,并判断点 M1(5,7) M2( 5,1) 是否在这个圆上。
解此方程组,得
x 3,
y
2.
A(1,1) l '
所以圆心C的坐标是(3,2)
OD
x
圆心为C的圆的半径长
C
B(2,-2)
rC B( 3 2 )2 ( 22 )25 所以,圆心为C的圆的标准方程是
数形结合
(x3)2(y2)225
例2
已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C
在直线 l:xy10上,求圆心为C的圆的标准方程。
解:圆心是 A(2,3),半径长等于5的圆的标准方程是
(x2)2(y3)22.5
把点 M1(5,7),的坐标代入上方程 ,左右两边相等,
点
M
1
的坐标适合圆的方程,所以点
M
在这个圆上;
1
把点 M2( 5,1) 的坐标代入上方程,
y
左右两边不相等,点 M 2 的坐标
不适合圆的方程,
O
x
所以点 M 2 不在这个圆上.
一、复习:
问题1:圆的定义是怎样的? 平面内与一定点的距离等于定 长的点的集合称为圆.
一、复习:
问题1:圆的定义是怎样的?
平面内与一定点的距离等于定
长的点的集合称为圆.
M(x,y)
O
问题2:
图中哪个点是定点?哪个点是动点?动 点具有什么性质?确定圆的因素有哪些?
圆心C是定点, 圆周上的点M是动点, M
A、B在圆上
解:因为 A(1,1) ,B(2,2),所以线段AB的中点D坐标为( 3 , 1 ) ,
22
直线AB的斜率 kAB22113
11 3
因此线段AB的垂直平分线 l ' 的方程是
y (x ) 23 2
即 x3y30
弦AB的垂
圆心C的坐标是方程组
x3y 3 0, x y 1 0
的解 直平分线 yl
括号内是差的形式,点 ( a , b )分, 别r 表示圆
心的坐标和圆的半径.
当圆心在坐标原点即C(0,0),半径长为r
时圆的方程为:x2 y2 r2
智
力
抢
求下列圆的圆心及半径: 答
(1) x2 y2 4
C(0,0),r2
(2) (x1)2y232 C(1,0),r3
变式: (x2)2(y5)2a2(a0) C(2,5),ra