高中数学数列知识点总结(精华版)知识分享
高中数学数列知识点总结(精华版)

一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项 a n与项数 n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集( 或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2. 通项公式:如果数列 a n的第 n 项与序号之间可以用一个式子表示, 那么这个公式叫做这个数列的通项公式,即a n f (n) .3. 递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a n 1(或前几项)间的关系可以用一个式子来表示,即 a n f (a n 1 ) 或 a n f (a n 1 , a n 2 ) ,那么这个式子叫做数列a n的递推公式 . 如数列a n中, a1 1, a n2a n 1 ,其中a n2a n 1 是数列 a n的递推公式 .4.数列的前 n项和与通项的公式① S n a1 a2a n;② a nS1 (n1)S n .S n 1 ( n 2)5. 数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列 .①递增数列 : 对于任何n N , 均有 a n 1②递减数列 : 对于任何n N , 均有 a n 1③摆动数列 : 例如 :1,1,1,1,1, .④常数数列 : 例如 :6,6,6,6, ,,.⑤有界数列 : 存在正数M 使 a n M , n a n .a n . N.⑥无界数列 : 对于任何正数M , 总有项 a n使得 a n M .1、已知 a n n (n N *) ,则在数列 { a n } 的最大项为 __(答: 1 );n2156an 252、数列 { a n } 的通项为a n,其中 a,b 均为正数,则 a n与 a n 1的大小关系为 ___(答:bn 1a n a n 1);3、已知数列 { a n }中,a n n2n ,且 { a n } 是递增数列,求实数的取值范围(答:3 );4、一给定函数y f (x) 的图象在下列图中,并且对任意a1(0,1) ,由关系式 a n 1 f (a n )得到的数列{ a n }满足 a n 1 a n(n N *),则该函数的图象是()(答: A )二、等差数列1、等差数列的定义:如果数列an 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
(完整版)高中数学数列知识点整理

1数列中a n 与S n 之间的关系:a nS ‘(n 1)注意通项能否合并。
S n & i ,(n 2).2、等差数列:⑴定义:如果一个数列从第 2项起,每一项与它的前一项的差等于同一个常数,即a n - a n 1=d , (n >2, n € N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数 a 、A b 成等差数列或a n pn q (p 、q 是常数)⑷前n 项和公式:n n 1 S n n^d2⑸常用性质: ① 若 mn p q m,n, p,q N ,贝U a m a n a p a q;② 下标为等差数列的项 a k ,a k m ,a k 2m ,,仍组成等差数列; ③ 数列 a n b ( ,b 为常数)仍为等差数列;④ 若{a n }、{0}是等差数列,则{ka n }、{ka n pb n } (k 、p 是非零常数)、{a p nq }( p,q N )、,…也成等差数列。
⑤单调性: a n 的公差为d ,则:i) d 0 a n 为递增数列; ii) d 0 a n 为递减数列; iii) d 0a n 为常数列;⑥数列{a n }为等差数列 a n pn q ( p,q 是常数)⑦若等差数列 a n 的前n 项和S n ,则S k 、S 2kS k 、S 3k S 2k …是等差数列。
3、等比数列⑴定义:如果一个数列从第 2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数a 、Gb 成等比数列G 2 ab, ( ab 同号)。
反之不一定成立。
数列⑶通项公式:a n a 1(n 1)d a m (n m)dn a-i a n2⑶通项公式:a nn 1n maga m q⑷前n 项和公式:a 1 1 q n S i1 qa 1 a n q 1 q⑸常用性质①若m n pq m,n, p,q N , 则 am ana p a q;② a k ,a k m ,a k 2m ,为等比数列, 公比为 q k (下标成等差数列,则对应的项成等比数列)③ 数列a n (为不等于零的常数)仍是公比为 q 的等比数列;正项等比数列 a n ;则lg a n 是公差为lg q 的等差数列;④ 若a n 是等比数列,则 ca n , a n 2 ,a n r(r Z )是等比数列,公比依次是⑤ 单调性:a i 0,q 1或印 0,0 q 1 a “为递增数列; a i 0,0 q 1或q 0,q1a .为递减数列;q 1 a n 为常数列; q 0a n 为摆动数列;⑥ 既是等差数列又是等比数列的数列是常数列。
数列知识点总结(高中数学)

数列知识点总结 数列的概念与简单表示法知识点一、数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。
数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常称为首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项,所以数列的一般形式可以写成: ,,,,,,321 n a a a a简记为{}n a 。
项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列。
1.从第2项起,每一项都大于它的前一项的数列叫做递增数列; 2.从第2项起,每一项都小于它的前一项的数列叫做递减数列; 3.各项相等的数列叫做常数列;4.从第2项起,有些项大于它的前一项,有些项小于它前一项的数列叫做摆动数列; 知识点二、通项公式如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。
知识点三、数列的前n 项和1.数列的前n 项和的定义:我们把数列{}n a 从第一项起到第n 项止的各项之和,称为数列{}n a 的前n 项和,记作n S ,即n n a a a S +++= 21。
2.数列前n 项和n S 与通项公式n a 之间的关系:⎩⎨⎧≥-==-.2,,1,11n S S n S a n n n等差数列知识点一、等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
知识点二、等差中项有三个数b A a ,,组成的等差数列可以看成简单的等差数列,这时A 叫做b a 与的等差中项。
1.根据等差中项的定义:b A a ,,是等差数列,则2b a A +=;反之,若2ba A +=,则b A a ,,是等差数列。
2.在等差数列{}n a 中,任取相邻的三项()*+-∈≥N n n a a a n n n ,2,,11,则n a 是1-n a 与1+n a 的等差中项;反之,n a 是1-n a 与1+n a 的等差中项对一切*∈≥N n n ,2均成立,则数列{}n a 是等差数列。
高中数学数列知识点总结(精华版)知识分享

高中数学数列知识点总结(精华版)一、数列1. 数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称 为该数列的项 .⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调 有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同 的数列.⑵在数列中同一个数可以重复出现.⑶项 a n与项数 n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集 ( 或它的有限子集 ) 的函数当自变量 从小到大依次取值时对应的一列函数值,但函数不一定是数列2. 通项公式:如果数列 a n 的第 n 项与序号之间可以用一个式子表示 , 那么 这个公式叫做这个数列的通项公式,即 a n f(n).3. 递推公式:如果已知数列 a n 的第一项(或前几项),且任何一项 a n 与 它的前一项 a n 1(或前几项)间的关系可以用一个式子来表示,即 a n f(a n 1) 或a n f(a n1,a n 2) ,那么这个式子叫做数列 a n 的递推公式. 如数列 a n 中, a 1 1,a n 2a n 1,其中 a n 2a n 1是数列 a n 的递推公式 .4. 数列的前 n 项和与通项的公式S 1(n 1) ① S n a 1 a 2 a n ; ② a n 1.n 1 2 n nS n S n1(n 2)5. 数列的表示方法:解析法、图像法、列举法、递推法 .6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列, 常数数列;有界数列,无界数列 .① 递增数列 :对于任何 n N ,均有a n 1 a n . ② 递减数列 : 对于任何 n N , 均有 a n 1 a n . ③ 摆动数列 : 例如: 1,1, 1,1, 1, . ④ 常数数列 : 例如:6,6,6,6, ⋯⋯.⑤ 有界数列 :存在正数 M 使 a n M,n N .⑥ 无界数列:对于任何正数 M ,总有项a n 使得 a n M.n11、已知a n 2 n (n N * ) ,则在数列 { a n }的最大项为__(答: 1);n 2 156 252、数列{a n }的通项为a n an,其中a,b 均为正数,则 a n 与a n1的大小关系bn 1为 ___(答: a n a n 1);a 1 (0,1) ,由关系式 a n 1 f (a n )得到的数列 {a n }满足 a n1 a n (n N*) ,则该函 数的图象是 ()(答: A )1、等差数列的定义 :如果数列 a n 从第二项起每一项与它的前一项的差等于同 一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
高中数学数列知识点归纳

高中数学数列知识点归纳一、数列的概念数列是按照一定顺序排列的一列数。
例如,1,2,3,4,5……就是一个自然数列。
数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第 1 项(通常也叫做首项),排在第二位的数称为这个数列的第 2 项……以此类推。
数列的一般形式可以写成 a₁,a₂,a₃,…,aₙ,…,其中 aₙ 是数列的第 n 项。
我们用{aₙ} 来表示一个数列。
二、数列的分类1、按项数分类(1)有穷数列:项数有限的数列。
例如,数列 1,2,3,4,5 就是一个有穷数列。
(2)无穷数列:项数无限的数列。
比如自然数列 1,2,3,4,……就是一个无穷数列。
2、按项的大小变化分类(1)递增数列:从第 2 项起,每一项都大于它的前一项的数列。
例如,数列 1,2,4,8,16,……就是一个递增数列。
(2)递减数列:从第 2 项起,每一项都小于它的前一项的数列。
比如数列 10,8,6,4,2 就是一个递减数列。
(3)常数列:各项都相等的数列。
例如,数列 3,3,3,3,……就是一个常数列。
(4)摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列。
比如数列 1,-1,1,-1,1,……就是一个摆动数列。
三、数列的通项公式如果数列{aₙ} 的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式。
例如,数列 1,3,5,7,9,……的通项公式为 aₙ = 2n 1 。
通项公式可以帮助我们快速求出数列中的任意一项,也能让我们更深入地了解数列的性质。
四、数列的递推公式如果已知数列{aₙ} 的第 1 项(或前几项),且从第二项(或某一项)开始的任一项 aₙ 与它的前一项 aₙ₋₁(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做这个数列的递推公式。
例如,已知数列{aₙ} 的首项 a₁= 1 ,且 aₙ = aₙ₋₁+ 2 (n ≥2 ),则可以依次求出 a₂= a₁+ 2 =3 ,a₃= a₂+ 2 = 5 ,……五、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
数列基础 知识点总结高中

数列基础知识点总结高中1. 什么是数列数列是指按照一定顺序排列的一组数,数列中的每一个数都叫做这个数列的项。
数列可以写成一般形式为{an},其中an表示数列的第n项,也可以写成a1, a2, a3, ..., an的形式。
2. 数列的分类数列可以按照项的性质和数列中项的变化规律进行分类,主要可以分为以下几种类型:- 等差数列:如果一个数列中的相邻两项的差都相等,那么这个数列就叫做等差数列。
- 等比数列:如果一个数列中的相邻两项的比都相等,那么这个数列就叫做等比数列。
- 菲波那契数列:这是一种非常有趣的数列,它的每一项都是前两项的和,即an = a(n-1) + a(n-2)。
3. 数列的通项公式对于某些特定的数列,我们可以通过推导或者观察得到一个通项公式,这个公式可以用来表示数列中任意一项的值。
例如对于一个等差数列{an},它的通项公式可以表示为an = a1 + (n-1)d,其中a1表示数列的首项,d表示数列的公差,n表示数列的项数。
4. 数列的性质数列有很多性质,例如对于一个等差数列,它的前n项的和可以用一个公式来表示,即Sn = (a1 + an) × n ÷ 2,其中a1为首项,an为末项。
对于一个等比数列,它的前n项的和也可以用一个公式来表示。
5. 数列的求和对于一些特定的数列,我们可以通过一些方法来求解它的前n项的和,例如使用公式、数学归纳法等。
6. 数列的应用数列在数学中有很多实际应用,例如在计算机科学中,数列可以用来表示计算机程序的执行次数;在经济学中,数列可以用来分析经济增长趋势等。
7. 数列的递推公式对于一些特定的数列,我们可以用递推公式来表示数列的变化规律,通过递推公式可以方便地计算数列的各项的值。
8. 数列的极限数列的极限是数学分析中一个非常重要的概念,它可以帮助我们理解数列的收敛性、发散性等性质。
数列的极限可以用来解决一些实际问题,例如计算机程序的性能优化等。
高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)等比数列公式性质知识点1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈n_,q为非零常数).(2)等比中项:如果a、g、b成等比数列,那么g叫做a与b的等比中项.即:g是a与b的等比中项a,g,b成等比数列g2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈n_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列sm,s2m-sm,s3m-s2m,…仍是等比数列(此时q≠-1);an=amqn-4.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.(2)由an+1=qan,q≠0并无法立即断言{an}为等比数列,还要检验a1≠0.5.等比数列的前n项和sn(1)等比数列的前n项和sn就是用错位二者加法求出的,特别注意这种思想方法在数列议和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.1.等比中项如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项。
存有关系:注:两个非零同号的实数的'等比中项有两个,它们互为相反数,所以g2=ab是a,g,b 三数成等比数列的必要不充分条件。
2.等比数列通项公式an=a1_q’(n-1)(其中首项是a1,公比是q)an=sn-s(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为sn=na13.等比数列前n项和与通项的关系an=a1=s1(n=1)an=sn-s(n-1)(n≥2)4.等比数列性质(1)若m、n、p、q∈n_,且m+n=p+q,则am·an=ap·aq;(2)在等比数列中,依次每k项之和仍成等比数列。
高中数学数列知识点总结5篇

高中数学数列知识点总结5篇篇1一、数列的基本概念数列是一种特殊的函数,其定义域为自然数集或其自然数子集。
数列分为等差数列和等比数列两种基本形式,此外还有更为复杂的数列形式。
数列的通项公式是描述数列的一般规律的重要工具,对于等差数列和等比数列,其通项公式分别为an=a1+(n-1)d和an=a1×q^(n-1)。
掌握数列的基本概念对于后续的学习至关重要。
二、等差数列等差数列是一种常见且重要的数列形式,其任意两项之差都相等。
在等差数列中,需要掌握的主要知识点包括等差数列的通项公式、求和公式、中项公式等。
等差数列的求和公式为Sn=n(a1+an)/2或Sn=na1+[n(n-1)/2]d,这些公式在处理与等差数列相关的问题时非常实用。
等比数列的特点是任意两项之比都相等。
在等比数列中,需要掌握的知识点包括等比数列的通项公式、求和公式以及公比的概念。
等比数列的求和公式为Sn=a1(1-q^n)/(1-q),掌握这个公式对于解决涉及等比数列的问题非常关键。
四、数列的极限数列的极限是描述数列变化趋势的重要概念。
当n趋近于无穷大时,数列的项会趋近于一个固定的值,这个值就是数列的极限。
掌握数列极限的概念和计算方法是分析数列性质的重要工具。
五、数列的应用数列在实际生活中有着广泛的应用,如金融、物理、工程等领域。
例如,在金融领域,复利计算就涉及等比数列的应用;在物理领域,许多物理量的变化可以看作是等差或等比数列的形式。
掌握数列的应用对于解决实际问题具有重要意义。
除了等差数列和等比数列外,还有一些特殊数列需要了解,如斐波那契数列、三角数列等。
这些数列具有独特的性质和应用场景,了解这些数列有助于拓宽数学视野,提高数学素养。
七、数列的证明在数列的学习中,还需要掌握一些证明方法,如数学归纳法、反证法等。
这些证明方法在证明数列的性质和解决问题时非常有用。
掌握这些证明方法有助于提升数学思维和逻辑推理能力。
综上所述,高中数学中的数列知识点丰富且重要,需要掌握基本概念、等差数列和等比数列的性质、数列的极限、应用、特殊数列以及证明方法等方面的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学数列知识点总结(精华版)一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn . 5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.1、已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125); 2、数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a );3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是()(答:A )二、 等差数列1、等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+).2、(1)等差数列的判断方法:①定义法:)(1常数d a a n n =-+⇔{}a n 为等差数列。
② 中项法: a a a n n n 212+++=⇔{}a n 为等差数列。
③通项公式法:b an a n +=(a,b 为常数)⇔{}a n 为等差数列。
④前n 项和公式法:Bn n A s n +=2(A,B 为常数)⇔{}a n 为等差数列。
如设{}n a 是等差数列,求证:以b n =n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。
(2)等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
公式变形为:b an a n +=. 其中a=d, b= a 1-d.如1、等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +);2、首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833d <≤) (3)等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
公式变形为:Bn n A s n +=2,其中A=2d ,B=21d a -.注意:已知n,d, a 1,a n , s n 中的三者可以求另两者,即所谓的“知三求二”。
如 数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a =_,n =_(答:13a =-,10n =);(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩). (4)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a b A +=。
提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )3.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 等差数列{a n }中,n S n 是n 的一次函数,且点(n ,n S n )均在直线y =2d x + (a 1-2d )上(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
(3)对称性:若{}a n 是有穷数列,则与首末两项等距离的两项之和都等于首末两项之和.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.如1、等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____(答:27);2、在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则A 、1210,S S S 都小于0,1112,S S 都大于0 B 、1219,S S S 都小于0,2021,S S 都大于0 C 、125,S S S 都小于0,67,S S 都大于0 D 、1220,S S S 都小于0,2122,S S 都大于0 (答:B )(4) 项数成等差,则相应的项也成等差数列.即),,...(,,*2N m k a a a m k m k k ∈++成等差.若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、232,,n n n n n S S S S S --(公差为d n 2).,…也成等差数列,而{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列.如 等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。
(答:225)(5)在等差数列{}n a 中,当项数为偶数2n 时, )(1a a n n n n s ++=;nd s s =-奇偶;a a nn s s 1+=奇偶. 项数为奇数21n -时, a n n n s )12(12-=-;a s s 1-=-奇偶 ;n n s s 1-=奇偶。
如1、在等差数列中,S 11=22,则6a =______(答:2);2、项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).(6)单调性:设d 为等差数列{}a n 的公差,则d>0⇔{}a n 是递增数列;d<0⇔{}a n 是递减数列;d=0⇔{}a n 是常数数列(7)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()n nA f nB =,则2121(21)(21)(21)n n n n n n a n a A f n b n b B ---===--. 如设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若3413-+=n n T S n n ,那么=nn b a(答:6287n n --) (8)设a l ,a m ,a n 为等差数列中的三项,且a l 与a m ,a m 与a n 的项距差之比nm m l --=λ(λ≠-1),则a m =λλ++1n l a a . (9)在等差数列{ a n }中,S n = a ,S m = b (n >m),则S n m +=mn m n -+(a -b).8、已知{}a n 成等差数列,求s n 的最值问题: ① 若01>a ,d<0且满足⎪⎩⎪⎨⎧≤≥+0,01a a n n ,则s n 最大;②若01<a ,d>0且满足⎪⎩⎪⎨⎧≥≤+0,01a a n n ,则s n 最小. “首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。
法一:由不等式组⎪⎪⎭⎫ ⎝⎛⎩⎨⎧≥≤⎩⎨⎧≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。
上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?如1、等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。
(答:前13项和最大,最大值为169);2、若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是 (答:4006)(10)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.三、等比数列1、等比数列的有关概念:如果数列{}a n 从第二项起每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫等比数列的公比。