螺旋桨的功率计算

合集下载

船舶螺旋桨知识

船舶螺旋桨知识
可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋
转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。

螺旋桨公式

螺旋桨公式

螺旋桨公式一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。

模型飞机螺旋桨原理与拉力计算

模型飞机螺旋桨原理与拉力计算

模型飞机螺旋桨原理与拉力计算模型飞机螺旋桨原理与拉力计算模型飞机, 拉力, 原理, 螺旋桨一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随 J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

螺旋桨式小型无人机可用功率计算研究

螺旋桨式小型无人机可用功率计算研究

螺旋桨式小型无人机可用功率计算研究张轶【摘要】The theory and experimental formulas about power character of propeller-driven piston engine have been briefly interviewed and analyzed. Then, the impact of drift and fuselage on propeller efficiency is investigated. At last, a new method is proposed to calculate the available power of propeller-driven small UAV. The results have shown that if the flight altitude keeps constant, the available power and propeller efficiency are in direct proportion to cruising speed, while if the cruising speed keeps constant, they are in inverse proportion to flight altitude.%简要分析总结了螺旋桨式活塞发动机功率特性的相关理论及经验公式.以此为基础,研究了滑移现象和机身对螺旋桨效率的影响问题.提出了一种新的计算螺旋桨式无人机可用功率的方法.结果表明:螺旋桨式无人机若飞行高度保持一定,可用功率、螺旋桨效率与巡航速度成正比;若巡航速度保持一定,可用功率、螺旋桨效率与飞行高度成反比.【期刊名称】《科学技术与工程》【年(卷),期】2011(011)008【总页数】5页(P1876-1880)【关键词】螺旋桨;活塞发动机;无人机;可用功率【作者】张轶【作者单位】西北工业大学机电学院,西安,710072【正文语种】中文【中图分类】V279;V211螺旋桨式活塞发动机由于具有质量轻、尺寸小、耗油率低、低速时推力大、价格便宜等优点。

螺旋桨设计计算表格

螺旋桨设计计算表格

取转速为 231
rpm
221
rpm
76
项目
单位

V
kn
10
VA=0.5144(1-ω)V
m/s
3.302448
J=VA/nD
#NAME?
KT
#NAME?
KQ
#NAME?
N=
231
rpm
PTE=KTρ n2D4(1-
PE/hp 111h01p00000
#NAME?
t)V/145.6
Ps=KQ2пnρ n2D5/75ηSηR
KT
#NAME?
1000
KQ
1000
#NAME?
N=
76
rpm
PTE=KTρ n2D4(1-
11
10-h01p0000
#NAME?
t)V/145.6
Ps=KQ2пnρ n2D5/76ηSη
30-h03p0000
#NAME?
R

50-050000
10
527.8912
70-070000

527.8912
单位 m
mm mm
0.25R #NAME?
634 250 1410 4 #NAME?
#NAME?
82 34 41 380 #NAME?
#NAME? 1.38 #NAME? #NAME?
数值 0.60R #NAME? 207 151 635 34 #NAME?
#NAME?
23 12 65 330 #NAME?
#NAME? m
d0/d=
#NAME?
榖重量Gn=
#NAME? kgf
③螺旋桨总重=

螺旋桨计算公式

螺旋桨计算公式

刚度计算公式
1、螺旋桨轴刚度计算(经验计算公式)
K=(9.497*(d^4/L")*10³)
N.m/rad
d 轴的基本直径 mm
67
kg.m²
0.638640554
795.9987916
L"螺旋浆轴总长度(到锥体小端面)mm
2890
K=
17594800.47m
5.6835E-08
d 4 轴段的直径 m
J3 897905.0781 K3 24
J4
32555.52 K4
K总
d 6 轴段的直径 m J6
d 7 轴段的直径 m J7
d 8 轴段的直径 m J8
艉轴转动惯量计算 I=770.28125(L*D^4) ρ 为圆筒密度 7.85x10³ kg/m³ L 艉轴总长度 m
L1 m D1 m I1= L2 m D2 m I2=
2、轴段刚度计算公式
K=(E1*J1)/L
N.cm/rad
E1 钢的弹性模量 N/cm^2
8149000
J1 轴段截面级惯性矩 cm^4
L 轴段长度
cm
13.5
J=(π*d^4)/32
d 1 轴段的直径 m
40
d 2 轴段的直径 m
J1
251200 k1
132.5
d 3 轴段的直径 m
J2 30244275.32 K2 55
0.0335
m=πhρ(R²-r²)
π 为圆周率
3.14
h 为圆筒高度 m
0.17
ρ 为圆筒密度 7.85x10³ kg/m³
7850
m=
10.38259016
I=

螺旋桨扭矩计算公式

螺旋桨扭矩计算公式

螺旋桨扭矩计算公式螺旋桨扭矩计算公式是航空工程中的重要计算工具,用于确定螺旋桨在运行过程中所产生的扭矩大小。

螺旋桨扭矩计算公式可以通过以下方式进行推导和应用。

螺旋桨扭矩计算公式的推导涉及到航空力学和力学的知识。

首先,我们需要了解螺旋桨的工作原理。

螺旋桨通过旋转产生推力,推动飞机前进。

在旋转的过程中,螺旋桨受到气流的阻力,这个阻力即为扭矩。

螺旋桨扭矩计算公式中的关键参数包括螺旋桨叶片面积、气流速度、螺旋桨叶片的升力系数和阻力系数等。

螺旋桨叶片面积是指螺旋桨叶片所覆盖的面积,气流速度是指螺旋桨叶片运动时遇到的气流速度,螺旋桨叶片的升力系数和阻力系数是由螺旋桨叶片的设计参数决定的。

根据力学原理,螺旋桨扭矩可表示为:扭矩 = 螺旋桨叶片面积× 气流速度× (升力系数 - 阻力系数)螺旋桨叶片面积的计算可以根据螺旋桨的几何形状来确定。

气流速度可以通过飞机的速度和空气密度来计算。

螺旋桨叶片的升力系数和阻力系数可以通过实验或者数值模拟方法进行确定。

在实际应用中,螺旋桨扭矩计算公式可以用于飞机设计、性能预测和飞行控制等方面。

通过计算螺旋桨扭矩,可以评估螺旋桨的工作状态和效率,进而优化飞机的设计和性能。

螺旋桨扭矩计算公式还可以用于飞机的飞行控制。

通过实时监测螺旋桨扭矩的变化,可以调整发动机的功率输出,实现飞机的稳定飞行和操纵。

总结起来,螺旋桨扭矩计算公式是航空工程中的重要工具,用于确定螺旋桨在运行过程中所产生的扭矩大小。

螺旋桨扭矩的计算涉及到螺旋桨叶片面积、气流速度、螺旋桨叶片的升力系数和阻力系数等参数。

通过计算螺旋桨扭矩,可以评估螺旋桨的工作状态和效率,进而优化飞机的设计和性能。

此外,螺旋桨扭矩计算公式还可以用于飞机的飞行控制,实现飞机的稳定飞行和操纵。

螺旋桨扭矩计算公式的应用有助于提升飞机的性能和安全性。

螺旋桨计算公式

螺旋桨计算公式

J3 897905.08 K3 5.32148E+11 N.cm/rad
d 4 轴段的直径 m
24Байду номын сангаас
J4 32555.52 K4 44215822080 N.cm/rad
K总 2.9515E-11
2.95x10-11
d 6 轴段的直径 m
J6
d 7 轴段的直径 m
J7
d 8 轴段的直径 m
艉轴转动惯量计算
D=17PD0.2/n0.6 PD= n=
n=c(PD/D5)1/3 PD D
螺旋桨直径估算公式
82 KW 1031 r/min
主机功率
螺旋桨转 速
1255 kw 1.2 M
主机功率 螺旋桨直 径
转动惯量计算公式
1、对于圆筒的计算 I=m/2(R²+r²) m 为圆筒的质量 R 为圆筒体外半径 r 为圆筒体内半径 m=πhρ(R²-r²) π 为圆周率 h 为圆筒高度 m ρ 为圆筒密度 7.85x10³ kg/m³
0.0440152
kg. m²
0.0110038
kg. m²
2
J1 轴段截面级惯性矩 cm^4
L 轴段长度
cm
13.5
J=(π*d^4)/32
d 1 轴段的直径 m
40
J1 251200 k1 2.04703E+11 N.cm/rad
d 2 轴段的直径 m
132.5
J2 30244275 K2 7.44032E+12 N.cm/rad
d 3 轴段的直径 m
55
m=
I=
2、对于实心圆轴的计算 I=(m/2)*R²
m、R的量同上
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档